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Abstract

Epithelial cells require apical–basal plasma membrane polarity to perform crucial vectorial 

transport functions and cytoplasmic polarity to generate different cell progenies for tissue 

morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, 

basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is 

controlled by a network of protein and lipid regulators. The EPP is organized in response to 

extracellular cues and is executed through the establishment of an apical-basal axis, intercellular 

junctions, epithelial–specific cytoskeletal rearrangements and a polarized trafficking machinery. 

Recent studies have provided insight on the interactions of the EPP with the polarized trafficking 

machinery and how they regulate epithelial polarization and depolarization.

The epithelium is perhaps the first tissue that emerged during phylogenesis. Modern 

cadherin-based epithelia appeared with the dawn of the Metazoa, 600 million years ago; 

however, epithelial structures are much older, as demonstrated by the recent finding of an 

ancient non-cadherin-based epithelium in the pre-Metazoan organism Dictyostelium 
discoideum 1. The evolutionary appearance of modern epithelia reflects the requirement of 

Metazoa for a tissue structure that is capable of segregating their internal medium from the 

outside environment 2. Epithelial cells are particularly well suited for this fundamental 

function, owing to several attributes of the epithelial phenotype (Figure 1a): they form 

sheets of uniformly polarized cells that are kept together through specialized adherens 

junctions on the basis of calcium-dependent cell adhesion molecules (cadherins); they 

contain sealing junctions between their apical and basolateral domains (tight junctions in 

vertebrates, septate junctions in invertebrates) that segregate the internal medium from the 

outside environment; they have segregated apical and basolateral plasma membrane 

domains with asymmetric compositions of nutrient and fluid transporters required to carry 

out their vectorial secretory and absorptive functions; they have a polarized trafficking 

machinery that is composed of secretory organelles (ER, Golgi complex) and endosomal 

compartments and which is required for the generation and maintenance of the asymmetric 

distribution of plasma membrane proteins. As the complexity of metazoan organisms 

evolved, epithelial cells became essential building blocks to generate the various organs 

required for survival, and to implement their body plan 3. Mammals have well over 150 

different types of epithelial cells that perform key roles in the generation and/or function of 
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their digestive, respiratory, reproductive, neural, sensory, vascular and hormonal systems4. 

These cells are constantly replaced, and arise from tissue-specific stem cells.

The epithelium is the first tissue that emerges during ontogenesis, and epithelial cells have 

fundamental roles in embryo morphogenesis and organ development5. There are additional 

features of the epithelial phenotype that make epithelial cells especially suited for these 

roles. First, the polarized actin and microtubule cytoskeleton enables epithelial cells to 

constrict their apical surfaces (Figure 1b), and thus participate in key developmental 

processes such as gastrulation and tubulogenesis 6, and to expand or shrink their lateral 

membranes, which enables the formation of columnar or squamous epithelia (Figure 1c). 

Second, epithelial cells can orient the mitotic spindle. This feature enables epithelial cells to 

divide parallel to the sheet to increase their number (Figure 1d) or perpendicular to the sheet 

to generate different daughter cells in the case of stem cells (Figure 1e) or to generate 

stratified epithelia from simple epithelia (Figure 1f) 7. Third, the primary cilium8 (Fig 1a) 

found on the cell surface of vertebrate epithelial cells harbors signaling pathways that have 

key roles in the organization of planar polarity, which is essential for many developmental 

processes and in epithelial cell differentiation in response to signals from mesenchymal or 

endothelial cells. Fourth, epithelial cells can quickly lose or acquire the epithelial phenotype, 

known as epithelial-mesenchymal transition (EMT) or mesenchymal–epithelial transition 

(MET), respectively 9. A process similar to EMT has been proposed to account for the 

dissemination of cancers, the large majority of which, in humans, arises from epithelia 10, 11.

Therefore, it is of fundamental importance to understand the molecular programmes that 

drive epithelial polarization and depolarization. Over the past three decades, genetic and 

biochemical studies in Caenorhabditis elegans, Drosophila melanogaster and monolayer or 

three-dimensional (3D) cultures of mammalian epithelial cells have generated an extensive 

body of knowledge on a network of polarity proteins and lipids that provide identity to the 

apical and basolateral domains of epithelial cells 12-15 (Figure 2). Moreover, cell biological 

and biochemical studies in mammalian epithelial cells, such as the prototype epithelial cell 

line MDCK, provided detailed information on the polarized trafficking machinery used by 

epithelial cells to distribute their plasma membrane proteins into apical, basolateral and 

ciliary domains 16-18 (Figure 1a). Here, we refer to the overall process through which the 

network of epithelial polarity proteins and lipids mediate the organization of a polarized 

epithelial cell as the epithelial polarity programme (EPP). An important caveat is that 

although there is a striking preservation of the key EPP players and mechanisms, there is 

also considerable variation in their use by different epithelial cells in different organisms, 

tissues and developmental contexts. In this Review, we discuss the interactions of the EPP 

and the polarized trafficking machinery and how, in turn, vesicular trafficking contributes to 

the organization of the EPP.

Key players mediating the EPP

Multiple distinct but interacting groups of proteins make up the EPP. The Par proteins are 

ubiquitously expressed and function in many different contexts to regulate polarity, cell 

proliferation, and differentiation, while the Crumbs and Scribble groups are more restricted 

in their distribution. The Scribble group is restricted to epithelial cells and localize to lateral 
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membranes. The Crumbs group is localized apically or at apical junctions. These 

components of the EPP are discussed in detail below.

Par proteins

An elegant screen for maternal embryonic lethal mutants in C. elegans, that are required for 

the correct partitioning of cytoplasmic components between the anterior and posterior cells 

of the early embryo 19. All but one of these genes has since been found in other animals, but 

not in plants or fungi. For example, screens in Drosophila [CEd:D. melanogaster 

throughout] embryos for defective epidermal development revealed fly homologues of the 

par genes13. The Par proteins involved in epithelial morphogenesis are the protein kinases 

Par1 and Par4, a phospho-protein interactor Par5 (an isoform of 14-3-3) and two scaffold 

and adapter proteins that contain PDZ domains, Par3 and Par6. In addition, atypical protein 

kinase C (aPKC) and the CDC42 GTPase are also considered to be part of the group (Figure 

2, Par proteins are shown in orange). Although only single copies of the Par genes exist in 

nematodes and flies, this gene family has expanded in vertebrates, although the reasons for 

this remain unknown (for example, there are three genes encoding Par6, two gene encoding 

Par3 and two genes encoding aPKC). Presumably the isoforms have different roles, but so 

far only one study has provided evidence for this hypothesis. It showed that replacement of 

the zebrafish Par6 gene with a different isoform did not rescue the wild type phenotype 20.

Crumbs, Scribble and Coracle groups

Although Par proteins function in many different contexts, forward genetic screens in 

Drosophila also uncovered additional polarity components that are more specific for 

epithelial cells. These proteins are also conserved throughout Metazoa and interact both 

genetically and physically with the Par proteins. One group of epithelial polarity proteins , 

known as the Crumbs complex, consists of Crumbs (Crb), Stardust, (Sdt; called Palsl in 

vertebrates) and Dpatj (Patj) 15, 21. Another group, known as the Scribble group, contains 

Discs-large (Dlg), Lethal giant larvae (Lgl), and Scribble (Scrb) 22. In addition, at least in 

Drosophila, other proteins that participate in the EPP have been revealed, including FERM 

domain proteins (Moesin and Yurt), Coracle, Neurexin IV and Na,K-ATPase23; together 

these proteins make up the Coracle group of EPP proteins. The Scribble and Coracle groups 

have similar roles in establishing basolateral identity but operate at different times during 

Drosophila development (gastrulation and organogenesis, respectively) 23.

