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Conserved patterns of incomplete reporting
in pre-vaccine era childhood diseases
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Incomplete observation is an important yet often neglected feature of observa-

tional ecological timeseries. In particular, observational case report timeseries

of childhood diseases have played an important role in the formulation of

mechanistic dynamical models of populations and metapopulations. Yet to

our knowledge, no comprehensive study of childhood disease reporting

probabilities (commonly referred to as reporting rates) has been conducted

to date. Here, we provide a detailed analysis of measles and whooping

cough reporting probabilities in pre-vaccine United States cities and states,

as well as measles in cities of England and Wales. Overall, we find the varia-

bility between locations and diseases greatly exceeds that between methods or

time periods. We demonstrate a strong relationship within location between

diseases and within disease between geographical areas. In addition, we

find that demographic covariates such as ethnic composition and school

attendance explain a non-trivial proportion of reporting probability variation.

Overall, our findings show that disease reporting is both variable and non-

random and that completeness of reporting is influenced by disease identity,

geography and socioeconomic factors. We suggest that variations in

incomplete observation can be accounted for and that doing so can reveal

ecologically important features that are otherwise obscured.
1. Introduction
Observational datasets have long aided ecologists in unravelling the complex

dynamical interactions of real-world populations and metapopulations. In

particular, observational datasets can provide extensive spatial and temporal

coverage difficult to achieve through field experiments. From disease ecology

to wildlife and natural resource ecology, these datasets have allowed ecologists

to evaluate the strength and significance of a wide range of dynamical processes

[1–7].

Although not the core focus of ecological interest, imperfect observation is a

rule rather than an exception in datasets resulting from surveillance rather than

controlled experimentation. The extent to which imperfect observation can dis-

tort or obscure dynamical processes such as local extinction remains an open

question, as does the ability to correct for imperfect observation. Here, we

show that incomplete observation obscures classic estimates of critical commu-

nity size (CCS) [8–12], which is a key dynamical feature of childhood disease.

When observation processes are stationary and independent of mechanistic

dynamical processes, the state variables of interest can sometimes be estimated

using known constraints of the dynamical system. Knowledge of these state

variables in turn allows meaningful comparisons between systems, such as

different metapopulations (here, countries).

The study of human infectious diseases has yielded important insights into

the nonlinear dynamics of real-world populations and metapopulations, largely

owing to extensive observational datasets. For human diseases such as measles,

cities comprise the basic epidemiological units of observation over which dis-

ease reporting probabilities are typically assumed to be consistent. Reporting

of human infectious diseases is known to be both imperfect and variable

between cities [13–18]. A reporting probability (the proportion of true infec-

tions recorded as official case reports, commonly referred to as ‘reporting
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rate’) can be estimated for acute, highly infectious diseases

that confer permanent immunity, using a combination of

demographic and case report data. Here, we show that

reporting probabilities of human infectious diseases follow

conserved patterns in space and time. By accounting for

reporting probabilities, we also provide a more accurate esti-

mate of the scaling of local persistence with population size.

Reporting probabilities of childhood diseases received

considerable attention throughout the twentieth century in

both the United States (US) [15] and England & Wales

(E&W) [16]. Notable works include Bartlett [2], who reviews

estimates from the early twentieth century in both countries,

Black [19], who reports summary estimates for several

countries, as well as Finkenstädt & Grenfell [4] and Bjørnstad

et al. [20], who employ the susceptible reconstruction method.

Incompleteness of modern disease reporting has also been

examined via active surveillance [21–23]. However, we

have found no systematic review of variation in the reporting

probability of childhood diseases between populations

(cities) and metapopulations (here, countries).

Stochastic extinction within host populations (e.g. cities)

is driven by local processes (e.g. host demographics) and

metapopulation processes (e.g. disease importation between

populations). Yet, stochastic extinction is not easily distin-

guished from incomplete reporting. Several works have

explicitly incorporated estimation of incomplete and variable

reporting into dynamical models of populations [6,17] and

metapopulations [7]. Nonetheless, disease reporting (and

variability thereof) has been largely absent from modern

population and metapopulation models that studied stochas-

tic extinction and disease persistence in E&W [11,24–26].

