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Abstract

Walking behavior is context-dependent, resulting from the integration of internal and external influences by specialized
motor and pre-motor centers. Neuronal programs must be sufficiently flexible to the locomotive challenges inherent in
different environments. Although insect studies have contributed substantially to the identification of the components and
rules that determine locomotion, we still lack an understanding of how multi-jointed walking insects respond to changes in
walking orientation and direction and strength of the gravitational force. In order to answer these questions we measured
with high temporal and spatial resolution the kinematic properties of untethered Drosophila during inverted and vertical
walking. In addition, we also examined the kinematic responses to increases in gravitational load. We find that animals are
capable of shifting their step, spatial and inter-leg parameters in order to cope with more challenging walking conditions.
For example, flies walking in an inverted orientation decreased the duration of their swing phase leading to increased
contact with the substrate and, as a result, greater stability. We also find that when flies carry additional weight, thereby
increasing their gravitational load, some changes in step parameters vary over time, providing evidence for adaptation.
However, above a threshold that is between 1 and 2 times their body weight flies display locomotion parameters that
suggest they are no longer capable of walking in a coordinated manner. Finally, we find that functional chordotonal organs
are required for flies to cope with additional weight, as animals deficient in these proprioceptors display increased
sensitivity to load bearing as well as other locomotive defects.

Citation: Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS (2014) Kinematic Responses to Changes in Walking Orientation and Gravitational Load in
Drosophila melanogaster. PLoS ONE 9(10): e109204. doi:10.1371/journal.pone.0109204

Editor: Efthimios M. C. Skoulakis, Alexander Fleming Biomedical Sciences Research Center, Greece

Received July 5, 2014; Accepted September 10, 2014; Published October 28, 2014

Copyright: � 2014 Mendes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: Funding for CSM and RSM: National Institutes of Health (http://www.nih.gov/), -NIH/5 R01 NS070644-03 (GG005430/5-38621) Ellison Foundation
(http://www.ellisonfoundation.org/), PG005402. Funding for SVR: Barnard College. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: cesar2001@gmail.com (CSM); rsm10@columbia.edu (RSM)

Introduction

Multi-jointed organisms move through their environment with a

remarkable ability to adapt to internal physiological conditions, as

well as to variations in terrain and other external forces such as

wind or gravity. Such capabilities allow for locomotion that is fast,

stable and energy efficient. Two features of animal nervous

systems are critical for such remarkable adaptability. First, animals

bear a large set of sensory structures specialized for sensing

segment status and body position [1,2]. For example, subsets of

neurons in the second antennal segment of Drosophila are

responsible for gravity perception. [3,4]. Second, a complex

neuronal architecture is able to receive and integrate internal and

external sensory stimuli and produce an appropriately fine-tuned

motor response. Some of these responses are reflex-based,

comprising simple circuits such as the giant fiber system of insects

that is responsible for visually induced escape behavior [5–8].

Other motor responses are instead computed by higher decision

centers in the brain. For example, the protocerebral bridge, a

central complex neuropil in the central brain, is required for the

motor output used for crossing gaps in the terrain [9,10].

Critical to locomotive coordination is the animal’s ability to

compute both the direction and strength of the gravitational force

in order to maintain posture and anchoring to the walking

substrate [11]. This allows for maneuverability through a wide

range of environments, both in air and on land. Arthropods and

insects in particular experience radical variations in their

environment, easily moving across challenging terrains such as

ceilings and vertical structures. This resourcefulness is made

possible by the use of a large number of legs and the presence of

sophisticated surface attachment systems, which include claws and

adhesive pads [12,13]. Moreover, walking animals can sustain

large variations in their body load, which becomes increasingly

important under different physiological conditions such as obesity,

or while carrying heavy objects [14]. For example, rhinoceros

beetles can carry more than 30 times their body mass with notable

metabolic economy [15]. During the step cycle, each leg supports

load variation, with maximum support occurring halfway through

the stance phase [16,17].

In order to deal with variations in body load and orientation,

vertebrates and invertebrates resolve gravity information through

direct and indirect approaches. Mammals and insects can detect

linear accelerations using the inner ear and the antennal
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Johnston’s organ, respectively [18,19]. Particular structures in the

mechanosensory system can measure joint angles and strains,

providing additional information about the direction and strength

of the gravitational force. In mammals these structures include

muscle spindles and Golgi tendon organs [20]. In insects, these

include hair plates, chordotonal organs and campanifom sensilla

[1] – sensory organs specialized to meet a different set of

mechanical challenges from those faced by mammals [21]. A large

body of work has focused on the role of campanifom sensilla in

transducing leg load during standing and walking conditions [22–

25]. These are dome-like structures present in legs that can be

isolated or grouped. Their ciliated dendrites are mechanically

coupled with the cuticle, allowing for detection of mechanical

stress in the exoskeleton [1]. Although there is some variability

among insect species in the position of the campaniform sensilla,

they are generally placed and oriented strategically close to leg

joints, making them particularly sensitive to force orientation or

phase of the step cycle [26]. For example, in the cockroach tibia,

proximal campaniform sensilla respond to force increases during

load bearing, whereas distal receptors fire to decreasing force as

legs unload [24]. These afferents project into the ventral nerve

cord where they can synapse with motor neurons as well as spiking

and nonspiking interneurons [27,28]. Direct synapse onto motor

neurons can work as a negative feedback system in order to lessen

the mechanical stress that caused the initial sensilla to fire [29].

This can be done by exciting and simultaneously inhibiting a set of

antagonistic leg muscles [30]. Moreover, campaniform sensilla can

also influence motor activity by targeting Central Pattern

Generators (CPGs) [30,31].

Motor adaptability is reflected in the timing and intensity of

muscle contractions in response to terrain conditions, body load

and orientation relative to gravity [32]. Although experiments

have been designed to challenge animals during walking, very few

studies have focused on the kinematic responses to changes in

walking conditions. One reason for this is the difficulty in

extracting large kinematic data sets from freely moving animals.