Rho GTPases

The Rho (Ras homologous) family of GTPases comprises over 20 members, including 

Cdc42, Racl and RhoA 24. They constitute molecular switches that cycle between active 

(GTP-bound) and inactive (GDP-bound) conformations. This switch, as well as the 

localization of GTPases within the cell, is controlled by guanine nucleotide exchange factors 

(GEFs) and GTPase-activating proteins (GAPs). The best studied function of GTPases is 

their role as organizers of the actin cytoskeleton: RhoA controls the generation of contractile 

forces through the regulation of actin-myosin filament assembly, whereas Racl and Cdc42 

organize actin modules at the cell periphery to generate lamellipodia and filopodia, 

respectively25. Rho GTPases have key functions in the organization of the EPP, and some of 

them are independent of their actin-organizing roles 26. Furthermore, they cross-talk to 
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regulate each other's activity 27. Cdc42 is an evolutionarily conserved master regulator of 

cell polarity. It was originally shown to be a key organizer of polarized budding and 

secretion in S. cerevisiae, and has many roles in the organization and execution of the 

EPP28. RhoA generates contractile forces that antagonize the adhesive forces generated by 

Racl26.

Polarity lipids

Phosphoinositides constitute just 1% of the total cell lipids, but they have many fundamental 

biological roles as precursors of lipid messengers and as membrane docking sites for 

effectors of signaling cascades 29. There are seven phosphoinositide isoforms that differ in 

the location and number of phosphate groups in the inositol ring. They are spatio-temporally 

regulated by organelle-specific phosphoinositide kinases and phosphatases. Thus, individual 

phosphoinositides can serve as unique lipid signatures for cellular organelle identity; 

through their ability to recruit proteins that possess one or more of the 11 known 

phosphoinositide-binding modules they fine-tune the composition of the membrane–cytosol 

interphase. Phosphoinositides and other lipids are implicated in the generation of epithelial 

polarity 3031 {Shewan, 2011 #377}. An important advance was the uncovering of key roles 

for PI(3,4,5)P3 (PIP3) in basolateral plasma membrane identity32 and PI(4,5)P2 (PIP2) in 

apical plasma membrane identity 33. PTEN, a phosphatase that generates PIP2 from PIP3, is 

localized apically in fly embryonic epithelia34; however, it is not clear yet whether PIP2 and 

PIP3 have roles in establishing and maintaining polarity in Drosophila epithelia similar to 

those described in mammalian epithelia A recent genome-wide screen in C. elegans revealed 

that the biosynthetic pathways of glycosphingolipids are important for the generation of 

apical membranes in intestinal cells 35. This is in agreement with the long-postulated role of 

glycosphingolipids and cholesterol in the formation of lipid rafts for apical transport 36. 

Finally, phosphatidylserine (PS) has been shown to play a key part in regulating Cdc42-

mediated polarization in yeast 37, but polarity roles for PS in the EPP have not yet been 

reported.

Organizing the EPP

Feed-back loops

A striking feature of the EPP proteins is their differential localization at the epithelial cell 

cortex. Among the core polarity proteins, Crumbs, Na,K-ATPase and Neurexin are 

transmembrane proteins, whereas all other proteins are peripheral cytoplasmic proteins that 

localize at the cell cortex through interactions with membrane proteins or other polarity 

proteins. An exception is Par5 (which encodes a 14–3–3 protein), which is distributed 

throughout the cytoplasm.

How are these domains formed and maintained? One important and recurring mechanism is 

the mutual exclusion of proteins from one domain by those in the other. Two protein kinases 

have key roles in this process: aPKC and Par1. Atypical PKC is recruited to the apical 

cortex, where it excludes basolateral proteins, while Par1 is recruited to the basolateral 

cortex and excludes apical proteins. Strikingly, intercellular adhesion proteins such as E-

cadherin, proteins involved in endocytosis (such as Numb) and proteins that control spindle 
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orientation (such as Pins and its mammalian homologue LGN) are mislocalized to the apical 

surface when aPKC positioning is lost. This disrupts epithelial morphogenesis 38, 39. 

However, these mechanisms are context dependent, as, for example, the localization of Pins 

is independent of aPKC in neuroepithelial cells 40 and in the Drosophila follicular 

epithelium41.

Exclusion of ‘trespassing’ proteins from the apical domain is driven by aPKC-dependent 

phosphorylation. Phosphorylated residues in basolateral proteins attract Par5, which releases 

the proteins from the cell cortex 13, 42. Conversely, Par1 located on the lateral membrane 

phosphorylates and excludes apical proteins from this domain. One important Par1 target is 

Par3. Par5 binds to phosphorylated Par3 present on the lateral membrane, which triggers the 

dissociation of the Par3-Par5 complex into the cytoplasm, where the Par3 is 

dephosphorylated 42. In this manner, EPP proteins maintain distinct apical and basolateral 

domains at the cell cortex 13, 42.

What determines aPKC and Par1 localization? The mechanism of Par1 attachment to the cell 

cortex remains unclear, but it is excluded from the apical domain through direct 

phosphorylation by aPKC 43-45. Atypical PKC is attached to the apical cortex through a Crb-

Par6-Pals1 complex (Figure 2a). Par6 helps to recruit substrates to aPKC and to regulate the 

kinase activity of this protein 4647. The association of Cdc42-GTP with Par6 helps recruit 

the complex to the apical domain and promotes aPKC activity. The CDdc42-specific GEFs 

Tuba 48 or Dbl3 49 generate Cdc42-GTP at the apical cortex. Studies investigating the 

formation of apical lumens in MDCK cysts have shown that an early event in this process is 

the apical concentration of PTEN, which leads to exclusion of PIP3, the apical enrichment of 

PIP2 and the consequent recruitment of annexin and Cdc4233.

Par3 resides at tight junctions in vertebrate epithelial cells and is not part of the apical 

complex; however, it is required for apical delivery of aPKC. Par3 binds aPKC in two 

distinct modes: first, through the kinase domain of aPKC; and second through an indirect 

association via Par6 (Figure 2b). A mechanism has been proposed whereby phosphorylation 

of Par3 by aPKC releases the kinase, which can then associate with the Crb–Pals1 complex 

–through Par6 50. A different model suggests that phosphorylation of Par3 triggers the 

dissociation of Pals1/Stardust, which can then bind to Crb and recruit Par6 51. However, 

these proposed models do not explain why Par3 is needed for the apical localization of 

aPKC. Why could aPKC and Pals1 not simply diffuse to the apical surface and interact with 

the Crb complex, and why would aPKC not continually phosphorylate Par3 to be released 

before it arrives at the apical cortex? It is likely that Par3 functions as a chaperone to prevent 

the inappropriate phosphorylation of substrates in the cytoplasm. The PP1 phosphatase, 

which is known to associate with Par3 52, might rapidly reverse any premature 

phosphorylation by aPKC to prevent cytoplasmic release. Loss of Par3, or expression of a 

mutant that cannot bind aPKC, results in the mislocalization of aPKC and in the 

inappropriate activation of signaling pathways that promote tumor invasion and 

metastasis 53.
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Feed-forward loops

Crb is a key component of the EPP. Overexpression of Crb increases the size of the apical 

domain, and the apical domain is frequently lost or reduced in epithelial cells lacking Crb 54. 