These models (and results) do not necessarily generalize to

metapopulations with lower and more variable reporting,

such as the pre-vaccine US or modern sub-Saharan Africa.
(a) Outline
This study aims to quantify and explain variability in the

reporting probabilities of two childhood diseases prior to

mass vaccination. We use an extensive dataset of measles

[7] and whooping cough (WC) case reports in US states

and cities in the pre-vaccine era, in addition to the classic

60-city E&W measles dataset [20]. To estimate the total per-

population susceptible pool, we employ two different sources

of demographic records. Using case reports and susceptibles,

we then compute the reporting probability of each disease

and location (cities or states).

Here, we refer to sampled units (e.g. specific cities and

states) as locations, while area refers to the level of geographi-

cal sampling (i.e. city versus state). For human diseases such

as measles and WC, each city is a coherent epidemiological

population, throughout which disease dynamics (and report-

ing probabilities) are typically assumed to be homogeneous.

US states, on the other hand, are primarily administrative

subdivisions that are socially and epidemiologically hetero-

geneous. Thus, state reporting probability estimates are

assumed to be averaged over many discrete populations

(e.g. cities and towns). Nonetheless, the unambiguous nest-

ing of cities within states provides a useful estimate of the

effect of geographical location.

We begin with a comparison of reporting probabilities

between diseases and between geographical areas (e.g.

between states and their respective cities). We find a very
strong relationship within location between diseases, and a

strong relationship within disease between geographical

areas. In addition, we explore the temporal variation of

reporting probability in cities. This dependence of report-

ing probability on geographical identity rather than time

suggests that conserved socioeconomic factors strongly influ-

ence disease reporting probability. Indeed, we find that a

non-trivial proportion of variation in reporting probability

is explained by the proportion of a location’s population

that is either white or attending school.

We also include a discussion of uncertainty and sources of

error. Metadata detailing the collection process of both case

reports and demographic records is often sparse or altogether

lacking. Here, we use several independent sources of demo-

graphic data, two different methods of calculation ( per capita
rates and census microdata) and bootstrap estimates for one

method. Overall, we find the variability between locations and

diseases greatly exceeds that between methods or time periods.

We conclude with a discussion of metapopulation dynamics

and the obscuring effects of incomplete reporting. In obser-

vational datasets, poor reporting is indistinguishable from

stochastic extinction in individual populations (e.g. cities).

Correcting for variable reporting regenerates the hypothesized

scaling relationship between population size and observed

extinction in the studied metapopulations.
2. Material and methods
(a) Case reports
US weekly case reports were obtained as PDF files from the

United States Public Health Reports [27] and were manually

double-entered using a custom web application that automati-

cally identified conflicts for manual resolution. Populations

were removed if they contained more than 20% missing values

for any disease or if demographic data was unavailable (see

below). Years were excluded if more than 50% of the remaining

cities had fewer than 85% of sampled weeks to avoid bias from

temporally aggregated gaps. Missing case reports were excluded

from further analysis.

Measles case reports in E&W were originally recorded by

the United Kingdom Office of Population Censuses and Surveys

[8]. We employ the publicly available 60-city subset used by

Bjørnstad et al. [20]. This dataset has a two-week sampling inter-

val, which is twice the US’s interval, though sampling interval

has no effect on reporting probability estimates. City-level case

reports of WC in E&W have been studied extensively [10,28],

but have not been publicly released.

Case report lengths and boundaries are shown in table 1, and

final timeseries are shown in the electronic supplementary

material, figures S10–S14. In the USA, 48 cities and 46 states

were selected for final analysis, as well as 60 cities from E&W.

(b) Susceptible estimation from demographic data
For US locations (cities and states), the total susceptible pool for

each disease and location was estimated using two different

sources of demographic data, and two different methods: per
capita demographic rates and census microdata.

For the per capita method, each location’s total susceptible

pool was obtained from yearly population estimates and per
capita birth, death and infant mortality rates (all rates are per
capita unless otherwise noted). Decadal populations were

obtained from the US decadal census (1920–1950) [29]. Yearly

populations were estimated using an exponential growth

model to interpolate between decadal populations. Yearly state



Table 1. Sampled number of locations (L) and case reports (N ), time range and summary statistics of estimated reporting probabilities ( per capita method).
(Sample coverage is limited for state WC case reports. US locations are sampled weekly; E&W cities are sampled every other week. CV, coefficient of variation.)

disease area L N start end mean CV

measles US cities 48 1148 5 Jan 1924 29 Dec 1945 0.27 0.55

measles E&W cities 60 598 9 Jan 1944 25 Dec 1966 0.54 0.15

measles US states 45 1089 7 Jan 1928 11 Dec 1948 0.20 0.51

WC US cities 48 1148 5 Jan 1924 29 Dec 1945 0.10 0.71

WC US states 46 467 1 Jan 1938 7 Dec 1946 0.06 0.67

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140886

3

birth and death rates were obtained from the US National Center

for Health Statistics [30,31]. Yearly national infant mortality rates

were obtained from the US Census Bureau [32].