Instead, a large body of work has focused on kinetics (i.e. force

distribution, for example [33,34]) or electrophysiological responses

to body load (for example [23,25,35] reviewed in [32]). Due to its

small size, the fruit fly remains technically challenging for

physiology and force distribution (kinetics) studies compared to

the stick insect, cockroach or locust. Nevertheless, an increasingly

sophisticated genetic toolkit makes this a valuable model system to

identify and manipulate circuits involved in motor control with

increased cellular resolution [36]. In addition, the fruit fly displays

an extremely reliable, stereotyped and stable locomotor behavior

that is dependent on walking speed [37–39].

Machine vision techniques that track untethered animals can

quantify a large number of locomotor parameters and provide a

detailed behavioral readout of wild type and genetically manip-

ulated animals [39–41]. Here, we took advantage of one of these

methods, which combines a high-speed optical touch sensor with a

tracking software package that allows the extraction of a large

number of kinematic parameters with high spatial and temporal

resolution [39]. Using this method, we asked what kinematic

parameters change as a result of different walking orientations and

increased gravitational load. We find that although many of the

rules governing walking behavior are unaffected, changes in

orientation and load alter the walking program to promote gait

stability at the expense of walking speed. Moreover, we identify a

threshold for carrying additional weight beyond which flies are

unable to manage. Importantly, we also find that some responses

to increased weight vary over time, suggesting that distinct neural

control mechanisms mediate short and long term responses.

Results

Kinematic responses to walking orientation
In order to quantify locomotion in different orientations we used

the FlyWalker system [39], reorienting the detection apparatus to

allow footprint detection while animals walked upside down

(inverted) or vertically (ascending or descending; Figure 1A).

Animals were allowed to walk freely and the walking kinematics

were quantified as previously described [39]. Briefly, this method

is based on the reflection of light within an optical glass through an

optical effect termed Total Internal Reflection (TIR). Leg contacts

disrupt this effect causing frustrated TIR (fTIR), which generates

scattered light that can be detected by a high-speed camera. Using

custom-made software specifically developed for this assay, we

were able to track, quantify and compare the walking pattern

between different conditions. All kinematic definitions are

described in Table S1.

Step related parameters. Animals walking in non-upright

conditions displayed significantly slower walking speeds and

narrower range of values for this parameter compared to upright

controls, suggesting tighter motor control (Figure 1B). We next

asked if step parameters were solely dependent on the walking

speed as previously described [37–39], or if in addition orientation

might influence walking as previously observed in the locust or

cockroach [42,43]. We found that not only did step parameters

change under non-upright conditions but that the degree of

modulation was dependent on the walking orientation. Swing

speeds were significantly increased in animals walking in the

inverted orientation, while in vertically walking animals (ascending

or descending) this parameter remained unchanged (Figure 1C

and S1A). Interestingly, in both ascending and descending

conditions, animals displayed a proportional increase in step

length and swing duration (Figure 1D, E and S1B, C), explaining

the unchanged swing speed. In contrast, inverted animals not only

displayed a slight increase in step length but also had shorter swing

phases, thus explaining the increased swing speed (Figure 1D, E

and S1B, C). This result is similar to that observed in cockroaches,

which display shorter swing phases while walking inverted and

supported by a fine mesh [43]. In contrast to swing parameters,

stance phase parameters displayed the same speed-dependent

response in all tested conditions (Figure 1F and S1D), suggesting

that adaptability to walking orientation targets mostly the swing

phase of the step cycle. Because of a shorter swing phase

(Figure 1E and S1C), the duty factor, which measures the fraction

of the step cycle dedicated to the stance phase, was significantly

increased in inverted animals, indicating, on average, an increase

in contact with the substrate. In contrast, vertically walking

animals had minimal or no change in this parameter (Figure 1G

and S1F). Overall, our results indicate that flies have the capacity

to adapt their step parameters in accordance with their walking

orientation by shifting their stride length and protraction duration.

Spatial parameters. FlyWalker also quantifies the footprint

positions relative to the center of the body. The footprint

alignment parameter, also called follow-the-leader, measures the

propensity for all three ipsilateral legs to be placed in a similar

position relative to the walking vector [39,44,45]. Since we

previously observed that this parameter distributes in a non-linear

fashion for upright animals [39], we analyzed the data for two

speed groups, slow (,20 mm/s) and medium speeds (20–34 mm/

s) (in our experiments, non-upright flies did not walk faster than

34 mm/s; Figure 2A and S2A). Animals ascending a vertical plane

showed an increased tendency to align their footprints, perhaps as

an effort to ensure secure anchoring. In inverted or descending

animals, no significant difference was detected, possibly as a
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consequence of other gait features that prevent a change in

footprint alignment.

We next measured the stance linearity index, which quantifies

the steadiness of tarsal contacts relative to the body center while

the fly moves forward [39]. Interestingly, animals walking in non-

upright conditions exhibited smaller stance linearity values

(Figures 2B and S2B), indicating steadier stance phases in the

face of more challenging conditions. In addition, no significant

changes were observed in footprint clustering, both during footfall

(anterior extreme position; AEP) or swing onset (posterior extreme

position; PEP) [46] (Figures 2C,D and S3). Moreover, descending

animals showed a consistent posterior displacement of AEP and

PEP positioning, possibly as a consequence of gravitational pull on

the fly’s body (Figure S4). Together, our results indicate that the

fruit fly engages in a more controlled stance phase (e.g. lower

stance linearity values) during non-upright conditions, although

Figure 1. Imaging setup and step parameters. (A). Schematic of the recording setup. The fTIR apparatus was oriented in order to allow the flies
to walk freely inside a walking chamber either horizontally (upright or inverted) or vertically (ascending or descending). A high-speed camera
recorded body and tarsal contacts on the optical glass, see [39] for details. Fly schematic adapted from [73]. (B–G) Boxplots represent the median as
the middle line, with the lower and upper edges of the boxes representing the 25% and 75% quartiles, respectively; the whiskers represent the range
of the full data set, excluding outliers. Circles indicate outliers. Grey represents upright controls (n = 71, from [39]), green for inverted (n = 28), purple
for ascending (n = 28) and brown for descending (n = 23). For C–G data was residual normalized and expressed as the difference to the upright
control. Statistical analysis with one-way ANOVA followed by Tukey’s post hoc test (for normal distributions in panels B, C and E) or Dunn’s post hoc
test (for non-normal distribution in panels D, F and G), *P,0.05; **P,0.01; ***P,0.001. Statistically significant increases or decreases are indicated in
red and blue, respectively. (B) Non-upright animals display significantly reduced walking speed. (C) Swing speed was significantly increased in
inverted walking animals. (D) All non-upright animals display increased step length. (E) Swing duration is increased only in ascending and descending
animals while inverted animals show a small decrease. (F) Stance duration remains unchanged for all conditions. (G) Duty factor strongly increases in
inverted walking animals while it is minimally reduced in ascending animals.
doi:10.1371/journal.pone.0109204.g001

Adaptation of Walking Behavior in Drosophila

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109204



footprint placement precision (AEP and PEP clustering) remains

unaffected. These results differ from the stick insect that displays

strikingly different footprint positions depending on the walking

orientation [46].

