Original Article Identification of Acorus gramineus, A. calamus, and A. tatarinowii using sequence characterized amplified regions (SCAR) primers for monitoring of Acori graminei rhizoma in Korean markets

Jin Ah Ryuk*, Young Seon Kim*, Hye Won Lee, Byoung Seob Ko

KM-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Daejeon 305-811, Korea. *Equal contributors.

Received July 17, 2014; Accepted August 16, 2014; Epub September 15, 2014; Published September 30, 2014

Abstract: Acori Graminei Rhizoma (AGR), widely used in traditional herbal medicine, is composed of the roots of *Acorus gramineus* Soland. The family Acoraceae includes *A. gramineus*, *A. calamus*, and *A. tatarinowii*, among others. We compared genomic DNA sequences of AGR for polymorphisms. The sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA, the *rbcL* region of chloroplast DNA from *A. gramineus*, *A. calamus*, and *A. tatarinowii* were compared. We designed primers specific to the ITS region of *A. calamus* and *A. tatarinowii* (A. cataF4/R4) and the internal primer Araceae Radix (IntAcoF2/R4). Random amplification of polymorphic DNA (RAPD) analysis showed a difference in *A. calamus* using the UBC 681 primer. A specific primer (Aca681-F/R) amplified 138 base pairs of *A. calamus*. The primers designed for this study (A. cataF4/R4, Aca681-F/R, and IntAcoF2/R2) can be used for multiplex PCR to distinguish the three species of *Acorus*. An allelic discrimination assay was conducted using commercially available AGR. We used sequence-characterized amplified region (SCAR) markers to confirm whether AGR purchased at a market was *A. gramineus*. Our study indicated the SCAR markers could be used as molecular evidence to distinguish Araceae Radix.

Keywords: Acori graminei rhizoma, Acorus calamus, Acorus gramineus, Acorus tatarinowii, monitoring, SCAR marker

Introduction

Owing to the recent import liberalization of agricultural products caused by Korea's entry into the World Trade Organization and International Union for the Protection of New Varieties of Plants, it is necessary to differentiate various species of domestic and foreign agricultural products. In particular, it is very difficult to differentiate between similar species of medicinal herbs and their places of origin by morphological observation alone because medicinal herbs are typically dried products.

Acori graminei rhizoma (AGR) originates from the root of *Acorus gramineus* Soland (Araceae) and distributed throughout Korea, China, Japan, Siberia, and Europe [1]. *Acorus gramineus* is a medicinal herb that has been referenced more than 1200 times in "Bojebang", the most comprehensive oriental prescription book [2]. Its root has been prescribed for the treatment of convulsions and stomach aches and as a sedative in oriental medicine. In addition, *Acorus gramineus* is effective against oxidation, to activate suppressive neuroceptors, to show antibacterial activity, and to act against Alzheimer's disease [3].

Acori plants include two species: *A. gramineus* and *A. calamus* L. *A. gramineus* Soland is the original species in Korea (KP), whereas *A. tatarinowii* Schott, which is similar to *A. gramineus*. Soland is the original species in China (CP). The use of *A. calamus* and *A. gramineus* is ambiguous [4]. The aerial and subterranean parts of *A. gramineus*, *A. tatarinowii*, and *A. calamus*, both are medicinal herbs, show similar morphologies. Patients should be sure to use the correct plant. However, more accurate and effective

No.	Locality	Collection Date	Identification results
1	Jeju, Korea	2010.2	A. gramineus
2	Jeonbuk, Korea	2010.2	A. gramineus
3	Jeju, Korea	2010.2	A. gramineus
4	Seoul, Korea	2010.2	A. gramineus
5	Banan, China	2010.2	A. gramineus
6	Guangxi, China	2002.7	A. gramineus
7	Szechuan, China	2010.2	A. calamus
8	Gyeongju, Korea	2010.2	A. calamus
9	Seoul, Korea	2002.9	A. calamus
10	Guangxi, China	2002.9	A. calamus
11	Bonghwa, Korea	2010.2	A. calamus
12	Uiseong, Korea	2002.7	A. calamus
13	Zhejiang, China	2010.2	A. tatarinowii
14	Nanjing, China	2010.7	A. tatarinowii
15	Nanjing, China	2010.7	A. tatarinowii
16	Changsha, China	2010.7	A. tatarinowii