Yearly populations and state birth rates were then used to

estimate births, discounted by national infant mortality rates.

These surviving births were then summed over the period of

record of each disease to yield a total susceptible pool. This

method assumes that pre-infection migration and (non-infant)

death of susceptibles was minimal.

Census microdata refers to the individual responses to a

country’s census, and commonly includes variables such as

location, age, gender and ethnicity. For the USA, census micro-

data were obtained from the Integrated Public Use Microdata

Series (1920–1950, 1% sample) [33]. No census microdata is

available for E&W for this time period. For US censuses, the

city of residence is available only for cities meeting minimum

size criteria, which vary by census date. In addition, the

geographical boundaries of several cities expand to include

neighbouring cities in 1940 (such as Tampa and St Petersburg,

and Minneapolis and St Paul), leading to detectable overestima-

tion of susceptibles. Cities in the above groups were excluded

from further analysis.

For each US location and disease, the total susceptible pool

was estimated from census microdata by summing youths (indi-

viduals ages 1 through 10, inclusive) born within the period of

record of each disease. As such, this method integrates all

intra-census migration and death of youths’ aged less than or

equal to 10 years.

Census microdata was used to estimate the sampling distri-

bution of susceptible pools via bootstrapping. Each decadal

census was bootstrapped 10 000 times for each disease, and

the total susceptible pool of each location recomputed for each

bootstrap draw.

The per capita and microdata methods are not strictly compar-

able (e.g. electronic supplementary material, figure S2). The per
capita method neglects migration and uses state birth rates as

proxies for associated city birth rates (see Discussion). Census

microdata, on the other hand, explicitly accounts for susceptible

immigration, while potentially erroneously including immigra-

tion of recovered youths.

Yearly city births for E&W were provided by P. Rohani (2012,

personal communication) and were subsequently adjusted by

the national infant mortality rate. This method is functionally

equivalent to the per capita method.

We assume that the microdata method is most accurate, par-

ticularly for cities. The microdata method also allows estimation

of confidence intervals. Thus we use the microdata method

throughout, except in comparisons that include E&W, where

no microdata is available.
(c) Reporting probability
We assume that reporting probabilities (commonly referred to as

reporting rates) are invariant over time within each disease and
location. For each location i and disease j, we sum observed

case reports Cij and susceptibles Sij. Note that Si changes with

disease, as the period of record varies between diseases. If the

epidemiological system is approximately stationary over the

time period considered (i.e. there are no major changes in

the underlying processes governing the disease and demo-

graphic dynamics), then the number of susceptible individuals

in the population should also be approximately stationary. This

implies that the flow of new susceptibles is counterbalanced by

the flow of new infections. For a disease that confers permanent

immunity, new susceptibles are just surviving births (ignoring

the effects of migration). The simplest estimate of reporting prob-

ability is therefore obtained by assuming that the total number of

expected cases, Eij, is approximately equal to the total accumu-

lated susceptible pool (Sij) over the period of interest. Thus, the

reporting probability rij ¼ Cij/Eij � Cij/Sij [16].

(d) Comparison and validation
Our reporting probability estimates assume that the number of

susceptible individuals is approximately equivalent at the begin-

ning and end of the time period considered. Previous work [4]

has regressed cumulative births against cumulative cases and

estimated reporting probability as the slope of the regression

line. The two estimates are the same if the deviation from the

average number of susceptibles is the same at the beginning

and at the end of the time period. This can be achieved in a

stationary system if the time period considered begins and

ends at approximately the same point in the epidemic cycle.

For completeness, we estimate reporting probabilities via this

‘susceptible reconstruction’ method [4] using per capita demo-

graphic data. Unlike previous work [34], we do not interpolate

demographic data onto a weekly or bimonthly time scale,

because we have no knowledge of within-year variation in

birth rates.