Coordination parameters. Interleg coordination is critical

for sustaining speed, stability and energy efficiency during walking

[38,39,47–49]. Drosophila use tripod coordination as the preferred

gait, particularly at higher speeds [37–39]. Alternatively, at very

low speeds, tetrapod and wave (or metachronal) patterns can also

be observed where four or five legs are in stance position,

respectively [38,39,50]. We reasoned that flies might shift their gait

under different walking orientations. To test this we calculated the

fraction of frames in which leg contact was associated with a

particular gait, also known as gait indexes [39] (Figure 3A–D). We

found that flies walking in an inverted orientation significantly

reduced their usage of the tripod gait while increasing the wave

configuration (Figure 3A, C). Further, by visually inspecting the

gait patterns of inverted walking animals we noticed an increased

occurrence of the wave gait, where only a single leg swings at a

given time [50], particularly at slow speeds (data not shown).

Ascending flies also increased the use of tetrapod configurations

while reducing the amount of the wave configuration (Figure 3B,

C). These differences were particularly striking at slower speeds,

when walking is more susceptible to neuronal control by higher

control centers [51] (Figure S5). On the other hand, no changes

were observed in the frequency of non-canonical configurations

(Figure 3D).

One possibility to explain a reduced use of tripod configuration

in inverted flies would be that animals under these conditions

increase the amount of time separating two consecutive tripod

stances. In order to test this possibility we analyzed two new

parameters termed inter-tripod time that measures the time

Figure 2. Spatial parameters. Non-upright walking animals display more aligned footprints and less jitter during stance phases, while clustering
remains unchanged. (A–D) Boxplots represent the median as the middle line, with the lower and upper edges of the boxes representing the 25% and
75% quartiles, respectively; the whiskers represent the range of the full data set, excluding outliers. Circles indicate outliers. Statistical analysis with
one-way ANOVA followed by Tukey’s post hoc test, *P,0.05; **P,0.01; ***P,0.001. Statistically significant decreases are indicated in blue. In B, C and
D data was residual normalized and expressed as the difference to the upright control. (A) Ascending animals show more aligned footprints. Data
were grouped into slow (,20 mm/s) and medium (between 20 and 34 mm/s) speeds. (B). Non-upright animals display lower values for stance
linearity indicating lower jitter during stance phases. (C–D) Footprint clustering remains unchained for Anterior Extreme Position (AEP) and Posterior
Extreme Position (AEP). (b.u., body units).
doi:10.1371/journal.pone.0109204.g002
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transitioning between two complementary tripod stances; and

Tripod duration, which measures the average duration of each

tripod stance (see methods section for details) (Figure 3E–G).

Interestingly, faster animals display reduced inter-tripod transition

times, with values of ,10 ms for fast animals compared to

,20 ms for slow animals (Figure S6A). In general, animals

walking under non-upright conditions had larger inter-tripod
transition values (Figure 3E, F and S6A). In addition, Tripod

Figure 3. Interleg coordination parameters and summary of kinematic effects in non-upright walking animals. (A–D, F–G) Boxplots
represent the median as the middle line, with the lower and upper edges of the boxes representing the 25% and 75% quartiles, respectively; the
whiskers represent the range of the full data set, excluding outliers. Circles indicate outliers. Data was residual normalized and expressed as the
difference to the upright control. Statistical analysis with one-way ANOVA followed by Tukey’s post hoc test, *P,0.05; **P,0.01; ***P,0.001.
Statistically significant increases or decreases are indicated in red and blue, respectively. (A) Inverted walking animals display a significant decrease in
tripod configurations while descending animals showed an increase. (B) Only ascending animals displayed a slight increase in tetrapod
configurations. (C) Inverted walking animals display a significant increase in the use of wave conformations while ascending animals showed a slight
decrease. (D) No variation was observed in the number of non-canonical combinations for all experimental groups. (E) Step patterns and tripod/
transition phases. (E) and (E’) display two representative videos of animals walking upright and inverted at similar speeds, respectively. In the upper
section, for each leg, swing phases are represented in black (from top to bottom: right hind (RH); right middle (RM); right front (RF); left hind (LH); left
middle (LM); left front (LF)). Vertical dashed green lines represent the boundaries of a tripod stance phase. Lower section represents the periods
associated with tripod and transition (or inter-Tripod time) phases depicted in green and grey, respectively. (F) Non-upright walking animals display a
significant increase in inter-Tripod time. (G) Animals walking in a vertical plane display an increase in the average duration of each tripod stance
phase. (H) Summary of kinematic affects under non-upright conditions. For simplicity, only the step cycle of the right foreleg is represented. Dashed
green line represents the swing phase from PEP to AEP. Waved red line represents stance traces. Solid triangle represents the tripod conformation
formed by RF, LM and RH. Dashed triangle represents the immediately subsequent tripod conformation. Purple dashed line represent the inter-
Tripod time between the two tripod conformations. Brown and blue arrows represent the qualitative variations compared to upright walking animals
observed for inverted and ascending/descending, respectively.
doi:10.1371/journal.pone.0109204.g003

Adaptation of Walking Behavior in Drosophila

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109204



duration values were on average ,4 ms longer for ascending or

descending flies compared to upright flies (Figure 3G and Figure

S6B), consistent with an increase in step length under these

conditions (Figure 1D). Phase plots to examine the coordination

between left-right or adjacent ipsilateral leg pairs were generated

but did not reveal anything beyond these conclusions (data not

shown).