Table 1. List of Acorus specimens used in this study

 Table 2. Amplification and sequencing primers used in this study

Primer name	Direction	Sequence (5' to 3')
ITSp 1	Forward	TACCGATTGAATGRTCCG
ITS 4	Reverse	TCCTCCGCTTATTGATATGC
rbcL-1F	Forward	ATGTCACCACAAACAGAAAC
rbcL-1352R	Reverse	CAGCAACTAGTTCAGGRCTCC

screening methods need to develop before this is feasible.

With recent advances in analytical methods in molecular biology such as PCR and sequence analysis, more accurate and objective methods for classifying medicinal herbs have been developed [5, 6]. Of these, randomly amplified polymorphic DNA (RAPD) has been widely used for accurately identifying plant species [7, 8]. In particular, with the introduction of more accurate and stable sequence-characterized, amplified region (SCAR) markers developed using species-specific amplified products obtained from RAPD analysis [9], studies involving screening of medicinal herbs have been actively conducted both domestically and internationally.

The objective of this study was to analyze the genetic diversity of Korean *Acorus* using RAPD markers and to examine the efficacy of SCAR markers for distinguishing members of the

genus *Acorus* [10, 11]. Monitoring of AGR purchased in Korean markets using genomic DNA markers has not been conducted previously.

Accordingly, our goals were to establish a screening method and monitoring system at the genomic DNA level by developing markers using RAPD analysis to prevent the misuse and mix use of A. gramineus, and to identify its inappropriate use.

Materials and methods

Plant materials

A total 16 *Acorus* samples were used in this study. Six of which were *A. gramineus*, six were *A. calamus*, and four were *A. tatarinowii* (**Table 1**). Materials came from dried roots or purchased from commercial suppliers in Korea and China. These samples were preserved at the Korea Institute of Oriental Medicine.

DNA extraction

Total DNA was extracted from the *Acorus* samples and purified using a Nucleospin® plant II kit (Macherey-Nagel, Düren, Germany), according to

the manufacturer's instructions. DNA was quantified using an ND-1000 spectrophotometer (NanoDrop Tech, Wilmington, DE, USA).

ITS and rbcL sequence analysis

ITS regions were amplified from total DNA by PCR. The ITS region was amplified using the primers ITSp 1 and ITS4 (Table 2) (White et al., 1990). For a 25 µL PCR reaction, 1 µL of genomic DNA (~ 20 ng) was added to 12.5 µL PrimeSTAR HS Premix (Takara, Shiga, Japan) containing 0.63 U PrimeSTAR HS DNA Polymerase, 0.4 mM dNTP mixture, 2 mM Prime-STAR Buffer, and 1 µL forward and reverse primers (10 pM). PCR was performed using a C1000[™] Thermal Cycler (Bio-Rad, Hercules, CA, USA) according to the following program: denaturation was followed by 30 cycles of 10 s at 98°C, 15 s at 50°C with a ramp time of 1°C/s, 1 min at 72°C, and 5 min of final extension at 72°C. The PCR product was purified