We also assess the long-term time variability of reporting

probabilities by subdividing US city case reports into two

approximately equal subdivisions (Early and Late). We then

re-estimate reporting probability using the per capita method.

(e) Modelling the interdependence of reporting
probabilities

We employ a set of linear models to quantify the interdependence

of reporting probabilities between diseases and between areas.

For each location (i.e. specific city or state), we compare reporting

probabilities between diseases. We use a separate model for each

area, and arbitrarily model WC reporting as a response to measles

reporting (between-disease). For each disease, we compare report-

ing probability between states and their associated cities

(between-area). Here, we model city reporting as a response to

the associated states’ reporting.

The result is four separate model specifications. For simpli-

city, we use ordinary least-squares regression. All reporting
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Figure 1. Boxplot distributions of reporting probability estimates for each disease, area and method ( points show individual locations). Overall, reporting of WC is
less complete than measles, while US reporting is less complete than E&W. For US cities, per capita estimates are slightly higher than microdata estimates due to the
former method’s use of state birth rates. Extensive variation between locations is evident, particularly in the US.
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probabilities were logit2-transformed to correct for heteroskedas-

ticity. The logit2-transform is simply log2( p/1 2 p), such that one

unit of increase equates with a doubling of the reporting prob-

ability odds, e.g. from 50% (1/1 odds, logit2 (odds) ¼ 0) to 66%

(2/1 odds, logit2 (odds) ¼ 1).

For each linear model specification, 104 model realizations

were constructed via bootstrap resampling. For each realization,

a two-step sampling process was employed. First, city identity

was sampled with replacement. Second, for each sampled city,

the relevant reporting probabilities were sampled with replace-

ment from their respective bootstrap distributions, and simple

linear regression was conducted on the resulting sample. This

strategy, known as ‘bootstrapping pairs’ [35], accounts for uncer-

tainty in reporting probabilities both within and between cities

without making standard normality and constant-variance

assumptions on the residuals. This strategy assumes only that

the cities are randomly sampled from the population distribution

of cities (see above for city selection criteria).

( f ) Demographic predictors of reporting probabilities
US census microdata records a wide range of information about

individuals and households. We examined the epidemio-

logically relevant variables as possible covariates of each

location’s reporting probability (see below). A weighted sum-

mary of each covariate was calculated by location to yield

either a proportion (for categorical variables) or mean and stan-

dard deviation (for continuous variables). Tested demographic

covariate predictors included the proportion of population

that was white (prop.white), in school (prop.school), male

(prop.male), born in the state of residence (prop.local) and in

the labour force (prop.labforce), as well as the mean and s.d.

of age (mean.age, sd.age) and household size (mean.housesize,

sd.housesize). The 1930 decadal census was selected for this

analysis. Owing to changes in census design, comparison of cov-

ariates between decades is not always possible. Nonetheless,

within-census variation between locations is generally much

larger than between-census changes (electronic supplementary

material, figures S3 and S4), suggesting that covariates are

approximately conserved over time.

A separate linear model was constructed for each disease and

area, with reporting probabilities (microdata method) responding

to demographic covariates. Reporting probabilities were logit2-

transformed, demographic covariate predictors were centred to

zero and forward model selection was employed to select predictors

using the Bayesian information criterion. While the tested covariates
are broadly correlated, forward model selection parsimoniously

selects the predictors with the greatest explanatory power.
3. Results
Overall, a high degree of variability in disease reporting was

observed between both locations and diseases. The distri-

bution of reporting probabilities for each area (cities, states),

disease and method is shown in figure 1, and summary stat-

istics are shown in table 1. In the USA, WC probabilities are

much lower than measles probabilities, regardless of area. For

US cities, per capita estimates are slightly higher than micro-

data estimates owing to the former method’s use of state

birth rates. The cities of E&W have higher and less variable

measles reporting probabilities than US cities or states,

consistent with previous estimates [2,15,16].

(a) Comparison between methods
Case report totals for each disease are identical between

methods, with different reporting probability estimates (elec-

tronic supplementary material, figure S5) resulting from

variations in each location’s total susceptible pool. For US

states, estimated reporting probabilities were highly conserved

between methods: between-method linear models yield a slope

approximately equal to unity and a non-significant intercept.

