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Ocular neovascularization can affect almost all the tissues
of the eye: the cornea, the iris, the retina, and the choroid.
Pathological neovascularization is the underlying cause of
vision loss in common ocular conditions such as diabetic retin-
opathy, retinopathy of prematurity and age-related macular
neovascularization. Glycosylation is the most common cova-
lent posttranslational modification of proteins in mammalian
cells. A growing body of evidence demonstrates that glyco-
sylation influences the process of angiogenesis and impacts
activation, proliferation, and migration of endothelial cells
as well as the interaction of angiogenic endothelial cells with
other cell types necessary to form blood vessels. Recent
studies have provided evidence that members of the galectin
class of β-galactoside-binding proteins modulate angiogen-
esis by novel carbohydrate-based recognition systems in-
volving interactions between glycans of angiogenic cell
surface receptors and galectins. This review discusses the
significance of glycosylation and the role of galectins in the
pathogenesis of ocular neovascularization.
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Introduction

Ocular angiogenesis is a major cause of blindness and visual
impairment. Angiogenesis or neovascularization affects almost
all tissues of the eye: the cornea, the iris, the retina, and the
choroid (Adamis et al. 1999). Epiretinal neovascularization in
patients with proliferative diabetic retinopathy and choroidal
neovascularization (CNV) in patients with neovascular age-
related macular degeneration (AMD) are the two most common
causes of catastrophic vision loss. Much like tumor-induced
vessels, the ocular angiogenic vessels are leaky and lack

structural integrity (Dorrell et al. 2007). The resultant hemor-
rhage and fibrosis cause severe damage to the ocular tissues
and frequently leads to vision loss or impairment (Dorrell et al.
2007).
Angiogenesis, the formation of new blood vessels from pre-

existing vasculature, is a tightly regulated process that begins
when the endothelial cells of a mature blood vessel wall are
activated by angiogenic factors that include, but are not limited
to, the vascular endothelial cell growth factor (VEGF) and basic
fibroblast growth factor (bFGF) families of cytokines (Cross
and Claesson-Welsh 2001). Activation promotes the loosening
of endothelial cells from their basement membrane and the sup-
porting periendothelial cells, thereby allowing them to migrate,
proliferate, and ultimately form a capillary lumen, which is sta-
bilized by pericytes and smooth muscle cells. Glycosylation,
the most common covalent posttranslational modification of
proteins, profoundly influences the process of angiogenesis.
A growing body of evidence demonstrates that glycosylation
can impact activation, proliferation, and migration of endothe-
lial cells as well as the interaction of angiogenic endothelial
cells with other cell types necessary to form blood vessels.
Early studies have shown that N-linked glycosylation is critical
for angiogenesis, as inhibition of enzymes early in the glycosy-
lation pathway block vessel growth. The inhibition of N
acetylglucosamine-1-phosphotransferase, which catalyzes the
first step of glycoprotein biosynthesis, blocks endothelial cell
proliferation and alters endothelial cell–extracellular matrix
(ECM) interactions (Tiganis et al. 1992). Similarly, inhibition
of glucosidase I and glucosidase II, which sequentially remove
terminal glucose residues from the N-acetylglucosamine-1-
phosphotransferase product by castranospermidine and N-methyl-
1-deoxynojirimycin, reduce endothelial cell migration in vitro
and FGF-induced angiogenesis in vivo (Pili et al. 1995).
Likewise, inhibition by 1-deoxymannojiriniycin of Golgi-α-
mannosidase, which acts on the glucosidase I/II product,
blocks angiogenesis in vitro (Nguyen et al. 1992). Treatment with
swainsonine, an inhibitor of Golgi α-mannosidase II, also marked-
ly reduces vessel density and distorts the placental angiogenesis
in vivo (Hafez et al. 2007). O-Linked N-acetylglucosamine
(O-GlcNAc) modifications also play a role in angiogenesis. Recent
studies have shown that increased expression of O-GlcNAc trans-
ferase, which catalyzes the transfer of N-acetylglucosamine from
UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threo-
nine, enhances the angiogenic potential of prostate cancer cells in
part by modulating the function of FOXM1 (Lynch et al. 2012).
However, in a different study, increased expression of O-GlcNAc
glycans was shown to reduce vascular sprouting from aortic
rings, as well as migration and capillary tubule formation of
endothelial cells (Luo et al. 2008). Accordingly, removal of
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O-GlcNAc residues, by overexpression of O-GlcNAcase,
enhanced angiogenesis (Luo et al. 2008).
Angiogenesis is predominantly mediated by a family of