Primer sequences						
No.	Sequences (5' to 3')	No.	Sequences (5' to 3')	No.	Sequences (5' to 3')	
UBC-001	CCT GGG CTT C	UBC-315	GGT CTC CTA G	UBC-491	TCC TGT CAA G	
UBC-011	CCC CCC TTT A	UBC-321	ATC TAG GGA C	UBC-495	CTT TCC TTC C	
UBC-021	ACC GGG TTT C	UBC-325	TCT AAG CTC G	UBC-501	CGG ATA TAC C	
UBC-030	CCG GCC TTA G	UBC-331	GCC TAG TCA C	UBC-511	GAA TGG TGA G	
UBC-040	TTA CCT GGG C	UBC-335	TGG ACC ACC C	UBC-521	CCG CCC CAC T	
UBC-051	CTA CCC GTG C	UBC-341	CTG GGG CCG T	UBC-531	GCT CAC TGT T	
UBC-060	TTG GCC GAG C	UBC-345	GCG TGA CCC G	UBC-541	GCC CCT TTA C	
UBC-071	GAG GGC GAG G	UBC-351	CTC CCG GTG G	UBC-551	GGA AGT CCA C	
UBC-080	GTG CTC TAG A	UBC-355	GTA TGG GGC T	UBC-561	CAT AAC GAC C	
UBC-100	ATC GGG TCC G	UBC-361	GCG AGG TGC T	UBC-571	GCG CGG CAC T	
UBC-101	GCG GCT GGA G	UBC-365	TAG ACA GAG G	UBC-581	CCC GTT AAG G	
UBC-111	AGT AGA CGG G	UBC-371	TCT CGA TTG C	UBC-591	TCC CTC GTG G	
UBC-121	ATA CAG GGA G	UBC-376	CAG GAC ATC G	UBC-601	CCG CCC ACT G	
UBC-131	GAA ACA GCG T	UBC-381	ATG AGT CCT G	UBC-611	CCA TCG TAC C	
UBC-141	ATC CTG TTC G	UBC-386	TGT AAG CTC G	UBC-621	GTC TGC GCT A	
UBC-151	GTC GTA GTG T	UBC-391	GCG AAC CTC G	UBC-631	GGC TTA ACC G	
UBC-161	CGT TAT CTC G	UBC-395	TCA CTT GAG G	UBC-641	TGG AAC CAT G	
UBC-171	TGA CCC CTC C	UBC-401	TAG GAC AGT C	UBC-651	TCA TTT CGC C	
UBC-181	ATG ACG ACG G	UBC-405	CTC TCG TGC G	UBC-661	CCT GCT TAC G	
UBC-191	CGA TGG CTT T	UBC-411	GAG GCC CGT T	UBC-671	CAT TAA GGC G	
UBC-201	CTG GGG ATT T	UBC-415	GTT CCA GCA G	UBC-681	CCC CCG GAC T	
UBC-211	GAA GCG CGA T	UBC-421	ACG GCC CAC C	UBC-691	AAA CCA GGC G	
UBC-221	CCC GTC AAT A	UBC-425	CGT CGG GCC T	UBC-701	CCC ACA ACC C	
UBC-231	AGG GAG TTC C	UBC-431	CTG CGG GTC A	UBC-711	CCC TCT CCC T	
UBC-241	GCC CGA CGC G	UBC-435	CTA GTA GGG G	UBC-721	CCC TTC CCT C	
UBC-251	CTT GAC GGG G	UBC-441	CTG CGT TCT T	UBC-731	CCC ACA CCA C	
UBC-261	CTG GCG TGA C	UBC-445	TAG CAG CTT G	UBC-741	CCT CCC TCT C	
UBC-271	GCC ATC AAG A	UBC-451	CTA ATC TCG C	UBC-751	CCC ACC ACA C	
UBC-281	GAG AGT GGA A	UBC-455	AGC AAG CCG G	UBC-761	GAG AGG AGG G	
UBC-291	AGC TGA AGA G	UBC-461	CCC GTA TGT C	UBC-771	CCC TCC TCC C	
UBC-301	CGG TGG CGA A	UBC-471	CCG ACC GGA A	UBC-781	GGG AAG AAG G	
UBC-305	GCT GGT ACC C	UBC-481	GTA ATT GCG C	UBC-791	GTG GGT TGT G	
UBC-311	GGT AAC CGT A	UBC-485	AGA ATA GGG C			

Table 3. List of the sequences of the UBC 10-mer oligonucleotide primers used for RAPD analysis

using a PCR purification kit (LaboPass[™] PCR; Cosmo Genetech, Seoul, Korea), according to the manufacturer's instructions. Cycle sequencing and the sequencing reactions were performed by an external company (Solgent, Daejeon, Korea). All sequences were edited using Chromas (Technelysium, South Brisbane, Australia) and aligned using the ClustalW algorithm of the software MEGA3. All sequence distances were calculated using MEGA3. Additionally, a dendrogram phylogenetic tree was constructed according to Kimura2-parameters.