For US cities, reporting probabilities estimated from the census

method are slightly lower than those from the per capita method.

One major limitation of the per capita method is that US

city birth rates are inferred from the per capita rates of their

respective states. In general, states have higher birth rates

than cities in this era (electronic supplementary material,

figure S1). This is probably owing to states’ rural populations,

which have generally higher birth rates than urban areas in

this era [36]. Consequently, the census method probably over-

estimates US city susceptibles and underestimates reporting

probabilities, as observed here (electronic supplementary

material, figure S5).

For reference, the per capita method was also compared

with the susceptible reconstruction method [4] for all areas

(see Material and methods for important assumptions). Sus-

ceptible reconstruction yielded slightly higher estimates,
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Figure 2. Comparison of reporting probability estimates (microdata method). (a) Within-area comparison, showing close covariation between diseases. (b) Within-
disease comparison, showing covariation between areas. Variability between locations (i.e. cities or states) greatly exceeds variability within locations. 104 total
bootstraps were drawn (200 are plotted, small black points). For each sampled comparison, an approximate 95% confidence interval (CI) (black ovals) and
median probability (orange central dot) are shown, along with median linear models (black line) and approximate model 95% CI (blue lines). See the electronic
supplementary material, table S2, for linear model results.
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particularly in E&W, although the differences are small

(electronic supplementary material, figure S6).

(b) Comparison between time periods
Our reporting estimates assume that each system is approxi-

mately stationary over the period of study, and the systems in

question should be assessed for major perturbations during

the period of study. In addition, a sufficiently long period

of time must be employed such that stochastic and seasonal

fluctuations are short relative to the full period of record.

In order to assess temporal variation in reporting prob-

abilities in the present systems, city case reports were

subdivided into two time series of approximately equal

length (electronic supplementary material, table S1). Elec-

tronic supplementary material, figure S7, shows that city

reporting probability ( per capita method) is relatively invar-

iant across time, though more temporal variation is evident

in E&W. The National Health Service was fully implemented

in the UK by 1948. This change in public health infrastructure

could explain some of the observed temporal variation in

E&W (electronic supplementary material, figure S7), though

any metapopulation-level temporal shift is slight.

(c) Conserved patterns of variation in disease reporting
The interdependence of disease identity and geographical

location in the US is shown in figure 2. Reporting
probabilities of WC are strongly correlated with measles

probabilities, regardless of area (figure 2a). Although more

scatter is evident, city reporting probabilities are correlated

with their associated states’ probabilities, regardless of

disease (figure 2b). Estimated slopes and correlation coeffi-

cients for each linear model specification, along with

bootstrapped confidence intervals, are listed in the electronic

supplementary material, table S2. Overall, we find that dis-

ease reporting probability is conserved over space and time

and that disease identity and geography influences reporting

probabilities in consistent ways.

Within-location variability estimates derived from boot-

strapping of census microdata are shown in figure 2

(reporting probabilities and confidence intervals are shown

in the electronic supplementary material, tables S4 and S5).

Bootstrap estimates show that larger locations consistently

exhibit less variation, as expected (electronic supplementary

material, figure S8). Overall, between-location variation greatly

exceeds within-location variation, increasing confidence in the

observed patterns.

The influence of socioeconomic identity on incomplete

reporting was explicitly modelled (electronic supplementary

material, table S3). A range of demographic covariates were

tested using forward model selection (see Material and

methods). While many of these predictors are correlated, for-

ward model selection favours a parsimonious model by

selecting the best predictors first, as shown in the electronic
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supplementary material, table S3. The final models explain

much of the observed variation in reporting probabilities:

r2 ¼ 0.51 (state measles); r2 ¼ 0.4 (state WC); r2 ¼ 0.32

(city measles); r2 ¼ 0.13 (city WC). Overall, variation in

measles reporting probabilities is much better explained by

demographic covariates than that of WC.

Two covariates emerged as most significant: the propor-

tion of a location’s population that is either white (prop.

white) or attending school (prop.school). Regardless of

disease, higher reporting probabilities are correlated with a

higher proportion of white for states and a higher pro-

portion of attending school for cities. Other significant

predictors include proportion in labour force (states, both dis-

eases, positive correlation), household size s.d. (states, both

diseases, positive correlation), proportion male (states, WC,

negative correlation) and mean household size (cities, measles,

negative correlation). Overall, selected covariates and their

associated parameter estimates are generally consistent

between diseases within each area.