VEGF receptors (Hoeben et al. 2004; Breen 2007; Otrock et al.
2007; Roskoski 2008) and integrins (Garmy-Susini and Varner
2008; Silva et al. 2008; Contois et al. 2009). Like most cell
surface proteins, VEGF and integrin receptors are glycosylated,
although their role in angiogenesis with respect to their glyco-
sylation pattern is only beginning to be characterized. Recent
studies have provided evidence that members of the galectin
class of β-galactoside-binding proteins also have the potential
to modulate angiogenesis by novel carbohydrate-based recogni-
tion systems involving interactions between glycans of angio-
genic cell surface receptors and galectins (Nangia-Makker et al.
2000; Thijssen et al. 2006, 2007; Hsieh et al. 2008; Markowska
et al. 2010; Delgado et al. 2011; Croci et al. 2014). With respect to
ocular angiogenesis, galectin-3 (Gal-3) has been shown to promote
corneal neovascularization (Markowska et al. 2010, 2011).

Gal-3 and angiogenesis

Gal-3 is a member of the galectin family of mammalian lectins
characterized by a conserved sequence within the carbohydrate
recognition domain (CRD) that has affinity for β-galactoside
structures. Extracellularly, the lectin is assumed to mediate cell–
cell and cell–matrix interactions by binding to lactosamine-
containing cell surface glycoconjugates via the CRD. That
Gal-3 is a novel proangiogenic molecule was first suggested by
Nangia-Makker et al. (2000) who reported that tumor angiogen-
esis induced by subcutaneous injections of breast carcinoma
cells in an animal model is significantly greater when the carcin-
oma cells express Gal-3 as compared with Gal-3-null controls,
and that exogenous Gal-3 promotes endothelial cell migration
and capillary tubule formation in vitro. In addition, it was
reported that modified citrus pectin, a galactose-rich polysacchar-
ide that binds to Gal-3, and possibly also to other members of
the galectin family, reduces bFGF-mediated migration of endo-
thelial cells, suggesting that one or more members of the galectin
family may participate in bFGF-mediated angiogenesis (Nangia-
Makker et al. 2002). More recent studies in our laboratory aimed
at characterization of the mechanism by which Gal-3 promotes
angiogenesis revealed that Gal-3 is a mediator of VEGF- and
bFGF-mediated angiogenic response (Markowska et al. 2010).
In these studies, we demonstrated that Gal-3 inhibitors, β-lactose
and dominant negative Gal-3, reduce VEGF- and bFGF-mediated
angiogenesis in vitro, and that VEGF- and bFGF-mediated
angiogenic response is reduced in Gal-3 knockdown cells and
Gal-3−/− animals (Markowska et al. 2010). A well-known
proangiogenic integrin, αvβ3, was identified as a Gal-3-binding
protein. Anti-αvβ3 integrin function-blocking antibodies sig-
nificantly inhibited the Gal-3-induced angiogenesis in vitro.
Furthermore, Gal-3 promoted the clustering of integrin αvβ3
and activated focal adhesion kinase (FAK). The knockdown of
GnTV, an enzyme that synthesizes high-affinity glycan ligands
for Gal-3, reduced: (i) complex N-glycans on αvβ3 integrins
and (ii) VEGF- and bFGF-mediated angiogenesis. Taken to-
gether, these data suggest that Gal-3 modulates VEGF- and
bFGF-mediated angiogenesis, at least in part, by binding via its
CRD to the GnTV synthesized N-glycans of integrin αvβ3, and

subsequently activating the signaling pathways that promote
the growth of new blood vessels. Additional studies in our la-
boratory demonstrated that Gal-3 also modulates cell surface
expression and activation of VEGF-R2 in human endothelial
cells (Markowska et al. 2011). In this study, we found that
Gal-3 interacts with VEGF-R2 in a carbohydrate-dependent
manner, Gal-3 promotes VEGF-R2 phosphorylation in time- and
dose-dependent manner, VEGF-R2 bears GnTV-modified
N-glycans, and knockdown of GnTV or Gal-3 reduces the cell
surface expression of VEGF-R2 (Markowska et al. 2011). These
data led us to propose that Gal-3 oligomers cross-link VEGF
receptors into a lattice formation on the cell surface and thereby
delay their removal by endocytosis and enhance VEGF-R2 sig-
naling and angiogenesis (Markowska et al. 2011).
Gal-3 may also modulate angiogenesis by inducing the ex-