Overall, our data indicate that Drosophila can readily modify its

walking behavior according to orientation in order to sustain

stability and contact to the substrate (major kinematic shifts are

summarized in Figure 3H). These changes target the step cycle

leading to faster leg swings or longer strides while walking upside

down or vertically, respectively. In addition, interleg coordination

properties are also adjusted under different walking orientation in

order to maximize contact with the substrate.

Kinematic responses to increased body load
In order to study the kinematic effects of body load on fruit flies

we glued 1/320 spherical ball bearings with different densities to

the notum of wild type female flies (Figure 4A and Video S1).

Weights corresponded to 0.66, 1.14 and 2.02 times an average

body mass (female flies weighed 1.1460.05 mg, n= 39). Animals

with only glue on their notums, used to adhere the ball bearings,

were used as controls. In addition, to study the long-term effects of

load bearing we analyzed walking by these animals 2 hours,

24 hours and one week after attachment.

Step related parameters. We observed that weights affected

locomotion and kinematic parameters, particularly above a weight

threshold. Furthermore, some parameters changed over time. For

example, flies bearing weights showed a decrease in speed 2 hours

after the weight was added, not walking faster than 30 mm/s

(Figure 4B). Moreover, flies bearing 0.666 and 1.146 weights

slowed initially but eventually returned to control speeds. Flies

bearing the heaviest 2.026 weights, however, did not recover,

suggesting the existence of a threshold for weight tolerance that

exists between 1.146 and 2.026 of body mass.

Some step parameters were also affected by weight bearing over

time. In general, swing speeds were increased (Figure 4C).

However, over time, this increase was only maintained for the

heaviest loads; flies carrying lighter and intermediate weights

returned to control values at later time points. Step length

remained relatively constant (Figure 4D), except for flies bearing

the heaviest weights for which it was strongly reduced. A similar

response was observed for swing duration where lighter and

intermediate weights remained unaffected while animals carrying

heavier loads displayed a strong reduction in swing phase

(Figure 4E). Animals under these conditions displayed on average

a protraction that was approximately 10 ms shorter compared to

control animals (Figure 4E), thus explaining the observed increase

in swing speed (Figure 4C). Consistently, animals carrying the

heaviest loads showed an increased duty factor at all time points

(Figure S7B), possibly to achieve greater stability. Interestingly, the

persistent decrease in swing duration for 2.026 weight bearing

flies was coupled with an increase in stance duration (Figure 4F),

allowing these flies to maintain a relatively constant step period

(Figure S7B).

Together, these data show that fruit flies adapt their step

parameters in response to increased weight. For animals bearing

weights of 1.146 or below, responses are typically transient; flies

can eventually adapt to carrying these loads and return to wild

type step parameters. In contrast, flies bearing a weight of 2.026
display stronger and long-term effects, generally target swing

duration by increasing swing speed.

Spatial parameters. Spatial parameters also changed in

response to additional weight (Figure 5). For these measurements

we plotted the AEPs (beginning of stance phase) and PEPs

(beginning of swing phase) for each leg in relation to the center of

the body (Figure 5A–C). We observed a significant displacement

of these parameters for flies bearing the heaviest weight at all three

time points. Under these conditions, tarsal contacts were displaced

further from the body center. In addition, foreleg and hindleg

contacts were shifted anteriorly and posteriorly, respectively.

Despite these changes, both AEP and PEP shifted similarly,

resulting in an unchanged step length (Figure 4D). For lighter and

intermediate weights (0.666 and 1.146) only small changes were

observed in footprint positioning 2 hours after the addition of the

weights (Figure 5A). However, 24 hours after addition of the

intermediate weight (1.146), footprint positions shifted to those

observed immediately in response to heavier weights (Figure 5B).

Thus, adjustments to intermediate weights generally occurred by

24 hours, if not sooner. The spreading of tarsal contacts ensures

that the center of mass will remain inside the support area, thus

increasing static stability [48]. Footprint clustering also changed in

response to increased load (Figure 5D–E). Flies bearing the

heaviest weights showed an increase in this parameter, while

minimal changes were observed for animals carrying light and

intermediate weights, suggesting less stable locomotion under

heavier weight-bearing conditions.

Together, these data show that animals change their spatial

properties in order to accommodate load increases. The dispersion

of tarsal contacts further away from the body center can

additionally increase the area of tripod support and thus promote

static stability while carrying heavier weights [48].

Stance linearity was also examined under different load

conditions. Two hours after load attachment, flies bearing 1.146
and to a lesser extent those bearing 0.666 exhibited a straighter

path (smaller stance linearity values; Figure 6A), similar to animals

walking in non-upright orientations (Figure 2B). However, this

effect was no longer visible after one week. In addition, heavier

loads caused a slight increase in stance linearity, further supporting

the idea that there exists a tolerance threshold for weight that is

between 1.146 and 2.026 the mass of a fly. Footprint alignment

values at intermediate speeds (20–34 mm/s) displayed a similar

trend: flies carrying intermediate loads exhibited more aligned

footsteps compared to flies bearing the heaviest weight (Figure

S7C). Additionally, while there was no significant difference

observed at 2 hours between flies bearing 2.026 weights and

controls, possibly due to the increased variability in the 2 hour

controls, a difference was observed at the later time points, when

control flies were able to move with increased precision (smaller

footprint alignment values) but flies bearing the heaviest weights

were not. This trend was also observed in the 1.146bearing flies

at the later time points. These results reinforce a time-dependent

kinematic response to weight bearing as well as a different set of

responses for flies carrying less than 1.146 compared to flies

bearing 2.026 or higher.

Coordination parameters
To assess whether gaits change upon increased load, we

examined the relative frequencies of several step configurations

(Figure 6B–D and Figure S7D, E). Quantification of gait patterns

showed that animals bearing 1.146 and below did not show any

significant alterations in gait conformations. Flies bearing 2.026,

however, displayed significant changes in gait conformations.

