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Abstract

The use of multi-parametric Magnetic Resonance Imaging (T2-weighted, MR Spectroscopy 

(MRS), Diffusion-weighted (DWI)) has recently shown great promise for diagnosing and staging 

prostate cancer (CaP) in vivo. Such imaging has also been utilized for evaluating the early effects 

of radiotherapy (RT) (e.g. intensity-modulated radiation therapy (IMRT), proton beam therapy, 

brachytherapy) in the prostate with the overarching goal being to successfully predict short- and 

long-term patient outcome. Qualitative examination of post-RT changes in the prostate using MRI 

is subject to high inter- and intra-observer variability. Consequently, there is a clear need for 

quantitative image segmentation, registration, and classification tools for assessing RT changes via 

multi-parametric MRI to identify (a) residual disease, and (b) new foci of cancer (local recurrence) 

within the prostate. In this paper, we present a computerized image segmentation, registration, and 

classification toolkit called CADOnc©, and leverage it for evaluating (a) spatial extent of disease 

pre-RT, and (b) post-RT related changes within the prostate. We demonstrate the applicability of 

CADOnc© in studying IMRTrelated changes using a cohort of 7 multi-parametric (T2w, MRS, 

DWI) prostate MRI patient datasets. First, the different MRI protocols from pre- and post-IMRT 

MRI scans are affinely registered (accounting for gland shrinkage), followed by automated 

segmentation of the prostate capsule using an active shape model. A number of feature extraction 

schemes are then applied to extract multiple textural, metabolic, and functional MRI attributes on 

a per-voxel basis. An AUC of 0.7132 was achieved for automated detection of CaP on pre-IMRT 

MRI (via integration of T2w, DWI, MRS features); evaluated on a per-voxel basis against 

radiologist-derived annotations. CADOnc© also successfully identified a total of 40 out of 46 

areas where disease-related changes (both absence and recurrence) occurred post-IMRT, based on 

changes in the expression of quantitative MR imaging biomarkers. CADOnc© thus provides an 

integrated platform of quantitative analysis tools to evaluate treatment response in vivo, based on 

multi-parametric MRI data.
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1. Introduction

An estimated 217,730 new cases of prostate cancer (CaP) are expected to be diagnosed in 

2010 in the United States alone. Of these approximately 17% will undergo some form of 

radiation therapy (RT) (e.g. intensity-modulated radiation therapy (IMRT), proton beam 

therapy, brachytherapy) as treatment for clinically localized disease1. Early identification of 

non-responders via the use of imaging will allow for modification of the therapy [1], as well 

as provide clues about long-term patient outcome. Currently, differentiation between local or 

systemic recurrence of CaP (which have radically different prognoses and treatment 

regimens) is only appreciable on trans-rectal ultrasound, that too at a relatively advanced 

stage [1].

Multi-parametric (T2-weighted, MR Spectroscopy (MRS), Diffusion-weighted (DWI)) 

Magnetic Resonance Imaging (MRI) has shown great potential in early detection and 

staging of CaP [2]. Pre-RT CaP extent on multi-parametric MRI data is characterized by (a) 

low T2w signal intensity, generally located in the peripheral zone [3], (b) MR spectra with 

elevated levels of choline and reduced levels of citrate, (c) significantly low apparent 

diffusion co-efficient (ADC) values (from DWI), as compared to benign tissue.

Post-RT, successful treatment of CaP on MRI is characterized by uniform T2w signal 

intensity without focal abnormalities, while locally recurrent CaP is characterized by hypo-

intense regions of smooth texture [4]. MRS shows an absence of citrate, as well as low 

metabolic activity in cases of successful treatment. Elevated levels of choline in post-RT 

MRS is associated with locally recurrent CaP [4]. Post-RT DWI shows an overall increase in 

ADC values within the entire prostate when CaP is successfully treated. Unchanged or 

decreased ADC values correspond to locally recurrent CaP [5].

While such multi-parametric MRI-based biomarkers for evaluating RT-related changes 

within CaP regions have been identified, the qualitative examination of post-RT MRI is 

associated with poor detection rates due to (a) diffuse T2w signal intensity and indistinct 

zonal anatomy on T2w MRI [6], (b) adverse effects of post-biopsy hemorrhage and 

hormonal therapy on metabolic peaks [7], and (c) significant gland shrinkage and distortion 

post-RT [1]. Automated quantitative assessment of RT changes via multi-parametric MRI 

may thus allow accurate identification of (a) residual disease, and (b) new foci of cancer 

(local recurrence) within the prostate. This can, in turn, allow development of multi-

parametric MRI based classifiers to help better predict short- and long-term patient outcome.