pression of MMPs. In a recent study, Argueso and colleagues
(Mauris et al. 2014) have demonstrated that Gal-3 plays a key
role in destabilizing cell–cell interactions by interacting with
and clustering CD147 on the epithelial cell surface. In this
study, the authors identified CD147 as a membrane receptor
for Gal-3 in human keratinocytes and demonstrated that Gal-3
initiates keratinocyte cell–cell disassembly by inducing MMP
expression in a CD147-dependent manner. These findings are
relevant to angiogenesis because endothelial cells express
CD147 and disruption of cell–cell assembly and the degrad-
ation of the ECM to mitigate the physical constraint to cell
movement is the first step in the onset of angiogenesis.
Interestingly, MMPs have been shown to cleave Gal-3 to
release a highly proangiogenic fragment that shows diminished
self-association and ability to hemagglutinate red blood cells,
but drastically improved: (i) binding affinity to laminin and
endothelial cells, (ii) chemotactic properties toward endothelial
cells, (iii) ability to upregulate pFAK in migrating endothelial
cells and promote angiogenesis (Nangia-Makker et al. 2010).
Thus, it is reasonable to speculate that Gal-3 may also modulate
angiogenesis by inducing the expression of MMPs which, in
turn, cleave Gal-3 itself to promote angiogenesis. Studies of
tumor-associated macrophages have shown that Gal-3 also pro-
motes angiogenesis by accelerating M2 macrophage infiltration
into tumors (Jia et al. 2013) and by enhancing the VEGF secre-
tion from macrophages (Machado et al. 2014).

Glycobiology of ocular angiogenesis

Vision requires that ocular tissues remain transparent such that
light is able to reach photoreceptors undistorted. Complex
mechanisms are in place to ensure transparency and provide a
route for cells to obtain metabolites and oxygen (Figure 1A and
B). Resourceful arrangement of the vasculature and partial avas-
cularity combine to complete this task. As described earlier,
ocular neovascularization nearly always impairs vision. Corneal,
retinal and CNV are among serious clinical conditions encoun-
tered in tertiary-care ophthalmology clinics around the world.

Corneal neovascularization
Corneal neovascularization (Figure 1C and D) is a vision-
threatening condition affecting �1.4 million individuals each
year in the United States alone (Chang et al. 2001; Shakiba et al.
2009). It is associated with a wide range of ocular disorders
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Fig. 1. Schematic and photographic representation of the eye and corneal, retinal, and CNV. (A) Schematic depiction of the eye. (B) The fundus, i.e., the inner lining of a
normal eye. (C and D) Normal cornea is transparent and avascular; in response to trauma, graft rejection or infection, blood vessels from the limbus (region where
transparent cornea meets the opaque sclera) invade the cornea. (E and F) The retina is a highly ordered, multilayered structure that is richly vascularized. Diabetic
retinopathy can lead to ischemia and neovascularization on the surface of the retina. (G andH) AMD can be associated with subretinal neovascularization originating from
the choriocapillaris, and this can lead to subretinal hemorrhage. Credit: (A), (E) and (G) downloaded fromNational Eye Institute, NIH website with permission (ref.:
NEA04, EDA01, EDA 24); (B) provided by J. S. Duker; (C) provided by Sugaya Satoshi and Tohru Sakimoto; (F) and (H) from Friedlander (2007) with permission.
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including viral, bacterial and parasitic infections, inflammatory
disorders of the ocular surface and trauma. The complications of
corneal neovascularization include corneal scarring, edema,
lipidic deposition and increased risk of graft rejection. The fre-
quency of rejection of corneal grafts placed in vascularized high-
risk host beds can reach as high as 90%. This is in sharp contrast
to the >90% acceptance rate of corneal grafts placed in avascular
host beds. Thus, the development of effective strategies to
prevent the growth of blood vessels in the cornea is a high prior-
ity, not only to prevent corneal graft rejection but also to treat nu-
merous other inflammatory disorders of the ocular surface.
Increased expression of VEGF is a common trigger for loss