The causal mechanisms that drive these observed corre-

lations remain unclear. Nonetheless, the significant covariates

broadly relate to measures of economic status (ethnic compo-

sition, labour force and sex ratio) as well as indicators of social

structures that can influence the distribution of infection age

and disease reporting (household size distribution, schooling).
4. Discussion
Observational datasets are valuable for their wide spatio-

temporal extent, yet their post hoc nature means that key

dynamical processes, such as stochastic extinction, can be

obscured by imperfect and variable observation. Measles

and WC are two well-studied childhood diseases with very

different symptomology, epidemiology and temporal

dynamics. Yet both infect the majority of susceptible individ-

uals in childhood and confer lasting immunity. In addition,

both diseases undergo stochastic extinction at a rate depen-

dent on population size and birth rate [37]. Here, we

estimate the extent of incomplete observation using a long-

term constraint of the dynamical system, i.e. the mass balance

of susceptibles in childhood diseases. We find that reporting

probabilities vary greatly between disease, geographical

region and metapopulation. This variability directly affects

patterns of observed extinctions or ‘fade-outs’ [2,11,38] and,

if not addressed, makes comparisons between diseases and

metapopulations difficult.

We find that measles reporting probabilities of cities in the

US are lower and more variable than in E&W. In the US, we

find that measles is better reported than WC (as previously

found in E&W by Clarkson & Fine [16]). In addition, we find

that reporting probability varies consistently by geographical

locale: those locations that report measles well also report

WC well, and vice versa. On the other hand, reporting prob-

abilities do not appear to vary appreciably by time in either

country or disease in the eras considered. Likewise, bootstrap-

ping indicates that between-location variation greatly exceeds

within-location uncertainty in the USA. Finally, we show

that demographic covariates, including proportion white and

proportion attending school, explain a non-trivial proportion

of the observed variation in US reporting probabilities:

locations that have low school attendance and high minority

populations have lower reporting probabilities, regardless of
disease. Overall, we find substantial spatial, temporal and

socioeconomic consistency within the pronounced heterogen-

eity of pre-vaccine era disease reporting.
(a) Sources of error and uncertainty
Observational datasets frequently lack detailed metadata,

including full descriptions of sampling protocols. This intro-

duces a persistent difficulty of estimating uncertainty and

establishing concordance between varying data sources. For

example, we have no detailed definition of the geographical

limits used to define cities in case report collections, making

concordance with census microdata estimates of city popu-

lations uncertain. For census microdata, the geographical

boundaries of some cities change over time and are thus

clearly incomparable with case report data. In short, we

cannot unambiguously identify all sources of error and uncer-

tainty. Nonetheless, we can often constrain uncertainty, for

example by the comparison of multiple, independent data

sources, as we do in this study by comparing the results

from demographic data sources (i.e. census microdata and

per capita birth rates).

Census microdata allows us to estimate uncertainty of

reporting probabilities by bootstrapping each decadal

census, yielding a bootstrap sampling distribution of each

location’s susceptible population. Note that this method

does not account for uncertainty of case reports, which are

taken as fixed. The coefficient of variation (CV) of reporting

probability bootstrap draws decreases with increasing popu-

lation (electronic supplementary material, figure S8). Indeed,

log–log scaling of CV with population is evident for each dis-

ease and area. The sampled population of susceptibles grows

as the sampled period of case reports grows. Thus, the CVs of

measles and WC reporting probabilities are almost identical

for cities, while the much shorter duration of state WC case

reports yields higher CVs than for state measles.

Waning immunity to WC has been the subject of exten-

sive debate in the modern era [10,39,40]. In the pre-vaccine

era, adult WC was not well-recognized, and WC case reports

consisted almost exclusively of childhood infections [23,39].

Thus, we have effectively estimated the reporting probability

of primary infection. This estimate, in turn, provides an

upper bound on total WC reporting in this era. In addition,

if natural immunity is long-lasting, or repeat infections con-

tribute little to transmission, then our estimates will be

close to the reporting probability for all WC cases. In the

modern era, waning vaccine-derived immunity represents

another source of uncertainty, along with vaccine uptake

and seroconversion rates.