Although the exact mechanism of how Crb functions to promote apical identity remains 

unclear, it has been shown that the recruitment of other EPP proteins such as Pals1, Par6 and 

aPKC plays a part55(Figure 2a). However, another potential pathway, in which Crb inhibits 

a Rac1-PI3K feedforward loop, has been proposed56. In Drosophila embryos, PI3K 

signaling is required for Rac activation, which in turn stimulates PI3K signaling. Crb at the 

apical surface might contribute to the attenuation of this feedback loop by inhibiting Rac 

activation, thereby reducing PIP3 production. However, the underlying molecular 

mechanisms remain unknown. Another mechanism for the establishment of apical identity 

involves the control of phosphoinositide production. In many epithelial cells, PIP3 is 

constitutively produced at basolateral membranes but is absent from the apical surface 33. 

One reason for this asymmetric distribution is that the phosphoinositide kinase PI-3K 

associates with the E-cadherin–β-catenin complex at adherens junctions 57. E-cadherin is in 

turn recruited by PIP3, resulting in a feed-forward loop that amplifies and stabilizes PIP3 

formation by PI3K.

Execution of the EPP

The epithelial phenotype is established very early during embryogenesis. Mammalian 

embryogenesis starts by zygotic cell divisions that generate a blastula epithelium through 

cavitation, compaction and fluid transport after the 8–16 cell stage 58 (Figure 3a). During 

embryogenesis, cells at the primitive streak in the ectoderm lose their epithelial phenotype 

and differentiate into mesenchymal cells, (epithelial–mesechymal transition ((EMT)). These 

cells are internalized and form the mesoderm. They regain epithelial character 

(mesenchymal–epithelial transition (MET)) at their destination, for example during kidney 

formation959 (Figure 3B). Insect zygotes (for example, D. melanogaster) undergo multiple 

nuclear divisions that generate ~6000 nuclei, which are then compartmentalized into 

epithelial cells by expansion and invaginations of the plasma membrane 60 (Figure 3C).

Orientation of the apicobasal axis

The establishment and orientation of the polarity axis is a key event during the acquisition of 

the epithelial phenotype, for example during developmental MET (Figure 3Bb (left)). 

Important regulators of MET are external cues that are provided by neighboring cells, which 

generate cell–cell contacts and intercellular junctions. In spite of its developmental 

importance, our understanding of the steps involved in the generation of the epithelial axis is 

based almost exclusively on studies carried out in cultured epithelial cells, for example in 

MDCK cells in 3D culture (figure 3B). In suspension culture, MDCK cells form cysts with 

the apical surface facing out; exposure of thee cysts to collagen gels results in re-orientation 

of polarity with the lumen facing in6162. Polarity reorientation depends on a pathway in 

which collagen activation of β1 integrins activates Racl, which promotes the assembly of a 

basement membrane via laminin secretion 6364. A β1 integrin antibody or dominant negative 

Racl blocks polarity reorientation, which requires the activation of RhoA and its 

downstream effectors Rockl and Myosin2 65. External cues act together with EPP polarity 
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proteins, lipids and Rho GTPases (Cdc42, Racl and RhoA) to generate junctions and to 

organize the molecular trafficking necessary to form apical and basal domains (Fig 

3Bb(left)). Single MDCK cells suspended in matrigel orient their lumen centrally as they 

divide; studies using this model have shown that lumen formation involves the transcytosis 

of apical proteins at the end of mitosis from the plasma membrane to the midbody, where 

the lumen will form 6617(figure 4a). A similar type of transcytotic process occurs in vivo in 

the mouse mammary gland 67. Microtubules that are tethered to β1 integrin at the basal 

cortex deliver apical proteins from the basal membrane to the apical membrane (Figure 3Bb 

(left)). Deletion of β1 integrin results in a disruption of microtubule polarization, which in 

turn disrupts cell polarity and lumen formation. Integrin-linked kinase (ILK) mediates the 

integrin-dependent attachment of microtubule plus ends to the basal cortex. Whether a 

similar mechanism occurs in other epithelial cell types remains to be established.

Conversely, the conversion of the epithelial polarity axis into a polarized migration axis is a 

key event during EMT (Figure 3Bb (right)). EMT is promoted by transcriptional events that 

often involve TGFβ receptors and culminate with the loss of E-cadherin 968. As a result, 

epithelial cells transition into mesenchymal cells, which move along cytokine gradients; 

their polarized motility is regulated by many polarity proteins and lipids. Key events in EMT 

are the asymmetric activation of the Rho GTPases Cdc42 and Rac1 at the front edge and 

RhoA at the back end266970. Cdc42acts via a downstream pathway involving Par3-Par6-

aPKC, Gsk3β and APC, to control the rearward movement of the nucleus and the central 

position of the centrosome and via Rac1 to promote lamellipodium formation in the 

direction of cell migration, whereas RhoA promotes contraction and detachment of the rear 

end of the cell. 71, 72.

In most epithelial cells, the apical domain is formed at the opposite end of the basal domain. 

However, in hepatocytes the apical domain is constituted by bile canaliculi, interrupts the 

lateral cortex of neighboring cells. This remarkable morphogenetic variation of epithelial 

polarity is controlled by the EPP through the Par1 protein kinase. High Par1 activity induces 

a hepatic-like localization of apical surfaces in MDCK cells73, for instance, whereas 

depletion of Par1 in hepatocytic HepG2 cells induces a columnar type of epithelial 

polarity74. Whether similar mechanisms control apical domain location in vivo remains, 

however, to be established.

Assembly of the apical junctional complex

Two important questions in epithelial biology are, first, how the EPP instructs the assembly 

of intercellular junctions and second, whether such junctions are required for apical–basal 

polarization. Vertebrates assemble tight junctions, adherens junctions and desmosomal 

junctions, each of which contains multiple adhesive proteins. E-cadherin is a key molecule 

in junction formation. The expression of E-cadherin in vertebrate zygotes causes compaction 

and marks the moment of establishment of the epithelial phenotype 58, 75 (Figure 3a). Albeit 

different in some details, there are surprising parallels between junction formation in 

vertebrate and invertebrates. Studies in MDCK cells have shown that adherens junction 

assembly starts with the formation of E-cadherin puncta at protrusive cell-cell contacts that 

are later reorganized into belt junctions by the actin cytoskeleton 767778. During 
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cellularization of the Drosophila embryo, the plasma membrane invaginates via furrows to 

compartmentalize the nuclei into epithelial cells 60 (Figure 3c); adherens junctions are not 

required for this process. The initial events in junction formation involve the assembly of 

cadherin–catenin clusters on the apical surface that are then invaginated deep in the furrows. 

As the surface further invaginates to form individual cells, Par3 accumulates at apicolateral 

junctions and recruits the cadherin clusters, which grow into spot adherens junctions79. 

These spots are then reorganized into adherens junction belts around the cells by the actin 

cytoskeleton, with septate junctions located more basally.

Cdc42 has a key role in the assembly of adherens junctions via Par3–Par6–aPKC (Figure 

3Bb (left)). Disrupting Cdc42 expression has context-dependent effects, which reflects the 

multiple functions of the GTPase in actin dynamics and vesicle transport. In epithelial cells 

of the Drosophila embryo, the loss of Cdc42 primarily blocks apical recycling, but a 

downstream consequence is a loss of adherens junction integrity, which is consistent with a 

role for apical recycling endosomes in E-cadherin basolateral sorting and delivery 80. In the 

developing fly, however, loss of Cdc42 can cause a defect in E-cadherin endocytosis 

through disruption of actin dynamics 81, 82. Interestingly, conditional knockout mice that 

lack Cdc42 in the skin, exhibit defects in aPKC-dependent phosphorylation of GSK3β, 

which results in enhanced degradation of β-catenin and the consequent loss of adherens 

junctions 83. Whether these diverse effects can be reconciled into a general model for the 

regulation of E-cadherin trafficking remains to be seen. The situation is particularly 

complicated because multiple components of the EPP affect E-cadherin stability and 

localization. The polarity protein Scribble colocalizes with E-cadherin and stabilizes its 

association with p120-catenin, which is important in maintaining its cortical localization 84. 