of corneal angiogenic privilege. Vascularized corneas express
significantly greater amounts of VEGF and its receptors com-
pared with normal corneas (Philipp et al. 2000). VEGF is
secreted by the corneal epithelial cells and corneal fibroblasts
upon injury and by macrophages subsequently recruited to the
site (Cursiefen et al. 2004; Nakao et al. 2007; Sivak et al.
2011). Activation of conjunctival blood vessels by interaction
of VEGF with VEGF-R2 promotes vessel growth (Mimura
et al. 2001). Multiple other factors such as bFGF (Knighton
et al. 1990; Gaudric et al. 1992), angiopoeitins (Asahara et al.
1998) and PDGF (Cao et al. 2002) are also involved in corneal
neovascularization. Integrins also play a critical role in corneal
neovascularization. Integrins αvβ5 and α5β1 are preferentially
expressed on the neovasculature in the corneal alkaline burn
model (Zhang et al. 2002). Moreover, inhibition of integrin α5β1
by a small molecule inhibitor, JSM5562, significantly reduces
corneal neovascularization in a mouse scrape model (Muether
et al. 2007). Interestingly, one study has shown that while αv in-
tegrin antagonist inhibits FGF pellet-induced corneal neovascu-
larization, it did not inhibit inflammatory corneal angiogenesis
induced by chemical burns (Klotz et al. 2000). The authors
concluded that angiogenic pathways independent of αv integrin
are involved in corneal inflammatory angiogenesis. In contrast,
retinal (Luna et al. 1996; Riecke et al. 2001; Economopoulou
et al. 2005; Yoshida et al. 2012), choroidal (Honda et al. 2009)
and tumor angiogenesis is inhibited by αv integrin antagonists.
Thus, it appears that there are context- and tissue-dependent dif-
ferences in angiogenic pathways.
Normally avascular cornea has been extensively used as the

in vivo model to investigate the molecular mechanism of angio-
genesis and to examine the efficacy of the inhibitors and activa-
tors of the growth of new blood vessels. In these assays, known
as corneal micropocket assays, standardized slow-release
pellets containing test substances are implanted into the corneal
stroma. The vessel area representing the extent of angiogenesis
is calculated 5–8 days after pellets are implanted in the corneas
(Rogers et al. 2007). Using mouse corneal micropocket assays,
we have shown that Gal-3 directly promotes corneal angiogen-
esis in vivo. In this study, the vessel area representing the extent
of angiogenesis was calculated 5 days after pellets containing
various concentrations of Gal-3 were implanted in the mouse
corneas. In the concentration range tested (20–160 ng Gal-3/
pellet), the extent of angiogenesis increased in a dose-
dependent manner (Markowska et al. 2010). A dominant negative
inhibitor of Gal-3 that competes with the CRD, but is unable to
oligomerize, effectively inhibited angiogenesis advanced by full-
length Gal-3, suggesting that Gal-3 promotes angiogenesis in the

cornea in a carbohydrate-dependent manner (Markowska et al.
2010).
Alterations in the N-glycosylation pathway markedly influ-

ence the progression of corneal neovascularization. VEGF-A-
induced as well as suture-induced inflammatory corneal neovas-
cularization is significantly reduced in the knockout mice defi-
cient in GnTVand Gal-3 (Markowska et al. 2010, 2011). GnTV
synthesizes N-glycan intermediates, the β1, 6GlcNAc-branched
glycans, that are elongated with N-acetyllactosamines to create
high-affinity ligands for Gal-3 (Dennis et al. 2002). Its disruption
prevents interaction of Gal-3 with N-glycan moieties of angio-
genic cell surface receptors VEGF-R2 and αvβ3 integrins and,
thereby, results in reduced neovascularization (Markowska
et al. 2010, 2011). Gal-3 also mediates the interaction of integ-
rin α3β1 and NG2 proteoglycan to promote cell–cell communi-
cation between pericytes and endothelial cells during the early
stages of corneal angiogenesis (Fukushi et al. 2004). In the
corneal micropocket assays, Gal-1 and Gal-8 also promote angio-
genesis (Markowska and Panjwani unpublished). Currently, we
are characterizing the mechanism by which these galectins
promote corneal angiogenesis.
In conclusion, carbohydrate-mediated recognition plays a crit-

ical role in corneal neovascularization. In contrast, much less is
known about the glycobiology of retinal and CNV.