RAPD analysis

RAPD amplification using 95 primers (**Table 3**) was repeated twice. The amplification was performed according to the protocol previously described by Williams. Briefly, amplification was performed with 1 μ L of genomic DNA (~ 20 ng) in a 20 μ L reaction volume containing 10 μ L 2 × EF-Taq Premix (Solgent) and 2 μ L 10 pM primer (UBC, Canada). PCR was performed using a C1000TM Thermal Cycler (Bio-Rad) under the following conditions: initiation with 5 min of denaturation at 95°C, followed by 35

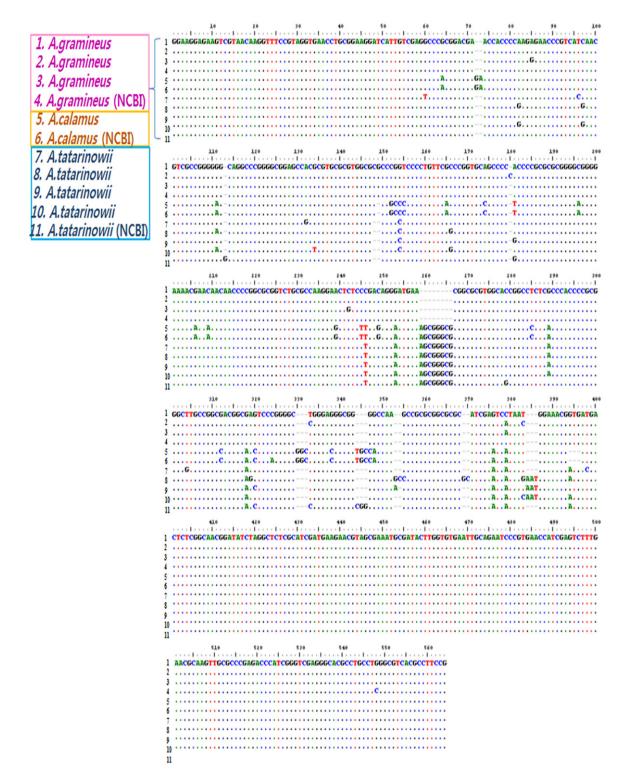


Figure 1. Partial ITS gene sequence alignment for Acorus gramineus, A. calamus, and A. tatarinowii compared with sequences from the NCBI database.

cycles of 40 s at 95°C, 30 s at 38°C with a ramp time of 1°C/s, 1 min at 72°C, and 5 min of final extension at 72°C. PCR products were

analyzed on 1.5% agarose gels at 130 V constant voltage for approximately 40 min, visualized under ultraviolet light and photographed.