Recently, a number of schemes for automated computerized image analysis of in vivo multi-

parametric prostate MRI have been presented [8, 9], with the primary focus being the 

accurate detection of presence and extent of CaP on pre-treatment MR data alone. To our 

knowledge, there is no current work on developing quantitative image analysis schemes to 

(a) examine multi-parametric MRI biomarkers pre- and post-RT, or (b) determine the 

effectiveness of therapy by examining quantitative changes in the expression of these 

imaging biomarkers pre- and post-RT.

1American Cancer Society, CaPSURE
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In this paper, we present CADOnc©, a novel comprehensive segmentation, registration, and 

classification framework for quantifying changes in disease extent post-radiation therapy. 

CADOnc© is particularly suited to address the unique challenges in quantifying RT-related 

prostate changes by (a) accounting for changes in the overall size and shape of the prostate 

pre- and post-RT (gland shrinkage due to radiation treatment [1]) via a novel spatially 

constrained registration scheme, (b) accurate delineation of the prostate region-of-interest 

(ROI) on pre- and post-RT MRI data using a robust statistical shape model [10] that is able 

to compensate for the loss of image resolution post-RT, and (c) quantitatively integrating 

structural, metabolic, and functional image features from T2w MRI, MRS, and DWI data for 

detection, comparison, and assessment of RT-related changes within the prostate ROI. In 

this work we leverage CADOnc© to evaluate (a) pre-IMRT disease, and (b) post-IMRT 

related changes using multi-parametric prostate MRI (T2w, MRS, DWI) on a cohort of 7 

patient datasets. Figure 1 presents an overview of CADOnc©, showing the interplay between 

the different modules.

2. Registration Of Pre- And Post-Treatment MR Imagery

Registration of the pre-treatment T2w prostate image scene  to the post-treatment T2w 

prostate MRI scene  is uniquely complicated by (1) changes in the overall shape and 

size of the prostate gland (which is known to shrink, post-RT [1]), (2) differing acquisition 

parameters, and (3) image intensity artifacts due to RT effects.

1. Bounding boxes containing the prostate on  and  are selected, obviating 

the need for elastic registration to model non-linear deformations in peripheral 

pelvic anatomy.

2. A spatially constrained mutual information (MI) similarity measure is used to drive 

the affine transformation of  onto . Only those voxels of  and 

that fall within the bounding box (selected in step 1) are considered in the 

calculation of MI (chosen for its robustness to non-linear intensity relationships 

[11]).

3. A 3D affine transformation with 12 degrees of freedom, encoding rotation, 

translation, shear, and scale, is implemented (as presented in [11]) to accurately 

align the prostate between  and .

T2w MRI and MRS are known to be in implicit alignment, but MRS information is obtained 

at a coarser resolution. MRS data is hence resampled to the finer T2w MRI voxel resolution.

Alignment of T2w and ADC maps is done based on available voxel sizes and locations 

(automatically extracted from DICOM headers). In the case of post-RT MRS and ADC 

maps, the transformation from step 3 is applied to map all the data into the pre-treatment 

coordinate frame C (associated with ).
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3. Automated Segmentation Of Prostate Capsule on T2W MRI Data

This module utilizes a novel, fully automated Active Shape Model (ASM) scheme for 

delineation of the prostate capsule on in vivo T2w MR imagery [10]. This technique, 

developed by our group and presented in [10], leverages multi-protocol data as follows,

1. First, a texture-based support vector machine (SVM) is constructed to be able to 

classify voxels within the prostate ROI.

2. A single midgland slice is selected from each test study. Corresponding MRS data 

is identified as either prostatic or extra-prostatic via a replicated k-means spectral 

clustering scheme [10] . This yields a bounding box of spectra from within the 

prostate.

3. The SVM classifier from Step 1 is used to identify prostatic voxels within the 

bounding box identified in Step 2, resulting in a boundary initialization.

4. The ASM transforms a known mean shape of the prostate (detailed in [10]) to the 

boundary initialization from Step 3, resulting in the gland capsule segmentation for 

this slice.

5. This segmentation is extended to the base and apex to yield a delineation of the 

prostate ROI (as described in [10]) on  as well as on the ADC map.