In addition, Scribble ensures that internalized E-cadherin is targeted to the lysosomes for 

degradation. In the absence of Scribble, E-cadherin is instead diverted to the retrograde 

pathway and accumulates in the Golgi 56.

The vertebrate EPP also plays an important part in tight junction assembly and maintenance 

(Figure 3B (left)). The EPP first directs the formation of immature junctions, which are later 

segregated into separate tight junctions, located more apically, and adherens junctions, 

located more basally85 (Figure 3Bb (left)). In C. elegans, adherens and tight junctions 

remain together in a ‘combined junction’with both adhesion and sealing properties whereas 

in Drosophila septate junctions form basally to the adherens junctions (Figure 1a). In 

addition to their sealing functions, tight junctions form barriers that separate the apical and 

basolateral domains of the plasma membrane, and thus contribute to epithelial polarization 

(the ability of septate junctions to segregate apical and basolateral domains has not been 

demonstrated yet, though). However, Par proteins and Scribble polarity complex have minor 

effects on tight junction. For example, siRNA-mediated knockdown of either Par3 or Scrib 

delays tight junction assembly but, ultimately, normal junctions form that are 

indistinguishable from wild-type junctions 84, 86. The key polarity proteins in this process 

are Crb and Pals1 (Figure 3Bb (left)). Loss of Crb3 or Pals1 causes persistent defects in tight 

junction assembly and maintenance 87, 88; junctions begin to form but remain incomplete 

and lack barrier function. Interestingly, genetic evidence from studies in Drosophila supports 

a hierarchical mechanism in which Par3 is required for the recruitment or stabilization of 

Crb and Pals1 at the apical surface. However, this is clearly not the case in mammals, in 
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which Pals1 (and probably Crb3) seems to localize correctly to the apical cortex and remain 

functional in the absence of Par3. The underlying mechanism through which these polarity 

proteins stabilize tight junctions remains obscure. Tight junction transmembrane proteins 

such as occludin and possibly also claudins are delivered by the basolateral sorting 

machinery 89, whereas Crb is likely transported by the apical machinery 17, 90, and therefore 

a direct control of tight junction assembly by Crb is unlikely. However, it is feasible that Crb 

and Pals1 stabilize newly delivered tight junction proteins, although the underlying 

mechanism remains to be determined.

Are junctions necessary for apical-basal polarization? During early mammalian embryonic 

development, the inhibition of E-cadherin activity with antibodies prevents the formation of 

epithelial tissue75, and several cell culture studies suggest that cadherin-based intercellular 

adhesion provides an initial cue required for cell polarization9192. Moreover, E-cadherin 

contains a juxtamembrane domain that confers retention at the lateral membrane and 

transcytosis of apically mis-sorted protein to the lateral membrane, and disruption of this 

domain causes a complete loss of polarity 93. However, single cells such as spermatozoids 

polarize in the absence of such cues, and as mentioned above, adherens junctions are 

dispensable for the initial polarization of Drosophila embryos during cellularization. Cells 

lacking tight junctions can also polarize, and it has been demonstrated that the activation of 

the Par4 (LKB1 in mammals) kinase can induce the spontaneous polarization of individual 

intestinal epithelial cells in the absence of contact with any other cells 94. Thus, the weight 

of evidence suggests that junctions are dispensable for apical-basal polarity, although they 

likely stabilize and enhance the polarized state.

EPP-induced cytoskeletal and organelle rearrangements

The EPP controls the dramatic reorganization of the cytoskeleton and organelles that 

characterizes the acquisition of the epithelial phenotype, for example during MET (Figure 

3Bb (left)). Changes in the localization and function of the centriole is a result and also a 

key determinant of the changes in microtubule organization 95. In polarized epithelial cells, 

the centriole is recruited to the apical surface, where the mother centriole nucleates the nine 

microtubule pairs that form the primary cilium. In epithelial cells microtubules are mostly 

non-centrosomal and more stable than in non polarized cells 96. Some microtubules 

nucleated by the basal body or by intermediate filaments under the apical surface 97 may be 

released and captured by the developing apical junctional complex, which in turn they 

contribute to develop 98. It has been shown that E-cadherin expression has microtubule-

stabilizing properties, consistent with the higher stability of epithelial microtubules 99. The 

kinesin KIF17, EB1 and APC stabilize MT at the basal plus ends which contributes to 

establishing the height of epithelial cells 100101 . Taken together, all of this accounts for the 

characteristic apical–basal orientation of cortical microtubules, with basally oriented plus 

ends 102, 103. A second population of centrally located microtubules radiates apically from 

non-centrosomal supranuclear nucleation sites 104105, mainly the Golgi apparatus 106, 107. 

The epithelial microtubule organization mediates the typical supranuclear localization of the 

Golgi apparatus, common recycling endosomes (CREs) and apical recycling endosomes 

(ARE) and the peripheral localization of apical and basolateral sorting endosomes, albeit the 

details of these localization mechanisms are poorly understood18, 108. The Ser/Thr kinase 
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Par1b is a major regulator of microtubule organization in fly epithelia and mammalian 

epithelial cells 18, 73, 109, as well as in D. melanogaster eggs 110. Inhibition of Par1b function 

in MDCK cells by the expression of a dominant negative Par1b mutant caused the 

microtubule cytoskeleton to remain centrosomal, similar to their organizationin 

nonpolarized or migrating cells even after the cells contacted neighboring cells 73. However, 

the details of how Par1B controls centriolar function and microtubule organization remain 

unknown.

Acquisition of apical–basal polarity also entails a dramatic reorganization of the actin 

cytoskeleton, which is controlled by an epithelial polarity sub-programme. Actin 

organization differs at apical, lateral and basal membranes. CDC42, recruited to the apical 

plasma membrane by PIP2 and the GEF Tuba1, promotes actin polymerization, but the 

formation of microvilli requires the participation of several FERM domain proteins such as 

ezrin in mammalian epithelia and moesin in flies 111. The polarity protein and kinase Par4 / 

LKB1 induces the formation of microvilli through Mst4-dependent phosphorylation of 

Ezrin 112. This polarization depends on actin but not on microtubules 113. However, this 

sub-programme is independent of other Par proteins, and in many epithelial cells, Mst4 is 

not the predominant Ezrin kinase 114. Other kinases, including LOK and SLK, can also 

phosphorylate and regulate Ezrin and maintain its localization at the apical cortex 114; 

therefore the primary mechanism that controls microvillus formation remains uncertain.

The organization of actin at the lateral membrane is determined to a large extent by E-

cadherin and associated catenins 77, 115. Conversely, the formation and maintenance of 

adherens junctions and tight junctions is tightly intertwined with actin dynamics 115. Actin 

organization is also characteristic in the perinuclear area, where it is in part regulated by 

CDC42 and plays important parts in regulating vesicular trafficking from the trans-Golgi 

network (TGN) and perinuclear endosomes 116117118, 119.

Organization of the polarized trafficking machinery

As mentioned earlier, a major goal of the EPP is to organize the epithelial vesicle trafficking 

machinery to achieve a polarized apical–basal distribution of plasma membrane proteins that 

perform vectorial transport functions. Mammalian epithelial cells express over 2000 solute 

transporters, pumps, and nutrient and signalling receptors (encoded by ~5% of the genome). 