	10 20		40 50	60 70 :	80
A. gramineu				TCGAGGCCCGCGGACGA-ACCACC	
A. calamus				TCGAGGCCCACGGACGAGAACCACC	
A. tataring				TCGAGGCCCGCGGACGA-ACCACC	
in tuturino	90 10		120 130		160
				1	
A. gramineu	s CAAGAGAACCCGTCATCAAC	GTCGCCGGGGGGG-CAG	G <mark>CCC</mark> GGGGG <mark>C</mark> GGAG <mark>CCAC</mark> G	CGTGCGCGTGGCGCGCCCGGTCCCC	Т
A. calamus	CAAGAGAACCCGTCATCAAC	GTCGCCGGGGGAG-CAG	G <mark>CCC</mark> GGGG <mark>C</mark> GGAG <mark>CCAC</mark> G	CGTGCGCGTGGCGC-CCGCCCCCC	Т
A. tatarino	wii CGAGAGAACCCGTCATGAAC	GTCGCCGGGGGAG-CAG	GCCCGGGGGCGGAGCCACT	CGTGCGCGTGGCGCCCGCTCCCC	T
	170 18		200 210		240
ā <i>a</i> rminau					
A. gramineu A. calamus				CCCCGGCGCGGGTCTGCGCCAAGGAG	
A. tatarino				CCCCGGCGCGGGTCTGCGCCAAGGAA	
A. tatarino	250 26		280 290		320
A. gramineu				CCCGCGGGGCTTGCCGGCGACGGCGA	
A. calamus	TCTC1 TGAGAGGAATGAAAG	CGGGCGCGGCGCGTGG	CACCGGCCCCTCACCCAC	CCCGCGGGCTTGCCGGCCACGGCAA	C
A. tatarino	WII TCTCC <mark>TGACAGGAATGAAAG</mark>	CGGGCGCGGCGCGTGG	CACCGGCCTCTCACCCAC	CCCGCGGGCTTGCCGGCGACGGCAA	G
	Acata-F4	>			
	330 34		360 370		100
				1	1
A. gramineu	s TCCCGGGGCTGGGAGGG	CGGGGCCAAGC	CGCGCGGCGCGCGCATCG	AGTCCTAATGGAAACGGTGATG	I SA
A. calamus	s TCCCGGGGCCTGGGAGGG TCCCGGGGCGGCTGGGACGG	CGGGGCCAAGC CGGTGCCACCAAGC	CGCGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACGGT-ATG	I BA BA
-	s TCCCGGGGCCTGGGAGGG TCCCGGGGCGGCTGGGACGG	CGGGGCCAAGC CGGTGCCACCAAGC	CGCGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	AGTCCTAATGGAAACGGTGATG	I BA BA
A. calamus	s TCCCGGGGCCTGGGAGGG TCCCGGGGCGGCTGGGACGG	CGGGGCCAAGC CGGTGCCACCAAGC	CGCGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACGGT-ATG	I BA BA
A. calamus	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG 410 42	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGGCCAAGC 0 430	CGCGCGGCGCGCGCATCG CGCGCGGCGCGCGCGCATCG CGCGCGGCGCGCGCGCATCG 440 450	AGTCCTAATGGAAACGGTGATG AATCATAATGGAAACGATG AATCATAACAATGGAAACGATGATG AATCATAACAATGGAAACGATGATG ACata-R4 460 470 4	1 3A 3A 3A 3A
A. calamus A. tatarino	s TCCCGGGGCTGGGAGGG TCCCGGGGGGGGGCTGGGACGG wii TCCCGGGGGCTGGGAGGG 410 42	CGGGGCCAAGC CGGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC	CGCGCGGCGCGCCATCG CGCGCGGCGCGCGCATCG CGCGCGGCGCGCGCATCG 440 450	AGTCCTAAT	 }A }A }A 480
A. calamus A. tatarino A. gramineu	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG 410 42 ctctcGGGAACGGATATCTA	CGGGGCCAAGC CGGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC 0 430 	CGCGCGGCGCGCCATCG CGCGCGGCGCGCGCATCG CGCGCGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	1 3A 3A 3A 480 1 3C
A. calamus A. tatarino A. gramineu A. calamus	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG 410 42 s CTCTCGGCAACGGATATCTA CTCTCGGCAACGGATATCTA	CGGGGCCAAGC CGGGTGCCACCAAGC CGGTGGCCAAGC CGGGGCCAAGC GGCTCTCGCATCGATG GGCTCTCGCATCGATG	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	1 3A 3A 3A 480 1 3C 3C
A. calamus A. tatarino A. gramineu	S TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG 410 42 	CGGGGCCAAGC CGGGTGCCACCAAGC CGGGGGCCAAGC CGGGGCCAAGC GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 440 450 460 4	AGTCCTAAT GGAAACGGTGATG AATCATAAA CAATGGAAACGAACGATGATG AATCATAACAATGGAAACGAACGATGATG C	1 3A 3A 3A 480 1 2C 2C 2C
A. calamus A. tatarino A. gramineu A. calamus	S TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG 410 42 	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCCCCCGCACCGATG GGCCCCCGCACCGATG GGCCCCCGCACCGATG 0 510	440 450 450 400 450 400 450 400 400 500	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	1 3A 3A 3A 480 1 3C 3C 3C 3C 3C 3C