Retinal and choroidal neovascularization
Epiretinal neovascularization (Figure 1E and F) is characteristic
of proliferative diabetic retinopathy, retinopathy of prematurity
and retinal vein occlusion. Proliferative diabetic retinopathy is a
leading cause of blindness in working age population affecting
�20.8 million people worldwide (Afzal et al. 2007; Morello
2007). Oxidative injury from diabetic hyperglycemia and the
resulting hypoxia activates retinal vasculature in diabetic retin-
opathy (Qazi et al. 2009). Activated retinal vessels grow into
the vitreous causing hemorrhage. This leads to degeneration
and eventual collapse of the vitreous that pulls the retina and
results in retinal detachment, and consequently impairment of
vision. VEGF is the primary mediator of retinal neovasculariza-
tion. Vitreous VEGF levels are significantly greater in patients
with diabetic retinopathy than controls (Adamis et al. 1994).
Moreover, the severity of retinopathy is closely associated with
VEGF expression (Funatsu et al. 2002). Expression of VEGF
receptors is also increased in retinal neovasculature. Cadavers
with a history of diabetes mellitus have higher levels of vitreal
VEGF-R1 and VEGF-R2 than controls. Integrins also play a
key role in retinal neovascularization. Increased expression of
integrin αvβ3 and αvβ5 was observed in tissues from patients
with diabetic retinopathy (Friedlander et al. 1996; Ljubimov et al.
1998). Inhibition of integrin α4 reduced expression of VEGF, as
well as vascular hemorrhage in vivo (Iliaki et al. 2009).
Moreover, inhibitors of various integrins including αvβ3, αvβ5
and α5β1 have been shown to inhibit retinal neovascularization
in animal models of proliferative retinopathy (Riecke et al. 2001;
Iliaki et al. 2009; Yoshida et al. 2012) and retinopathy of prema-
turity (Luna et al. 1996; Witmer et al. 2002; Economopoulou
et al. 2005; Wilkinson-Berka et al. 2006). Other factors thought
to play a role in retinal neovascularization include stromal-derived
growth factor 1 and its receptor CXCR4 (Lima e Silva et al.
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2007), platelet-derived growth factor B, placental growth factor
and pigment epithelium-derived factor (Seo et al. 2000; Luttun
et al. 2002; Mori et al. 2002; Ogata et al. 2002, 2007).
CNV, the growth of abnormal blood vessels underneath the

retina (Figure 1G and H), is the major cause of severe vision loss
in patients with neovascular AMD. CNV affects nearly 11.1
million people in the United States alone and is the leading cause
of irreversible blindness among those over 65 in the developed
world (Klein et al. 1995). Pathological choroidal neovasculature
originates from the choroid. The resulting vessels extend through
the Bruch’s membrane and retinal pigment epithelium (RPE)
causing detachment of the photoreceptors from the RPE. VEGF
is also a key mediator of CNV. VEGF expression is increased in
the neovascular membranes with AMD (Frank et al. 1996;
Kvanta et al. 1996; Lopez et al. 1996; Kliffen et al. 1997; Hera
et al. 2005) and in AMD vitreous (Aiello et al. 1994; Wells et al.
1996; Tong et al. 2006). In animal models, overexpression of
VEGF promotes CNV (Spilsbury et al. 2000; Csaky et al. 2004)
and its inhibition blocks neovascularization (Krzystolik et al.
2002; Saishin et al. 2003; Jo et al. 2014). Expression of proan-
giogenic integrin avb3 is also increased in AMD neovasculature
(Friedlander et al. 1996). Furthermore, in a laser model of CNV,
inhibition of integrin αvβ3 significantly reduces the extent of
neovascularization (Honda et al. 2009). Integrin α5β1 is also
expressed on choroidal neovasculature and treatment with integ-
rin α5β1 small molecule inhibitor, JSM6427, is able to prevent
and regress CNV in the mouse model (Umeda et al. 2006).
Very few studies have been reported on glycobiology of

retinal or CNV. It has been demonstrated that Gal-3, by serving
as a receptor for advanced glycation end products (AGEs), mod-
ulates retinal angiogenesis in diabetes (Stitt et al. 2005).
Specifically, in the mouse model of diabetic retinopathy, preven-
tion of AGE formation or deletion of Gal-3 prevented acute dia-
betic retinopathy (Canning et al. 2007). Increased O-GlcNAc
modifications in neovascular retinas strongly correlates with
reduced migration of pericytes observed in diabetic vasculature
(Gurel et al. 2013) but its precise role in the regulation of retinal
neovascularization has not been evaluated.