These flies displayed a strong decrease in the use of the tripod

configuration (Figure 6B), and to a lesser extent, tetrapod

configurations (Figure S7D). Conversely, we observed a slight
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increase in the frequency of wave configurations (Figure S7E) and

a significant increase in the use of non-canonical configurations

(Figure 6C), which includes all possible configurations not covered

by tripod, tetrapod and wave patterns. Among these non-

canonical configurations, we quantified the fraction of time flies

spend with all six legs on the ground while still moving forward,

which we refer to as the full stance index (Figure 6D). We found

that flies bearing 2.026 of body mass spent a significantly

increased amount of time in this configuration (Figure 6D). By one

week, however, these flies decreased their use of this configuration

and returned to control values. Interestingly, this increase in non-

canonical gait configurations was not due to an increase in inter-

tripod transition time: these values remained relatively constant

regardless of the amount of weight being carried and regardless of

the amount of time since the weight was added (Figure S7F).

Instead, these results suggest that in response to heavier loads,

transitions between tripod stances preferentially occur with all six

legs on the ground. These results once again highlight a different

response to carrying weights 1.146 or below versus 2.026 or

above, with minimal effects on gait properties for the former.

Figure 4. Imaging setup and step parameters. (A) Recording setup. Flies were allowed to walk freely inside a walking chamber on an optical
glass with a metal ball bearing attached to the notum. A high-speed camera recorded body and tarsal contacts on the optical glass. (A’)
Representative image of a fly carrying a metal ball bearing. (B–F) Box plots represent the median as the middle line, with the lower and upper edges
of the boxes representing the 25% and 75% quartiles, respectively; the whiskers represent the range of the full data set, excluding outliers. Circles
indicate outliers. Statistical significance was determined using 2-way-ANOVA with post-hoc t-tests, where *p,0.05; **p,0.01; ***p,0.001. Statistically
significant increases or decreases are indicated in red and blue, respectively. (B) Average Speed. Flies bearing 0.666 and 1.146 show a recovery in
average speed by one week, while flies bearing 2.026 do not. (C) Swing speed. The immediate effect of weight is an increase in swing speed,
although it decreased to that of controls for flies bearing 0.666and 1.146by 1 week. (D) Step length. Step length shows weight-dependence only,
where intermediate weights increases step length at 2 hours and the heaviest weight decreases step length at 1 week. (E) Swing duration. Swing
duration is significantly decreased for flies bearing 2.026. (F) Stance duration. Stance duration is increased only for the heaviest weight.
doi:10.1371/journal.pone.0109204.g004
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Response to increased load when sensory feedback is
compromised
Although campaniform sensilla have been extensively described

as the main transducers of load during standing and walking

conditions [22–25], other proprioceptors could also mediate a

response to weight bearing [32]. Here, we tested the role of the

femoral chordotonal organ in mediating the kinematic responses

to weight bearing. Chordotonal organs are internal stretch

receptors composed of multiple functional units termed scolopidia

that measure the position and movements of leg joints [1,52,53].

We took advantage of a null allele of the nanchung (nan) gene,

which encodes a cation channel subunit responsive to osmotic and

mechanical responses and is expressed exclusively in the sensory

cilia of chordotonal neurons in the legs and antenna [3,54]. nan
mutants disrupt the function of leg chordotonal organs while

leaving other leg sensory organs unaffected [39,54]. We quantified

the kinematic effects of carrying loads of 1.14 times body weight in

this sensitized genetic background, with measurements done 2 and

24 hours after adding the weight (Figure 7 and S8). Previously we

found that loss of chordotonal organ function using the same nan
allele displayed significant gait and foot placement defects [39].

Although we still detected slower walking speeds for these mutants

(Figure S8A), control and nan mutant flies exhibited similar

Figure 5. Spatial parameters. (A–C) Footprint positions relative to the body center. AEP and PEP values for each leg are represented on the left
and right sections of the plot, respectively. Values are normalized for body size. Line size denotes standard deviations, while intersection indicates
mean value. Statistical significance was determined using 2-way-ANOVA with Tukey’s post-hoc tests and post-hoc t-tests, where *p,0.05; **p,0.01;
***p,0.001. Statistically significant increases are indicated in red. (D–E) AEP and PEP Clustering. Box plots represent the median as the middle line,
with the lower and upper edges of the boxes representing the 25% and 75% quartiles, respectively; the whiskers represent the range of the full data
set, excluding outliers. Circles indicate outliers. Values show a significant footprint dispersal in 2.026bearing flies compared to controls.
doi:10.1371/journal.pone.0109204.g005
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walking parameters in the absence of additional load (data not

shown), which may be a consequence of the presence of glue on

the notums of control flies.

In flies bearing additional weight, nan mutants significantly

increased stance duration, even 24 hours after the weights were

added (Figure 7A). However, no change was observed in swing

duration (Figure S8B), resulting in an increased step period

(Figure 7B). This result contrasted with that observed in wild type

animals, where flies bearing the heaviest weights were nevertheless

able to maintain a normal step period due to both an increase in

stance duration and a decrease in swing duration (Figure 4E, F).

nan flies were unable to make this compensatory decrease in swing

duration. Moreover, step length and swing speed were no different

between control and nan mutants bearing intermediate weights

(Figure S8C, D). Animals carrying intermediate weights displayed

less jitter in their stance phases 2 hours after the loading procedure

(Figure 6A). However, this effect was not visible in a nan mutant

background (Figure 7C), suggesting that this sensory organ can

influence motor output allowing stabilization during weight

bearing, consistent with the ability of these afferents to synapse

Figure 6. Stance linearity, interleg coordination parameters and summary of kinematic effects under different load conditions. (A–
D) Box plots represent the median as the middle line, with the lower and upper edges of the boxes representing the 25% and 75% quartiles,
respectively; the whiskers represent the range of the full data set, excluding outliers. Circles indicate outliers. Statistical significance was determined
using 2-way-ANOVA with post-hoc t-tests, where *p,0.05; **p,0.01; ***p,0.001. Statistically significant increases or decreases are indicated in red
and blue, respectively. (A) Stance Linearity Index. Flies bearing intermediate weights show less wobble during stance phases compared to controls at
2 hours, while flies bearing the heaviest loads display more wobble at all time points. (B) Tripod Index. Flies bearing 2.026weights show significantly
reduced tripod index at all three time points. (C) Non-canonical Index is markedly increased for flies bearing 2.026weights. (D) Full Stance Index is
increased for 2.026bearing flies at all time points. (E) Summary of kinematic affects due to load bearing. For simplicity, only the step cycle of the right
foreleg is represented. Dashed green line represents the swing phase from PEP to AEP. Waved red line represents stance traces. Solid triangle
represents the tripod conformation formed by RF, LM and RH. Dashed triangle represents the immediately subsequent tripod conformation. Purple
dashed line represents the transition between the two tripod conformations. Blue points represent the qualitative effects transiently observed for
animals carrying 1.146 or lighter weights, while brown points represent the effects observed for walking animals carrying 2.026weights.
doi:10.1371/journal.pone.0109204.g006
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directly onto motor neurons [55,56]. Interleg coordination was

also affected in the nanmutant leading to a significant reduction of

tripod conformations for weight bearing flies at both time points

(Figure 7D). While tetrapod configurations seem to be unchanged

under these conditions (Figure S8E), there is a compensatory

increase in wave and non-canonical configurations (Figure S8F

and 7E). While the increase in wave configuration observed in nan
mutants during weight bearing is only present after 2 hours