4. Feature Extraction and Identifying RT-Related Changes On Multi-

Parametric MRI

Prior to quantitatively integrating the multi-parametric MRI data, we first quantify the 

information captured by each protocol in terms of structural, metabolic, and functional 

information (Table 1).

A. Structural (T2W)

A texture feature vector (Fpre(c)) is calculated from each pre-RT T2w MRI image at voxel 

level, based on extracting features which have previously demonstrated discriminability for 

CaP detection [9]. Post-RT, signal intensity alone is considered.

B. Metabolic (MRS)

For pre-RT MRS, area under the choline (Ach), creatine (Acr), and citrate peaks (Acit), as 

well as associated ratios, are calculated, yielding the metabolic peak area vector Gpre(c). 

Kurhanewicz et al [2] have suggested that these features are highly indicative of the 

presence of CaP. Only Ach and Acr are considered post-RT, due to the known absence of 

citrate [4].

C. Functional (ADC)

Both texture and ADC values are considered when analyzing pre-RT DWI MRI, yielding 

the feature vector Epre(c). Post-RT, ADC values alone (no texture) are considered.
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In order to determine CaP regions on pre-RT MRI, an automated classifier (in this work, 

Random Forests [12] (RF)) is trained based off the fused representation vector Xpre(c) = 

[Epre(c), Fpre(c), Gpre(c)]. Treatment related changes are observed via parametric heatmaps 

reflecting differences in (1) T2w MRI intensity, (2) Ach/Acr ratios, and (3) ADC values, pre- 

and post-IMRT.

5. Experimental Results

5.1. Data description

7 in vivo endorectal multi-parametric MRI patient datasets were acquired from the 

University of California, San Francisco. All patients underwent external beam radiotherapy 

after initial MRI acquisition (1.5 Tesla, GE Signa), with supplementary neo-adjuvant 

hormonal therapy. Post RT, patients were reimaged via MRI (3 Tesla, GE Signa). 

Radiologist annotations of CaP and benign regions were obtained on a per-MRS voxel basis, 

and used as surrogate ground truth labels for CaP extent. A total of 25 slices with CaP (pre-

RT) were identified for analysis via CADOnc©. All of these MRI sections had associated 

CaP annotations pre- and post-RT. One study out of the 7 included T2w, MRS, and ADC 

maps (from DWI), while the remaining 6 comprised MRS and T2w MRI alone.

5.2. Experiment 1: Identifying CaP on pre-RT MRI

A RF classifier was constructed for Xpre(c) based on the available surrogate ground truth 

labels for CaP extent; the objective being to discriminate between CaP and benign regions. 

A leave-one-out cross validation strategy was adopted to evaluate the effectiveness of the 

RF, such that at each iteration, slices corresponding to a single study were held out for 

testing, while the remaining were used in training. This was repeated until all the slices from 

all the studies had been evaluated. Receiver-Operating Characteristic (ROC) curve analysis 

was then performed based on overlap with ground truth labels on a per-voxel basis. The 

integrated multi-parametric MRI classifier yielded an average area under the ROC curve of 

0.71±0.11, with a corresponding accuracy of 0.65±0.15; averaged over all 7 studies (Table 

3). Figures 2(a)-(d) show representative results of CADOnc© for CaP detection. ADC 

information was not considered in this experiment as it was not available for all the studies.

5.3. Experiment 2: Identifying RT-related changes on MRI

46 regions of definitive treatment change (called “hotspots”) were identified across the 25 

images considered, based on the pre- and post-RT CaP label information. These included 

regions of (1) successful treatment, (2) partially successful treatment, and (3) local 

recurrence (detailed in Table 2). Multi-parametric difference maps for each slice were 

calculated as scaled absolute differences (L1 norm) between pre- and post-RT images 

corresponding to each of T2w intensity, Ach/Acr ratios (from MRS), and ADC maps, 

respectively. Per-study qualitative examination results of multi-parametric MRI difference 

maps are summarized in Table 3. Of a total of 46 hotspots, T2w signal intensity difference 

maps identified 29, while 34 were identified via MRS. A consensus between the hotspot 

maps for each protocol (MRS, T2w) via the logical OR operator allowed for successful 

identification of 40 of the 46 hotspots. For the single study where such information was 

available, ADC difference maps successfully identified 4 out of 7 hotspots present (Study 1). 
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Corresponding detection rates for this study based on T2w and MRS information were 3 and 

7 hotspots, respectively. Figures 2(e) - (h) show representative difference maps (from 2 

different studies) demonstrating significant change in regions of residual CaP extent (Figs 

2(e)-(f)), as well as successful treatment (Figs 2(g)-(h)).