These proteins are expressed in a tissue-specific manner with characteristic apical–basal 

polarity, which may vary in different organs dependent in specific local needs 120. The 

polarity of a given plasma membrane protein arises from its intracellular sorting at the TGN 

and endosomal compartments during transport along biosynthetic and recycling routes18 

(Box 1).

Sorting signals and decoding mechanisms

Plasma membrane sorting through biosynthetic and recycling routes is mediated by apical 

and basolateral sorting signals and mechanisms. Apical sorting signals include N-glycans 

and O-glycans 121, 122 in the ectodomain, specialized transmembrane domains such as that 

of influenza hemagglutinin (HA) 123, the glycosyl phosphatidyl-inositol (GPI) 

anchors 124, 125 and determinants in the cytoplasmic domain, such as those found in 

Rodriguez-Boulan and Macara Page 10

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2014 October 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



rhodopsin 126-128 and Megalin 129130. It has been proposed that glycans mediate apical 

sorting through interaction with specific lectins, for example galectins 3, 4 and 9 108131, 132. 

Galectins are secreted into the apical medium via non-conventional secretion mechanisms 

(i.e. directly through the plasma membrane) and then endocytosed into sorting and recycling 

endosomes, reaching even the TGN, where they carry out their sorting function. 

Transmembrane segments and membrane anchors are thought to mediate sorting in the TGN 

or endosomal compartments through their affinity for specialized membrane lipid domains 

or rafts 36, 108, 133. Lipid rafts, formed by cholesterol and glycosphingolipids, must undergo 

a clustering process to become functional sorting platforms 134-136; interaction with 

cytoskeletal components on the cytosolic side necessary for trafficking might be mediated 

by transmembrane proteins such as MAL1/VIP17 133, 137.

Basolateral sorting signals, by contrast, are simple peptide motifs in the cytoplasmic domain 

of a protein. Some resemble typical endocytic signals (for example, tyrosine (YXXO, 

NPXY) and dileucine (LL/LI) motifs) 138, 139, which reflects the fact that basolateral sorting 

is largely a clathrin-mediated process 140, similarly to clathrin-mediated endocytosis (CME). 

Basolateral sorting is mediated by the clathrin adaptor AP-1, which is present in two forms, 

AP-1A and AP-1B. They share three of the four subunits (β1,γ,σ1) and differ only in the 

medium subunit (μ1A or μ1B, respectively). Tyrosine basolateral sorting signals interact 

with pockets in the μ1A or/and μ1B of AP-1A and AP-1B 141 similar to pockets defined by 

crystallography studies in the μ2 subunit of AP-2. Whereas AP-1A is ubiquitous, AP-1B is 

expressed only by epithelial cells 142, 143. Exactly how AP-1A and AP-1B carry out their 

basolateral sorting function remains controversial 144145. It was recently suggested that both 

adaptors localize to the TGN and CRE, where they perform similar sorting functions, 

differing only in their affinity for basolateral cargo proteins 146. However, functional assays 

suggest that whereas AP-1B sorts basolateral PM proteins in both biosynthetic and recycling 

routes138147-149, AP-1A functions preferentially in the biosynthetic route 141, 150. Some 

epithelial cells lack AP-1B (for example, the liver, retinal pigment epithelium and proximal 

tubule151-153) and therefore rely only on AP-1A (and other still unknown mechanisms) for 

basolateral protein sorting, as has been shown for neurons 154. Cathrin is also involved in 

basolateral sorting of proteins that do not contain canonical endocytic sorting signal, for 

example TfR (with GDNS as a basolateral sorting motif) 155 and CD147 (with a sorting 

motif based on a single leucine)156. This suggests that among the ~20 twenty known clathrin 

adaptors 145, adaptors other than AP-1 may also function in polarized trafficking. Indeed, 

there is some suggestive evidence that AP-3, AP-4 and ARH may participate in basolateral 

sorting 138, 157-159. In addition, non clathrin mechanisms may be involved in basolateral 

sorting, an example is Naked 2, which binds to motifs in the cytoplasmic domain of 

transforming growth factor alpha (TGFa) to mediate its basolateral trafficking 160. To date, 

the mechanism mediating trafficking of Na,K-ATPase, a key epithelial transporter sorted to 

the basolateral membrane by clathrin independent machinery 140, remains unknown. Also 

unknown are the mechanisms that determine its apical localization in neuroepithelia such as 

RPE and choroid plexus.
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Vesicular trafficking to apical and basolateral domains

Apical and basolateral protein sorting in the biosynthetic, recycling and transcytotic routes is 

coordinated with the production and fission of different types of post-Golgi apical and 

basolateral carrier vesicles. Vesicular fission from the sorting compartments seems to be 

mediated by different mechanisms: dynamin 2 is involved in apical routes 119, and protein 

kinase D 161 and BARS have a role in basolateral routes 162. Recent work shows that 

dynamin 2 mediates fission of apical transport vesicles at the level of apical recycling 

endosomes 163. Vesicle transport through the epithelial cytoplasm is facilitated by 

microtubule and actin motors 18. Although it was initially suggested that microtubule 

motors participate in both apical and basolateral transport 164, most of the evidence since 

then has implicated them in apical trafficking. For example dynein and several kinesins 

(including , KIFC3 165, KIF5B 104, KIF1A 166 and KIF16B 105) participate in several 

different apical transport routes. Interestingly the same protein, p75 neurotrophin receptor, is 

transported by KIF1A or KIF1Bβ in non polarized MDCK cells 166 and by a different 

kinesin, KIF5B, in polarized MDCK cells 104. Myosin 2 and myosin 6 mediate basolateral 

transport from the TGN 167, 168, whereas myosin 5 mediates apical transport from ARE to 

the plasma membrane 169. Rab11a positive ARE are emerging as an important additional 

sorting compartment (in addition to TGN and CRE) in polarized epithelial cells. Although 

the ARE has been reported to be a ‘station’ in apical traffic, a surprising finding is that some 

basolateral proteins, for example E-cadherin, may traffic through the ARE on their way to 

the plasma membrane 80. Mutations in myosin 5, a resident of ARE, are a cause of 

microvillus inclusion disease, a lethal congenital condition that is characterized by the 

failure to form a mature apical membrane and the appearance of large intracellular vacuoles 

containing microvilli, mainly in enterocytes170.

Vesicle tethering to both apical and basolateral plasma membrane domains has been shown 

to depend on different subunits of the exocyst complex 171, 172. Exocyst accumulates at the 

level of the junctional complex 171, which is also the preferential site of fusion of basolateral 

transport vesicles 173. Vesicle fusion to the apical membrane is mediated by different t-

SNARES, syntaxins 1, 2 and 3, which is compatible with the existence of various apical 

transport routes and by the V-SNARE TiVAMP 17417. Fusion with the basolateral 

membrane is mediated by the t-SNARE syntaxin 4 174, 175 and the v-SNARE Cellubrevin or 

Vamp3 17. Disruption of the expression or polarity of these SNAREs 173-175 results in 

depolarization of plasma membrane proteins, congruent with the idea that SNARES are 

major constituents of the core polarity machinery of the cell.

About a quarter of the ~60 members of the rab family 176177 have been implicated in 

polarized post-Golgi trafficking operating at the TGN or various endosomal compartments 

(Table 1). A recent study demonstrated that Rab5 is a master regulator of endosome 

biogenesis in the liver 178. Knockdown of Rab5 in adult mouse liver markedly reduced early 

endosomes, late endosomes and lysosomes and also reduced LDL endocytosis and 

transcytotic delivery of apical proteins to the bile canaliculi but did not affect rab11 positive 

recycling endosomes or delivery of apical proteins that utilize a direct route from the Golgi. 