(Figure S8F), the increase in non-canonical configuration is present

both after 2 and 24 hours of weight bearing (Figure 7E). These

effects mirror the responses observed when wild type animals

carried heavier loads (e.g. compare Figures 6C with 7E).

Moreover, nan also leads to a significant increase in the transition

time from one tripod configuration to the next one (Figure 7F),

although this effect is only observed 2 hours after the weights are

added. Overall, our results suggest that sensory input, in particular

mediated by the chordotonal organ, is used to modulate kinematic

parameters in response to increases in gravitational load.

Discussion

Animals have the remarkable ability to adapt their locomotor

behavior to changes in body weight, load and walking orientation.

In disorders where motor ability is impaired like Parkinson’s

Figure 7. Effects of chordotonal organ deprivation while weight bearing. Box plots represent the median as the middle line, with the lower
and upper edges of the boxes representing the 25% and 75% quartiles, respectively; the whiskers represent the range of the full data set, excluding
outliers. Circles indicate outliers. Statistical significance was determined using 3-way-ANOVA with post-hoc t-tests, where *p,0.05; **p,0.01; ***p,
0.001. Statistically significant increases or decreases are indicated in red and blue, respectively. (A) Stance Duration. Only weighted nan36a flies show
increased stance duration, and this effect occurs independently of time. (B) Step period only increases significantly for weighted nan36a flies in a time-
independent manner. (C) Stance linearity index. Animals carrying intermediate weights display a less wobbly stance phase 2 hours after weight
bearing, this effect is absent in nan36a flies. (D) Tripod index. Sensory deprived nan36a flies display a significant reduction in the use of tripod
configurations during weight bearing. (E) Non-canonical index. nan36a flies weight bearing show an increase in non-canonical configurations in a
time-independent way. (F) Inter-Tripod time. Weight bearing nan36a flies display an increased transition time between tripod configurations. This
effect is only visible after 2 hours of weight bearing.
doi:10.1371/journal.pone.0109204.g007
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disease, a decreased sensitivity of extensor load reflex mechanisms

is observed when compared to healthy individuals. This contrib-

utes to the impaired gait in elderly subjects as well as in

Parkinsonian patients [57]. Here we determined the kinematic

responses upon change in the direction and strength of the

gravitational force in freely walking fruit flies. Previous studies

have highlighted the ability of the stick insect, cockroach, ant and

locust to detect and adapt to changes in walking orientation

[42,43,46,58–61], focusing on a limited set of kinematic param-

eters and mostly on ground force reaction and physiological

features. These studies have shown an altered recruitment of

muscle groups depending on the particular challenges [42,43],

which likely result in distinct kinematic features. In contrast to

these model systems, which rely on claws to support inverted

walking, fruit flies are equipped with adhesive pads that allow

them to easily change their walking orientation under natural and

laboratory conditions [12,13]. These distinct strategies might also

contribute to differences in locomotor behavior.

Our data reveal that fruit flies walking under non-upright

conditions display differences in their gait properties, suggesting

that these responses are the consequence of orientation-specific

neuronal programs suited to specific walking conditions. Interest-

ingly, these responses do not affect the duration of the power

stroke (the stance phase; Figure 1F) but rather target the stride

(step length; Figure 1D) and the duration of the swing phase

(Figure 1E). Moreover, in inverted walking animals this shift in

step length and swing duration lead to a significant increase in

swing speed (Figure 1C), which, as pointed out by Larsen et al.,

may reflect the animal’s choice to maximize leg contact with the

substrate in order to minimize instability [43]. In accordance with

a more controlled approach for locomotion under non-upright

conditions, we observed that under these situations, stance phases

show less wobble (lower stance linearity values) compared to flies

walking in an upright position (Figure 2B). This effect could be the

consequence of a more controlled stance phase in which larger or

more motor units become recruited, leading to muscular co-

contraction of antagonistic muscles. As has been observed in the

locust, this promotes joint stiffness in order to sustain gait stability

and a constant distance from the body to the substrate [42].

However, recruitment of additional motor units would be

expected to result in a more consistent placement and removal

of tarsal contacts during the step cycle, but no difference was

observed in footprint clustering either for AEP or PEP between

upright and non-upright conditions in our experiments (Fig-

ure 2C, D).

We were also able to observe changes in interleg coordination in

response to changes in walking orientation (Figure 3). Modulation

of interleg coordination is used to sustain speed, stability and

energy efficiency [38,39,47–49]. Most noticeably, in our experi-

ments inverted-walking animals displayed a shift from anchoring

on three legs (the tripod gait) to five legs (typical of wave gait).

Similarly, in the stick insect, the canonical tripod and tetrapod

configurations were present in different fractions compared to

‘‘irregular’’ gaits whenever the animals moved across inclined

substrates [61]. Nevertheless, the tripod gait was still preferred in

all conditions, particularly at higher speeds, but with one

important difference: the time taken to transition from one tripod

configuration to the next was significantly increased (Figure 3E, F).

We suggest that changes in interleg configurations allow more time

for gait transitions, thus minimizing the chances of contact loss

with the substrate. These changes in step strategies in non-upright

conditions are done at the expense of speed and possibly energy

consumption, partially explaining the reduced and more restricted

distribution of walking speeds (Figure 1B).