The effect of migration on susceptible pools warrants

closer attention. Here, we estimate each population’s suscep-

tible pool from decadal age structure. Migration can bias the

results in two ways. First, recovered youths can immigrate

prior to a decadal census and be erroneously counted as sus-

ceptibles. Second, susceptible youths can become infected,

recover and then emigrate prior to a decadal census, and

thus be erroneously neglected from the susceptible pool.

Thus, immigration of previously infected youths deflates

reporting probability estimates, while emigration of locally

infected youths inflates them.

The overall flow of migration in the US in this era is from

rural to urban areas. In addition, large rural-to-urban

migration waves occurred, such as the Great Migration.
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Rural areas generally experienced higher levels of stochastic

extinction and thus higher and more variable ages of infec-

tion than urban areas (for an extreme example, see

discussion by Crum [41] of US Civil War troops). On the

other hand, the low average age of infection of both measles

and WC in the pre-vaccine US and E&W [42] suggests that

most migrants are not susceptible to either disease. Thus,

migration of recovered youths to cities could cause underes-

timation of reporting probabilities.

Patterns of migration can sometimes be estimated from

census microdata. We cannot identify intra-census emigration

here. We can, however, identify intra-census, interstate immi-

gration by comparing individuals’ resident and birth states.

Assuming that all out-of-state immigrants are recovered

shifts reporting probabilities upwards, though the difference

is small compared with between-location variation (electronic

supplementary material, figure S9).
(b) The obscuring effects of incomplete observation
Poor disease reporting and stochastic extinction cannot be

easily separated, particularly in cities that regularly teeter

on the boundary of extinction [7]. The proportion of zero

observations (over a suitably long period of time) is one

common measure of stochastic extinction [6,7,10,20,34]. This

measure is appealing owing to its simplicity, but has been

criticized as sensitive to disease reporting. To address these

concerns, Bartlett [2] employed a three-week period of

observed extinction, termed fade-out. Conlan et al. [11] pro-

pose several alternate measures on mechanistic grounds,

including fade-outs post invasion and fade-outs post epi-

demic. Yet, the proposed measures (e.g. [11]) depend on

a priori threshold values. Further, the performance of these
measures under low and variable disease reporting is not

well characterized.

In this regard, the large body of work on measles in E&W

that neglected reporting probabilities [24,26,43] has bene-

fitted from the happy accident of relatively high and

uniform reporting probabilities. In the US, on the other

hand, failing to account for the low and variable disease

reporting in this era paints a false picture of the overall meta-

population dynamics and hinders a comparison between

metapopulations [7].

The scaling of observed zeros with population size pro-

vides a useful example in the present systems. Previous

work has demonstrated the frequent occurrence of ‘false

zeros’ (apparent extinction) in pre-vaccine era US measles,

particularly in medium-sized cities that hover at the edge of

extinction [7]. Under the assumption of homogeneous

mixing, the reporting probability is equivalent to the pro-

portion of the population under surveillance (homogeneous

mixing is a poor assumption for US states, which are not

considered here). Consequently, a simple rescaling of popu-

lation size by reporting probability yields the effective

population size under surveillance.

The log-linear dependence of extinction risk on popu-

lation size (figure 3) can be used to predict the population

size at which no zero observations occur and provides a

simple empirical measure of ‘total’ and ‘effective’ CCS

(CCST and CCSE; table 2). Failure to account for incomplete

reporting yields an unrealistic measles CCST of more than

1.5 million for US cities, while a CCSE of �400 000 is closer

to theoretical predictions [37]. In E&W, the difference

between the two measures is much less pronounced, but

suggests that apparent extinction is still common. In addition,

this simple model fails to account for the longer two-week

sampling period of E&W, which should reduce the frequency



Table 2. CCS estimates ( population in thousands) and model fits for cities.
Each CCS estimate is the X-intercept of a linear model of proportion zero
observations (Pr0) versus population size, excluding cities with no sampled
zeros (see figure 3). Thus, each CCS estimate is the expected population
size (total: CCST, effective: CCSE) at which no zeros are observed. The longer
two-week sampling period of E&W is expected to reduce Pr0, and thus
lower both measures of CCS, relative to the USA. WC, whooping cough.

disease area
CCST

[3103] adj R2
CCSE

[3103] adj R2

measles E&W 325 0.84 180 0.82

measles USA 1678 0.63 417 0.89

WC USA 952 0.37 71 0.90
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of zero samples and lower both measures relative to the US.