These findings suggest that recycling endosomes are maintained by trafficking from 

compartments other than early endosomes, for example the Golgi apparatus.
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EPP proteins and the polarized trafficking machinery

Although previously evidence for any obvious links between EPP proteins and the vesicle 

trafficking machinery was lacking, there is now substantial support for close integration 

between them. A screen in C. elegans for genes involved in membrane trafficking revealed a 

general requirement for EPP proteins in endocytosis 179. Mutants in EPP proteins caused 

reduced clathrin-mediated cargo uptake and reduced recycling of clathrin-independent 

cargo. A recent screen in C. elegans for genes that control the subapical localization of ARE 

around the basal body identified Par5, but the downstream mechanisms involved remain 

unknown180. Studying this mechanism in vertebrate cells is difficult, as they express five 

different Par5 isoforms.

In Drosophila embryos, the disruption of Cdc42 causes accumulation of apical proteins in 

sorting endosomes, probably due to effects on aPKC localization and/or activity 181. In other 

tissues, however, Cdc42 controls endocytosis of adherens junctions at lateral membranes 

through a Par-independent pathway that probably involves actin organization. The situation 

in mammalian cells is less clear, but Cdc42 is enriched at the Golgi, where it binds to the 

COP1 vesicle coat protein, coatomer, and has been implicated in basolateral protein 

sorting116-118. Interestingly, the Par3 polarity protein can bind to the exocyst and might also 

have a role in polarized secretion 182. However, the molecular mechanisms underlying these 

regulatory functions are still unclear.

Epithelial syntaxins have been reported to bind to the polarity protein Lgl, and are essential 

for polarization in Drosophila and in MDCK cells in vitro 174. Additionally, the 

synaptotagmin-like proteins (Slp) 2-a and 4-a, which control exocytosis, are needed for 

correct epithelial organization in 3D MDCK cyst cultures 183. Finally, rab11a/exocyst 

dependent apical transport pathways were found to reinforce the localization of the apical 

Par complex66.

Crumbs sorting, localization and recycling. Crumbs is a key organizer of apical polarity and 

tight junctions and also a transmembrane protein, unlike most polarity proteins. An 

important question, therefore, is how this transmembrane protein is localized either to the 

apical surface and tight junctions in mammals, or the subapical domain in Drosophila. The 

trafficking and localization of Crumbs and other polarity proteins has been studied during 

development of MDCK monolayers in 2D and 3D cultures 66, 184 (Figure 4a-c). When single 

MDCK cells are suspended in 3D basement membrane cultures that contain laminin, apical 

and basolateral membrane proteins are distributed over the entire plasma membrane. 

However, upon entry into mitosis, Crumbs, podocalyxin and other apical proteins are 

specifically internalized and concentrated in Rab11-positive recycling endosomes, which 

accumulate at the site of cytokinesis in the region of the midzone microtubules 66. The 

delivery of Crumbs and other apical proteins to the plasma membrane at this site triggers the 

formation of a lumen between the two daughter cells 55. Podocalyxin is an anti-adhesive, 

mammalian transmembrane protein that is delivered very early, perhaps simultaneously with 

Crb, to the presumptive apical surface, and is required for the generation of lumina. Apical 

transmembrane proteins are delivered by vesicles that traffic along microtubules, and 

syntaxin 3 is required for apical fusion. Other vesicle transport proteins, including Rab8 and 

the exocyst, also seem to be required for apical protein delivery 185. However, it is still 
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unclear what signals target Crb to the apical surface, because the intracellular domains that 

are known to bind other EPP proteins are dispensable for its localization.

Once at the apical plasma membrane, Crb must be stabilized to reduce the rate of 

endocytosis. One proposed mechanism in Drosophila involves a positive feedback loop 

through extracellular domain Crb-Crb interactions and the recruitment of the ERM (Ezrin, 

Radixin, Moesin) domain protein Expanded (in Drosophila) and its binding partner, 

Kibra 186 (Figure 4d). The basolateral protein Lgl inhibits this stabilization, enabling mis-

targeted Crb to be internalized and recycled to the apical membrane. Recycling seems to 

require the retromer complex, which suggests that Crb needs to be transported back through 

the TGN187. However, the reason for this is not yet understood. Moreover, Expanded and 

Kibra are components of the Hippo signaling pathway that controls organ size and responds 

to cell density, and Crb may function, at least in Drosophila imaginal disks, to suppress 

Hippo signaling and prevent tissue overgrowth 188.

Trafficking to the primary cilium

The primary cilium, which forms at the apical surface of vertebrate epithelial cells, 

represents a third distinct region of the plasma membrane that is constructed by a process 

called intraflagellar transport (IFT) 189 (Figure 5a). As cilia lack the protein synthesis 

machinery, all components for its assembly and function must be transported into and within 

the cilium. The cilium originates from the basal body, which is generated in post-mitotic 

cells from a centrosome, and consists of a microtubule-based axoneme covered by a 

specialized membrane. Cilia components are transported by microtubule motor proteins 

(Figure 5a). Just as the apical and basolateral membranes are separated by tight junctions, 

the cilia membrane and apical membrane are separated by diffusion barriers that maintain 

the cilium as a distinct signaling organelle190. A spiral array of fibers that connects the basal 

body to the ciliary membrane blocks vesicle access to the cilium, and nuclear pore 

components are also found in this region, perhaps functioning as a diffusion barrier to the 

entry and exit of soluble proteins (Figure 5a) 191.

The gating of entry and exit is important, because key signaling systems – particularly the 

Hedgehog (HH) pathway – are segregated in and are dependent on the primary cilium 192. 

The HH pathway plays a key part in the differentiation of epithelial cells 192. Recent work 

has demonstrated that endothelial cells have key instructive roles in the differentiation of the 

epithelia in various organs, for example liver, lung, skin and retinal pigment epithelium, 

through the HH, Wnt and Notch pathways193, 194195, 196. In order to exert its function HH, 

secreted by endothelial cells, must reach its transmembrane receptor, Patched (Ptc), which is 

localized at the primary cilium membrane. Thus, HH must be transcytosed across the 

epithelial cell to reach its site of function (Figure 5b); however the mechanism involved 

remains elusive.

Multiple components of the EPP participate in both the formation and function of the 

primary cilium. For example, aPKC is required for ciliogenesis 197, 198 but has also been 

implicated in regulating the function of Gli (a mediator of the HH response) through 

phosphorylation 199. Conversely, Gli induces aPKC expression. However, a note of caution 

is necessary because many of these studies use an aPKC inhibitor– a myristoylated 
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pseudosubstrate peptide – that has recently been demonstrated to be nonspecific and to 

induce effects in the brain that are not mimicked by knockout of aPKCζ. Nonetheless, other 

components of the EPP, including Par6, Par3, and Crb3, are all concentrated in primary cilia 

and are required for proper cilia formation 104, 198. Par6, together with the polarity proteins 

Pals1 and Patj, associate with nephrocystin-1 and -4, which are both important for cilia 

function 200. However, the functional consequences of this interaction are not yet 

understood. The Par proteins also associate with kinesins that are involved in IFT 198. 