We also examined the kinematic effects to long-term increases

of in gravitational load (Figures 4–7). Although the weight

tolerance displayed by Drosophila is much lower than that

displayed by rhinoceros beetles, which can carry more than 30

times their body mass [15], it is still greater than humans. For

example, an average soldier of 80 kg can carry up to 55 kg in load

(,0.7x body mass), causing extreme strain and affecting gait and

performance [62]. Our experiments tried to address three

questions. First, what are the kinematic responses to an increase

in gravitational load? Second, how do these responses change over

time? And third, are kinematic responses proportional to load

increase or is the response non-linear, reaching a limit of

tolerance? Our experiments clearly show that fruit flies can

tolerate a considerable range of loads with minimal kinematic

consequences. Moreover, some kinematic adjustments change

over time suggesting that flies have the capacity to adapt to

carrying additional weight.

Importantly, we find that for a variety of kinematic parameters,

flies bearing 1.146 or below responded differently from flies

bearing 2.026. For example, when carrying 1.146 their body

weight, flies showed a decrease in speed with gradual recovery

over time, strongly suggesting that flies can physically deal with

such a load (Figure 4B). However, when challenged with heavier

loads such a recovery was not observed. In fact, when carrying

2.026 their weight, most kinematic parameters differed signifi-

cantly from the control group at all time points. Values obtained

for average speed (Figure 4B), footprint clustering (Figure 5D, E)

and stance linearity index (Figure 6A) demonstrate that some-

where between 1.14 and 2.02 their body weight, there exists a

threshold above which flies are much less able to walk in a

coordinated manner. Beyond this weight threshold, physical

constraints prevent the fly’s neuro-muscular system to function

properly. Similar threshold-dependent kinematic and physiological

effects have been seen in human weight lifting, where increases in

spinal load are observed only when boxes above 20 kilograms are

lifted [63].

Our results also highlight some of the ways in which flies

promote stability while carrying weights (major kinematic shifts are

summarized in Figure 6E). These include an increase in swing

speed and a higher duty factor (Figures 4C and S7A) which,

interestingly, were also observed in flies walking upside-down,

suggesting that these may be commonly used solutions to deal with

a variety of challenging situations. Moreover, weight bearing also

promoted tarsal contacts to be positioned further away from the

body (Figure 5A–C) thus leading to an increased area of support

and static stability [48]. Animals carrying extra weight also shifted

their interleg coordination parameters such that during tripod

transition periods all legs were often in contact with the substrate.

In response to carrying 2.026 their body weight, some

kinematic parameters, including average speed (Figure 4B); swing

speed (Figure 4C) and footprint positioning (Figure 5A–C),

remained different from those of control animals, even after one

week. This trend could be the result of physical fatigue.

Interestingly, it was not observed in animals carrying the lighter

and intermediate loads (0.666 and 1.146), which could sustain

their walking speed even after one week of load bearing

(Figure 4B). However, we observed a decrease in the full stance

index after one week for flies bearing the heaviest weight. The fact

that these flies showed a reduction in full stance phase suggests that

they were eventually able to at least partially adapt to the heavy

load. In sum, our observations suggest that these long-term effects

are the result of an adaptive process that is less robust for flies

carrying the heaviest of weights. Motor neurons and CPGs exhibit

neuronal plasticity in order to cope with new challenges. Such an
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adaptive process may be analogous to spinal cord injury models,

where recovery has been suggested to depend on locomotor

training and CPG plasticity [64,65].

Our data also suggest a role for the leg chordotonal organ as a

sensor for gravitational load (Figure 7 and S8). In flies with this

proprioceptor impaired, we observed an increased sensitivity to

lighter loads and an inability to cope with these loads. In addition,

nanchung mutant flies did not survive long-term exposure to

intermediate weights, further supporting the importance of

proprioception in weight bearing (data not shown). The leg

chordotonal organs are highly sensitive to angle variations in the

femur-tibia and tibia-tarsus joints caused by increases in gravita-

tional load which feedback to preserve posture, thus indirectly

reporting gravitation load variation. Similarly to the campaniform

sensilla, the femoral chordotonal organ can also target both motor

neurons and spiking and non-spiking interneurons [55,56],

indicating this proprioceptor can promote reflex responses upon

weight bearing. Work in the stick insect has also shown that the

campaniform sensilla can modify the reflex pathway mediated by

the femoral chordotonal organ, suggesting that these two organs

act cooperatively [66]. Thus, these data suggest the chordotonal

organ can assist the campaniform sensilla to resolve weight

detection. It is also plausible that the femoral chordotonal organ

directly acts as a sensor of body load. Consistent with this idea, the

dendrites of the femoral chordotonal organ are attached to a

connective tissue ligament that inserts into a cuticular apodeme in

the proximal tibia [55,67], detecting forces in the femoral-tibia

joint and making this organ mechanically competent to detect

strains caused by load variations [55,56,66]. Other insect

proprioceptors have been suggested to mediate responses to

weight bearing such as multipolar muscle tension receptors present

in the cockroach, stick insect and locust [67–69]. However, these

structures have not been identified in Drosophila.
In summary, our results underscore the ability of multi-jointed

organisms to respond kinematically to changes in walking

conditions. Such plasticity is dependent on sensory input, which

can directly or indirectly target pattern generators. Moreover,

adaptability may not be immediate (reflex-based) but rather a time

dependent process possibly involving several locomotor centers or

even genetic networks. Future studies should address what

neuronal units and genes are responsible for such adaptability.

Finally, it is worth noting that the strategies and mechanisms

displayed by walking organisms can be implemented in artificial

neuronal networks, which are able to autonomously control

walking machines in a stable, adaptable and energy efficient

fashion [70–72].

Materials and Methods

Fly strains
Wild type (Oregon R) and nan36a flies were reared on standard

cornmeal at 25uC. All flies used in this study were non-virgin

females between 1 and 7 days old. All manipulations were carried

out under cold anesthesia. For the experiments described in

Figures 1–3, at least 12 independent trials were conducted for

each experimental condition, with each trial including 3–5 flies.