WC in the US, on the other hand, shows a drastically

improved model fit using effective population size and

yields a CCSE more in line with theoretical predictions

based on a similar R0 and longer infectious period than

measles [37].

A comparison between the US and E&W also high-

lights the role of socioeconomic diversity. Our results

(electronic supplementary material, table S3) suggest that

high levels of ethnic and cultural heterogeneity, as seen in

the US compared with pre-vaccine E&W, increases vari-

ation in disease reporting. Indeed, less complete reporting

in US minority populations was suggested a century ago

by Crum [41]. This pattern warrants testing in the

modern era in regions such as Niger, which have large

rural populations and a small number of large cities [44].

In a socioeconomically heterogeneous state such as Niger,

significant variation in measles reporting probabilities

appears to be a conservative assumption. Furthermore,

observed variation in reporting of other human infectious

diseases can be explained by similar socioeconomic dispar-

ities. For example, Undurraga et al. [18] showed that

the estimated probability of under-reporting of dengue
episodes at a national level in southeast Asia and the Amer-

icas correlated with a measure of health quality.

(c) Broader applications
The employed method is only appropriate for fully immuniz-

ing diseases. In the modern era, vaccination introduces

additional sources of variation and measurement error,

since estimates of vaccine uptake and efficacy [16], as well

as waning immunity rates, are required. We also assume

minimal temporal variation in disease reporting and require

long time periods (e.g. multiple epidemics) to generate esti-

mates of incomplete reporting.

Nonetheless, we propose that disease ecologists and epide-

miologists can often estimate between-population variation in

incomplete observation. Accounting for this variation appears

to be particularly important in socioeconomically diverse popu-

lations. The framework that we employ is conceptually and

analytically simple, provided sufficient demographic infor-

mation is available. Indeed, even when relevant demographic

details are sparse or absent, rough estimates of reporting prob-

ability can suggest whether or not between-location variation

overwhelms the dynamical processes or features of interest.

Data accessibility. US case report data and demographics available at
Data Dryad: doi:10.5061/dryad.92p46; E&W case reports: data orig-
inally from http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.
htm, no longer available. See Internet archive: https://archive.org/
web/; E&W demographics: personal communication with Dr Pej
Rohani (rohani@umich.edu); Integrated Public Use Microdata
Series: IPUMS-USA, 1920–1950, 1% sample, https://usa.ipums.
org/usa/.
Acknowledgements. The authors would like to thank Natalie Wright,
Robert Liberatore, Nicholas Giron, Pej Rohani and Matthew Ferrari
for their assistance. Joe Conway assisted with database design.

Funding statement. C.G. was supported by a fellowship in the Program
in Interdisciplinary Biological and Biomedical Sciences at the Univer-
sity of New Mexico. This publication was made possible by grant
nos. P20RR018754 from the National Center for Research Resources
(NCRR), T32EB009414 from the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), components of the National
Institutes of Health (NIH). Its contents are solely the responsibility
of the authors and do not necessarily represent the official views of
NCRR, NIBIB or NIH.
References
1. Elton C, Nicholson M. 1942 The ten-year cycle in
numbers of the lynx in Canada. J. Anim. Ecol. 11,
215 – 244. (doi:10.2307/1358)

2. Bartlett MS. 1960 The critical community size for
measles in the United States. J. R. Stat. Soc. Ser. A
12, 37 – 44. (doi:10.2307/2343186)

3. Berryman AA. 1991 Can economic forces cause
ecological chaos? The case of the northern California
Dungeness crab fishery. Oikos 62, 106 – 109.
(doi:10.2307/3545457)
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Dynamics of measles epidemics: scaling noise,
determinism, and predictability with the TSIR
model. Ecol. Monogr. 72, 185 – 202. (doi:10.1890/
0012-9615(2002)072[0185:DOMESN]2.0.CO;2)

35. Efron B, Tibshirani RJ. 1993 An introduction to the
bootstrap. New York, NY: Chapman and Hall.

36. Westoff CF. 1954 Differential fertility in the United
States: 1900 to 1952. Am. Sociol. Rev. 19,
549 – 561. (doi:10.2307/2087793)
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