Finally, the exocyst protein Sec10 is required for ciliogenesis, perhaps through a role in the 

localization of the cation channel protein polycystin-2 182, 201. As Par3 can bind to the 

exocyst, it seems likely that multiple components of the EPP machinery are involved, in 

controlling membrane protein sorting and delivery to the primary cilia, although the exact 

mechanisms are not yet fully understood. One important question for the future is whether 

the EPP machinery regulates HH signaling by affecting other proteins involved in the 

pathway, such as Ptc or Smo delivery, in addition to its effects on Gli phosphorylation.

Outlook

The EPP integrates numerous processes and touches on almost every aspect of cell biology. 

Many of the mechanistic details of this integration remain to be identified. One complication 

is that the execution of the EPP may vary markedly in different locations or physiological 

contexts, often using the same components but in cell-type specific ways. For example, in 

Drosophila, Crb is only essential for apical specification during morphogenesis when 

adherens junctions are rapidly expanding or turning over 15. Moreover, basolateral polarity 

proteins such as Lgl are not essential for the maintenance of polarity in late-stage 

embryogenesis, but are required during gastrulation. As an example from mammalian cells, 

the initial landmark for the apical domain in single cells grown in 3D culture is the site of 

abscission during cytokinesis, but this is unlikely to be true during development, when 

single cells are probably not isolated from each other, and neighboring cells will provide 

spatial information through cadherin-based adhesion. An important future goal, therefore, 

will be to understand how the EPP operates in specific, biologically relevant contexts.

It will also be central to gain better temporal and spatial resolution of the initial stages of 

epithelial polarization. We do not know which proteins first arrive at the presumptive 

membrane domains, or at the tight junctions that form between the apical and lateral 

domains. We also need to learn more about the interconnected signaling between sensors, 

such as the primary cilium, integrins and cadherins, and the EPP. Our knowledge of the 

links between the effectors of the EPP, particularly the vesicle trafficking machinery and the 

polarity proteins, is also still very superficial. A comprehensive understanding of these links 

will surely inform our knowledge of human disease, which so often involves epithelial cells.
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Box 1. Biosynthetic and recycling routes of epithelial cells

The asymmetric plasma membrane protein distribution of epithelial cells results from 

various sorting events in the post-endocytic and biosynthetic trafficking routes.

Recycling and transcytotic routes. Fast recycling receptors, such as apical Megalin 

(which recovers filtrated proteins from the lumen of the kidney proximal tubule) and 

basolateral low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) 

(which provide the cell with blood nutrients) are internalized, respectively, into apical 

sorting endosomes (ASE) and basal sorting endosomes (BSE) and recycled back to the 

plasma membrane along fast recycling routes (see the figure, 1, 3) or sorted and recycled 

along slow recycling routes (2, 4) to their respective cell surface 202-204. The slow apical 

recycling route (2) has an additional endosomal compartment, the apical recycling 

endosome (ARE) 203, 204. The polymeric IgA receptor follows a transcytotic route 

through the BSE, CRE and ARE (5) The transcytotic route of TfR in MDCK cells 

lacking the clathrin adaptor AP-1B transits through the same compartments (5), but may 

also traffic through the ASE (6). Proteins destined for degradation after internalization 

from the apical or basolateral surface reach lysosomes from the ASE or BSE, 

respectively (routes 7 and 8)205. Fusion of multivesicular bodies (MVB) with the apical 

or basolateral surface apparently releases different apical and basal exosomes (routes 9 

and 10), although the exosome sorting mechanisms remain unknown 206. Solid lines 

represent apical and baslateral recycling routes, dashed lines represent transcytotic routes 

and dotted lines represent route to and from MVB.

b. Biosynthetic routes. Apical and basolateral PM proteins are synthesized at the 

endoplasmic reticulum (ER), transferred to the Golgi apparatus and sorted at the Trans 

Golgi Network (TGN) into direct vesicular routes to the plasma membrane (PM). (apical 

11; basolateral 15). In addition, newly synthesized cargo proteins may traffic through 

endosomal compartments before reaching their respective surface 

domains 108138, 149, 207, 208209. Apical PM proteins may utilize ARE, CRE or ASE as 

intermediate stations for apical transport (routes 12, 13 or 14, respectively). Basolateral 

PM proteins may use CRE (route 16) or basal sorting endosomes (route 17) as 

intermediate stations.
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Figure 1. Features of the polarized epithelial phenotype
(a) A typical vertebrate epithelial cell is shown with components of the polarized vesicle 

sorting machinery and the apical junctional complex depicted. Note that invertebrate (for 

example in Drosophila) epithelial cells lack primary cilia and the junctional complex is 

organized differently with adherens junctions located more apically than the sealing junction 

(named septate junction instead of tight junction) (top right insert). In C. elegans, adherens 

junctions and sealing junctions are combined into a single structure (top left insert). (b - f) 

Epithelial cells organize into different structures through their cytoskeleton and through 

oriented cell division. (b) actin-mediated constriction of the apical domain causes furrowing; 

(c) reducing the size of the lateral membrane produces squamous epithelia; (d) cell division 

(indicated by the dashed line) in the plane of the epithelium expands the sheet; whereas 

divisions perpendicular to the plane may generate different cell lineages in the case of stem 

cells (e), or may give rise to stratified epithelia (f)
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Figure 2. The EPP players. (a) Feed-back loops between polarity proteins
The differential localization of polarity proteins at the cell cortex is regulated through 

binding interactions (dashed lines) and phosphorylations (solid arrows); dashed arrows 

indicate change to or from a phosphorylated state. The apical polarity protein Crumbs (Crb) 

recruits Pals1 through its C-terminal PDZ-binding domain (ERLI) which recruits Par6 to 

phosphorylate Par3, the kinase Par1 and LGL and exclude them (together with other 

members of the Scribble complex (Dlg Scribble) from the apical domain. Members of the 

Scribble complex interact genetically with each other but there is no evidence of physical 

interaction. Conversely, Par1-mediated phosphorylation events prevent basal invasion by the 

apical polarity determinants, such as Par3. Phosphorylated proteins, including Par1, LGL 

and Par3, bind Par5 during relocation to their resident domain. Polarity lipids also help 

generate membrane asymmetries. Specifically, PTEN, recruited to the junctional area 

through interaction with Par3, generates ptdIns(4,5)P2 (PIP2), which helps recruit Cdc42 via 

annexin 2. Cdc42 participates in the activation of aPKC via Par6. Basolateral PI3K, 

recruited to the junctional area through E-cadherin, recruits Dlg and generates PIP3, which 

additionally contributes to basal membrane identity through the recruitment of Scribble. Lgl 

contributes to basal identity through interaction with Syntaxin 4, which promotes basolateral 

secretion. (b) Modular organization of the EPP players. EPP proteins are made up of 

several modular domains, which enable key interactions to occur between among EPP 

players. They also allow interactions to occur between EPP players and other proteins that 

are necessary for polarity. Solid arrows indicate phosphorylation events, dashed lines 

represent binding interactions.
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Figure 3. Execution of the EPP
The epithelium is the first tissue to appear during development. (A) In mammalian embryos, 

an epithelium arises when morula cells compact and form a lumen upon expression of E-

cadherin, to form a blastocyst. (Ba) In the bilaminar embryo, epiblast epithelial cells at the 

primitive streak differentiate into mesenchymal cells (epithelial-mesenchymal transition 