Conclusions

Ocular neovascularization is a leading cause of vision loss.
Carbohydrate recognition is a largely underappreciated regula-
tory mechanism in the pathogenesis of ocular angiogenesis that
warrants investigation in ocular disease as it may provide valu-
able mechanistic insight as well as potential therapeutic targets.
Considering that Gal-3 is a mediator of VEGF-mediated angio-
genic response and VEGF is a primary mediator of retinal as
well as CNV, it is very likely that carbohydrate-mediated recog-
nition plays a prominent role in the mechanisms modulating the
growth of abnormal blood vessels in the retina and choroid. It
is our hope that this review will provide impetus for future
studies to characterize the role of carbohydrate-based, galectin-
mediated angiogenic pathways in the pathogenesis of retinal
and CNV. Also, future studies targeting galectins to develop
novel therapeutic strategies to control ocular angiogenesis are
likely to prove rewarding. Therapeutic strategies to prevent ab-
normal angiogenesis have, thus far, largely targeted VEGF
since it plays a central role in the pathogenesis of ocular neo-
vascularization. A major limitation of VEGF targeting therapies

is the adverse effect of sustained VEGF inhibition on the chor-
iocapillaris. Long-term inhibition of VEGF leads to chorioret-
inal atrophy (Yamazaki et al. 2012; Rofagha et al. 2013;
Fernandez-Robredo et al. 2014). Intravitreal injections of beva-
cizumab (Genentech), a full-length recombinant humanized
antibody that binds to all isoforms of VEGF, have been shown
to cause a significant reduction of choriocapillaris endothelial
cell fenestrations in primate eyes (Peters et al. 2007; Schraermeyer
and Julien 2012). Despite advances in anti-VEGF therapies
designed to combat choroidal and retinal neovascularization,
many patients do not significantly improve (Mitchell 2011;
Patel et al. 2011). Why some patients with CNV and prolifera-
tive diabetic retinopathy do not respond to anti-VEGF therapy
is a very important and a clinically relevant question. In this
respect, Croci et al. have identified a glycosylation-dependent
pathway that supports angiogenesis in a VEGF-independent
manner (Croci et al. 2014). This study revealed that anti-VEGF
refractory tumors exhibit a distinct glycosylation signature that
interferes with Gal-1-induced angiogenesis Specifically, it was
demonstrated that vessels within anti-VEGF-sensitive tumors
exhibit high levels of alpha2-6-linked sialic acid, which prevent
Gal-1–endothelial cell interactions. In contrast, vessels with the
anti-VEGF refractory tumors display glycosylation patterns that
facilitate Gal-1–endothelial cell interactions. It was further
demonstrated that silencing of Gal-1 itself or a glycosyltransfer-
ase that synthesizes Gal-1 ligands in endothelial cells converted
refractory tumors into anti-VEGF-sensitive tumors. These find-
ings provide impetus to investigate whether vitreous and retina
of patients who do not respond to anti-VEGF therapy have dis-
tinct glycosylation signature compared with those who respond.
Unfortunately, such samples are not readily available for ana-
lyses. Regardless, it is logical to assume that galectin-based
strategies hold the potential to develop drugs to enhance the ef-
ficacy of anti-VEGF treatment. Last but not least, current
anti-VEGF-based therapies are associated with a high rate of
retinal fibrosis and geographic atrophy (Kuiper et al. 2008; Van
Geest et al. 2012). Therefore, there is a major unmet need for
developing dual target drugs for inhibition of both angiogenesis
and fibrosis. In this respect targeting galectins, particularly
Gal-3 may prove to be beneficial. As described above in the
section on Gal-3 and angiogenesis, Gal-3 is an important medi-
ator of VEGF-mediated angiogenic response. These findings in
conjunction with reports showing that Gal-3 is also a profibrotic
protein that modulates TGF-β-driven fibrosis (Henderson et al.
2006, 2008, 2012; MacKinnon et al. 2008, 2012) suggest that
inhibiting carbohydrate-mediated Gal-3 function is likely to
inhibit both angiogenesis and fibrosis.

Funding

The work carried out in the author’s laboratory was supported
by National Institutes of Health Grants EY009349 and
EY007088, the Massachusetts Lions Eye Research Fund, the
New England Corne al Transplant Fund and an unrestricted
award from Research to Prevent Blindness.

Conflict of interest statement

None declared.

Glycobiology of ocular angiogenesis

1279



Abbreviations
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macular degeneration; bFGF, basic fibroblast growth factor; CNV,
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domain; ECM, extracellular matrix; FAK, focal adhesion kinase;
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