6. Concluding Remarks

In this paper, we presented CADOnc©, the first scheme to quantitatively evaluate the effects 

of radiation therapy on the prostate. CADOnc© was successfully applied to identifying 

treatment-related changes in the prostate post-IMRT, using multi-parametric (T2w, MRS, 

DWI) MRI. Specifically, CADOnc© was applied to (a) align pre- and post-treatment multi-

parametric MRI data to facilitate per-voxel identification of changes in the expression of 

imaging biomarkers, (b) identified CaP on pre-treatment MRI by fusing the structural, 

functional and metabolic information available from MRI (AUC of 0.7132), (c) quantified 

differences in multi-parametric MRI biomarkers post-RT with successful identification of 40 

out of 46 treatment change hotspots. CADOnc© is intended to lay the platform for 

quantitative evaluation and comparison of multiple different RT strategies (proton beam 

therapy, brachytherapy) in the future, with ultimately being able to predict patients who will 

suffer biochemical failure or local recurrence.
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Fig. 1. 
Organization of modules comprising CADOnc©, (a) registration of pre- and post-RT data to 

overcome changes in the overall size and shape of the prostate, (b) segmentation to 

accurately delineate the prostate region-of-interest, (c) feature extraction to quantify 

structural, metabolic, and functional image attributes, (d) classification to analyze changes in 

the expression of multi-parametric MR imaging biomarkers.
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Fig. 2. 
(a) Pre-RT T2w MRI image, with bounding box initialization to the segmentation algorithm 

in white (from MRS) and final prostate boundary delineation result shown in green. The red 

outline corresponds to the radiologist annotated CaP extent for this image. (b) Checkerboard 

overlay of aligned  and  within the prostate ROI (outlined in green) showing 

accurate registration of pre- and post-RT T2w MRI data. CAD results via (c) (Ach + Acr)/Aci 

ratios, (d) integrated multi-parametric MRI information (red corresponds to a higher 

probability of CaP presence). Note high accuracy and specificity of (d) when compared to 

red outline in (a). Difference (L1 norm) heatmaps shown for 2 different studies, using (e) 

T2w intensity, (f), (h) Ach/Acr ratio, and (g) ADC values; taken between pre- and post-RT 

data. Red corresponds to areas of most change, blue corresponds to areas of least change, 

while the pre- and post-RT CaP extents (if any) are outlined in red and black respectively. In 

(e) residual CaP post-RT shows no change in T2w MR intensity (deep blue region within the 

black outline). Note that in (f), (g), (h) area of significant change in the heatmap corresponds 

to the successfully treated CaP region post-RT (red outline).

Viswanath et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 October 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Viswanath et al. Page 10

Table 1

Summary of qualitative changes in multi-parametric MRI imaging parameters pre- and post-RT, and the 

corresponding quantitative features used by CADOnc© to characterize each protocol.

Pre-RT appearance Post-RT appearance CADOnc© features

T2w low T2w signal intensity
in peripheral zone

Hypo-intense regions, smooth texture
No change in residual CaP regions

1st order statistics, Kirsch/Sobel (gradients)
2nd order co-occurrence (Haralick)

MRS elevated levels of Ach

reduced levels of Acit

Nearly absent Acit, polyamines in benign, CaP
Residual CaP has elevated Ach, Acr

[Ach, Acr, Acit,
Ach+cr/Acit, Ach/Acr]

DWI significantly low ADC
compared to benign

Increased ADC in entire prostate compared to pre-RT
Residual CaP lower ADC compared to benign areas

Raw ADC values, gradients
1st and 2nd order statistics
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Table 2

Different RT outcomes with corresponding effects on CaP presence and extent.

Treatment response Residual CaP New CaP occurrence

Successful treatment N N

Partially successful treatment Y N

Local recurrence
Y Y

N Y
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Table 3

Quantitative results on a per-study basis for CADOnc©, summarizing AUC and accuracy values for 

Experiment 1, as well as number of treatment change hotspots identified in Experiment 2.

Study no (Pre-RT)
CAD AUC

(Pre-RT) CAD
Accuracy TP hotspots FN hotspots

1 0.81 0.74 7 0

2 0.48 0.32 4 1

3 0.76 0.69 4 2

4 0.71 0.68 4 1

5 0.77 0.70 4 0

6 0.73 0.72 9 1

7 0.74 0.70 8 1

Avg 0.71 0.65 40 6
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