(EMT)) that migrate to form the intermediate mesoderm. In turn, mesoderm cells convert 

into epithelial cells (mesenchymal-epithelial transition (MET)), for example during 

formation of the kidney. (Bb) During MET, epithelial cells express epithelial signature 

markers such as E-cadherin (left), laminin receptors (integrins), Crumb complex proteins 

and undergo a dramatic cytoskeletal re-organization and organelle 

repositioning 39, 48, 183, 210-212.The Crumbs complex, the Cdc42-Par3-Par6-aPKC complex 

and the Scribble complex cooperate to form an immature apical junctional complex (left 

plasma membrane), which matures into segregated tight and adherens junctions (right 

plasma membrane). Junction formation involves the delivery of E-cadherin from apical 

recycling endosomes to form spot adherens junctions and the exocytosis of the tight junction 

components occludin and claudins by the basolateral sorting machinery to form tight 

junctions. Rac1 interacts with Par 3 through Tiam1 and thus contributes to the organization 

of the peri-junctional actin cytoskeleton required for the coalescence of spot into belt 

adherens junctions. RhoA and myosin2 contribute as well to the formation of an actomyosin 

belt that enhances cell adhesion 213, 214. At the basal pole, Rac1 stimulates the secretion of 

laminin that interacts with basal integrin receptors; this contributes to the orientation of the 

cell along an apical–basal axis.. The relocalization of the centrosome to the apical pole, the 

developing junctions, the polarity protein Par1, together with APC, the kinesin KIF17 and 

EB1 contribute to the reorganization of microtubules, In turn this contributes to the 

polarized organization of endosomal compartments and the Golgi complex. EMT (right) is 

promoted by transcriptional events that often involve TGFβ receptors and culminate with the 

loss of E-cadherin resulting in the disassembly of adherens junctions 968. The polarized 

movement of mesenchymal cells along cytokine gradients is regulated by many polarity 
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proteins and lipids that are also part of the EPP. At the front of the cell, activated CDC42 

recruits Par6-aPKC, and ultimately GSK3b and APC to control the position of the nucleus 

and centrosome. In turn, the centrosome nucleates a centrifugal array of microtubules with 

peripheral plus ends that mediates: the juxta-nuclear localization of the Golgi apparatus, 

TGN and recycling endosomes 198, 215 and the peripheral localization of sorting endosomes 

via plus-end kinesins216,217; and the formation of an actin-based leading edge. Microtubules 

facing the direction of forward motion are stabilized by formins 218 and activate Rac1 

(activated also by aPKC), which, in turn promotes actin polymerization and the formation of 

a actin-driven frontal lamellipodium through Arp 2/3 219, 220 RhoA is activated at the back 

end to control the generation of contractile forces through regulation of actomyosin filament 

assembly and contraction 26 (C) Blastoderm cellularization in Drosophila melanogaster. 
This process illustrates an alternative strategy to generate an epithelial cell. Embryonic 

development in flies begins with a rapid series of nuclear divisions without cytokinesis that 

originate a syncytial embryo with the nuclei present at the periphery. Nuclei are segregated 

from other nuclei by a compartmentalization process that involves the formation of 

membrane cleavage furrows between cells. E-cadherin, found initially in puncta at apical 

surface is displaced to the tip of the growing cleavage furrows and is progressively recruited 

more apically to form belt-like adherens junctions in a process promoted by Par3 and the 

actin cytoskeleton. Septate junctions form more basally stimulated by the Scribble complex.
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Figure 4. Trafficking of EPP players during polarization of epithelial cells
a. Polarization of MDCK cells in 3D cultures. The steps that lead to the establishment of 

apical–basal polarity have been best characterized in MDCK cell cysts, generated by cell 

division from individual cells in collagen-rich matrigel gels. (a) Polarization starts at the 

two-cell stage with the accumulation of E-cadherin, occludin and exocyst components (such 

as Sec10)at the site of cell–cell contact called apical membrane initiation site (AMIS). (b) 

The AMIS progresses into a pre-apical patch through a series of trafficking events that 

include transcytosis of Crumbs and podocalyxin from the periphery to apical recycling 

endosomes and their vesicular delivery to AMIS mediated by Rab11a, exocyst (Sec10) and 

the t-SNARE syntaxin 3. Exocytosis also functions in the initial recruitment of Par3 and 

aPKC (to the pre-apical patch, where they contribute to form an immature junctional 

complex. (c) The mature cyst exhibits segregated tight junctions and adherens junctions, a 

fully developed lumen expanded through polarized fluid transport and polarized 

cytoskeleton and organelles. (d) Control of Crumbs recycling. The localization of Crumbs 

is maintained through endocytosis and recycling. Crumbs interacts with a FERM domain 

protein, Expanded (Exp), and the Pals1–Par6–aPKC complex. The FERM domain protein 

links Crb to the cortical actin cytoskeleton. A Hippo pathway protein, Kibra, can bind to 

Exp and inhibits aPKC activity. Kibra is in turn inhibited by a lateral polarity protein, Lgl. 

Lgl is phosphorylated by aPKC, which causes to dissociate from the membrane. Endocytosis 

of Crb is followed by retromer-mediated retrograde transport to the trans-Golgi network 

(TGN), from where it can be recycled back to the apical cortex.
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Figure 5. The primary cilium and Hedgehog signaling
a. Primary cilium structure and signaling components. Multiple types of diffusion barrier 

separate the ciliary membrane and apical membrane to control the access to the primary 

cilium, creating a distinct polarized membrane domain Transition fibers that connect the 

basal body to the ciliary membrane blocks vesicle access to the cilium, and nuclear pore 

components are also found in this region and have been implicated to function as a diffusion 

barrier, perhaps functioning as a diffusion barrier to the entry and exit of soluble proteins. 

Patched (Ptc) is inactive in the primary cilium, but moves out of this organelle upon binding 

of Hedgehog (HH) (not shown). Other components of the HH signalling cascade, 

Smoothened (Smo), which is located on intracellular vesicles, and Gli, also move in and out 

of the cilium in a dynamic manner, and is recruited to the tip of the cilium by a kinesin. 

Activation of Ptc triggers the translocation of Smo to the ciliary membrane, where it 

activates Gli. After a series of post-translational modifications, GLi moves to the nucleus to 

activate transcription of target genes. b. Transcytosis of HH. HH is produced by endothelial 

or mesenchymal cells underlying epithelial cells. Upon binding of HH to its receptor 

Patched on the surface of the primary cilium, the transcription factor Gli is activated and 

transported to the nucleus to activate epithelial differentiation genes. The transcytotic 

pathway of HH has not yet been characterized.
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Table 1

The role of Rabs in polarized epithelial trafficking

Rab Trafficking role Refs

Rab 4 Recycling from apical and basal sorting endosomes to plasma membranes 221

Rab 5 Endocytosis from plasma membranes into apical and basal sorting endosomes 178, 222

Rab 6 Myosin 2-mediated fission of VSV G protein vesicles from the TGN in polarized and non-polarized cells 167, 223

Rab 7 Trafficking from early to late apical and basolateral endosomes 205

Rab 8 Transport to the basolateral plasma membranes 224

Biosynthetic delivery of BL cargo via trans-CRE route 225

Transport to the primary cilium in co-operation with AP-1 226, 227

Apical lumen formation in MDCK 3D cysts 66, 169

Rab 10 Transport to basolateral PM 228

Rab 11 Apical recycling and transcytosis at ARE 105, 229, 230

Biosynthetic trafficking of rhodopsin at ARE in MDCK cells 163

Apical lumen formation in MDCK 3D cysts 231

Apical transcytosis of transferrin receptor in AP-1B KD cells 105

Rab 13 Transport between the TGN and CRE 232

Rab 17 Apical recycling and transcytosis 233, 234

Rab 25 Apical recycling and transcytosis at ARE 229

Apical to basal transcytosis of Fc Receptor 235

Rab 27 Lysosomal fusion with basolateral plasma membranes, polarized exosome secretion 236

Apical lumen formation 183
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