On average, ,3 videos per trial were recorded and analyzed, for a

total of at least 23 videos. For the more technically challenging

experiments described in Figures 4–7, $5 flies were examined for

each experimental condition, for a total of at least 20 videos. In

one condition (0.666weight at 1 week), 20 videos were generated

from three independent animals.

fTIR imaging and FlyWalker software
For the walking orientation experiments the fTIR setup was re-

arranged so that the fly could be visualized walking inverted on a

ceiling or vertically (descending or ascending; Figure 1A). For the

load experiments flies were imaged 2 hours, 24 hours, and 1 week

after load attachment. Videos were quantified for kinematics using

the FlyWalker software package. See [39] for details. In addition to

the previously published kinematic parameters, four additional

parameters were quantified:

Wave index. Fraction of frames in a video that display leg

combinations defined by the wave (or metachronal) gait [50].

Full stance index. Fraction of frames in a video in which the

body is moving forward while all six legs are in a stance phase.

Tripod duration. Average duration of a single tripod stance.

Only tripod stances that had at least three consecutive frames with

the same leg combination were considered.

Inter-tripod time. Average time to transition from one

tripod stance to the next tripod stance. Only tripod stances lasting

three or more consecutive frames were considered. In addition,

only videos that contained 20% or more of tripod and 40% or less

tetrapod configurations were considered.

Attachment of body load
1/320 spherical ball bearings were used as body loads.

Aluminum and tungsten carbide ball bearings were obtained from

McMaster-Carr Supply Co. (New Jersey, USA). Brass ball

bearings were obtained from Salem Specialty Ball Co. (Connecti-

cut, USA). Aluminum, tungsten carbide and brass ball bearings

were determined to be about 0.66, 1.14 and 2.02 times the weight

of an individual female fly, respectively. Each fly was considered to

have 1.1460.05 mg (n= 39). Flies were cold anesthetized

throughout the load attachment procedure. Ball bearings were

attached to the fly notum under a dissection microscope using a

UV-curable glue from Loctite. Weight loading took about 30

seconds per fly. Loaded flies were kept on standard cornmeal at

25uC with vials turned horizontally so that they were free to access

the food while minimizing the possibility of falling into the food.

They were allowed 2 hours to recover after load attachment.

Statistical analysis
Each data point comes from a single video. Since many of the

measured gait parameters vary with speed (Swing speed, Step

length, Stance duration, Stance linearity, Footprint clustering and

gait indexes), we analyzed the data for these parameters by

determining the best-fit regression model for the control experi-

ment and then determining the residual values for each

experimental group in relation to this regression model. Data

was then expressed as the difference to the residual-normalized

line. Boxplots represent the median as the middle line, with the

lower and upper edges of the boxes representing the 25% and 75%

quartiles, respectively; the whiskers represent the range of the full

data set, excluding outliers. Outliers are defined as any value that

is 1.5 times the interquartile range below of above the 25% and

75% quartiles, respectively. Statistical differences between exper-

imental groups in Figures 1–3 were determined using Kruskal-

Wallis analysis of variance (ANOVA) followed by Dunn’s post hoc
test (for non-normal distributions) or one-way-ANOVA followed

by Tukey’s post hoc test (for normal distributions). For figures 4–7,

S7 and S8, tests for significance were done using a 2-way or 3-

wayANOVA followed by Tukey’s post-hoc test (GraphPad Prism).
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Supporting Information

Figure S1 Gait parameters by walking orientation. (A–E)
Each column corresponds to a walking orientation compared to

upright controls. Graphical fits are also represented. (A) Swing

speed. (B) Step length. (C) Swing duration. (D) Stance duration. (E)

Duty factor.

(TIF)

Figure S2 Stance linearity and footprint alignment by
walking orientation. Each column corresponds to a walking

orientation compared to upright controls. Graphical fits are also

represented. (A) Stance linearity. (B) Footprint alignment.

(TIF)

Figure S3 Footprint clustering by walking orientation.
Each column corresponds to a walking orientation compared to

upright controls. Graphical fits are also represented. (A–C)

Anterior Extreme Position (AEP) clustering. (D–F) Posterior

Extreme Position (PEP) clustering. (A, D) Forelegs. (B, E) Midlegs.

(C, F) Hindlegs.

(TIF)

Figure S4 Footprint positions relative to the body center
for the different walking orientations. AEP and PEP values

for each leg are represented on the left and right sections of the

plot, respectively. Values are normalized for body size. Line size

denotes standard deviations, while intersection indicates mean

value. (A) Inverted. (B) Ascending. (C) Descending. Statistical

significance was determined using 2-way-ANOVA with Tukey’s

post-hoc tests and post-hoc t-tests, where *p,0.05; **p,0.01;

***p,0.001.

(TIF)

Figure S5 Interleg coordination indexes by walking
orientation. Each column corresponds to a walking orientation

compared to upright controls. (A) Tripod index. (B) Tetrapod

index. (C) Wave index. (D) Non-canonical index.

(TIF)

Figure S6 Inter Tripod time and tripod duration by
walking orientation. Each column corresponds to a walking

orientation compared to upright controls. Graphical fits are also

represented. (A) Inter Tripod time (B) Tripod duration.

(TIF)

Figure S7 (A) Duty factor. (B) Period. (C) Footprint Alignment.

(D) Tetrapod index. (E) Wave Index. (F) Inter-tripod time. Box

plots represent the median as the middle line, with the lower and

upper edges of the boxes representing the 25% and 75% quartiles,

respectively; the whiskers represent the range of the full data set,

excluding outliers. Circles indicate outliers. Statistical significance

was determined using 2-way-ANOVA with post-hoc t-tests, where

*p,0.05; **p,0.01; ***p,0.001. Statistically significant increases

or decreases are indicated in red and blue, respectively.

(TIF)

Figure S8 (A) Average Speed. (B) Swing Duration. (C) Step

Length. (D) Swing Speed. (E) Tetrapod Index. (F) Wave Index.

Box plots represent the median as the middle line, with the lower

and upper edges of the boxes representing the 25% and 75%

quartiles, respectively; the whiskers represent the range of the full

data set, excluding outliers. Circles indicate outliers. Statistical

significance was determined using 3-way-ANOVA with post-hoc t-

tests, where *p,0.05; **p,0.01; ***p,0.001. Statistically signif-

icant increases or decreases are indicated in red and blue,

respectively.

(TIF)

Table S1 Parameter definitions and units used in the
text.

(DOCX)

Video S1 Representative video of a fly carrying a metal
ball bearing.

(AVI)
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