A. calamus A. tatarino A. gramineu A. calamus	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG wii CCCCGGGGCTGGGAGGG s CTCTCGGCAACGGATATCTA CTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCACCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG 0 \$10	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 	AGTCCTAAT GGAAACGGTGATG GATCATAAACAATGGAAACGATGATG CAATCATAACAATGGAAACGATGATG CACata-R4 460 470 4 CGATACTTGGTGTGAATTGCAGAATC GGATACTTGGTGTGGAATTGCAGAATC GATACTTGGTGTGGAATTGCAGAATC 540 550 55	I HA HA HA HA HA HA HA HA HA HA HA HA HA
A. calamus A. tatarino A. gramineu A. calamus A. tatarino	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG wii CCCCGGGGCTGGGAGGG s CTCTCGGCAACGGATATCTA CTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50 	CGGGGCCAAGC CGGGTGCCACCAAGC CGGGTGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCACCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG CGCCCCGCATGGCCCCC	440 450 440 450 AAGAACGTAGCGAAATGC AAGAACGTAGCGAAATGC 520 530 GAGACCCATCGGGTCGAG	AGTCCTAAT GGAAACGGTGATG GATCATAACAATGGAAACGATGATG CAATCATAACAATGGAAACGATGATG CACata-R4 460 470 4 GATACTTGGTGTGAATTGCAGAAT GATACTTGGTGTGAATTGCAGAAT GATACTTGGTGTGAATTGCAGAAT GATACTTGGTGTGAATTGCAGAAT S40 550 5 	1 3A 3A 3A 480 1 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C
A. calamus A. tatarino A. gramineu A. calamus A. tatarino A. gramineu	S TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGACGG wii TCCCGGGGCTGGGAGGG wii CCCCGGGGCTGGGAGGG s CTCTCGGCAACGGATATCTA CTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50 	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATGCGCCCC AACGCAAGTTGCGCCCC	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC AAGAACGTAGCGAAATGC 520 530 	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	480 CC CC CC CC CC CC CC CC CC CC CC CC CC
 A. calamus A. tatarino A. gramineu A. calamus A. tatarino A. gramineu A. calamus A. tatarino 	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGAGGG wii TCCCGGGGCTGGGAGGG wii TCCCGGGGCTGGGAGGG s CTCTCGGCAACGGATATCTA cTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50 	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATGCGCCCC AACGCAAGTTGCGCCCC	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC AAGAACGTAGCGAAATGC 520 530 	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	480 CC CC CC CC CC CC CC CC CC CC CC CC CC
 A. calamus A. tatarino A. gramineu A. calamus A. tatarino A. gramineu A. calamus A. tatarino A. tatarino A. gramineu A. gramineu 	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGAGGG wii TCCCGGGGCTGGGAGGGG wii TCCCGGGGCTGGGAGGGG s CTCTCGGCAACGGATATCTA cTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50 	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATGCGCCCC AACGCAAGTTGCGCCCC	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC AAGAACGTAGCGAAATGC 520 530 	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	480 CC CC CC CC CC CC CC CC CC CC CC CC CC
 A. calamus A. tatarino A. gramineu A. calamus A. tatarino A. gramineu A. calamus A. tatarino 	s TCCCGGGGCTGGGAGGG TCCCGGGGCGGCTGGGAGGG wii TCCCGGGGCTGGGAGGGG wii TCCCGGGGCTGGGAGGGG s CTCTCGGCAACGGATATCTA wii CTCTCGGCAACGGATATCTA 490 50 	CGGGGCCAAGC CGGTGCCACCAAGC CGGTGCCACCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGGGCCAAGC CGGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATCGATG GGCTCTCGCATGCGCCCC AACGCAAGTTGCGCCCC	CGCGCGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG CGCGCGGGCGCGCGCATCG 440 450 AAGAACGTAGCGAAATGC AAGAACGTAGCGAAATGC 520 530 	AGTCCTAAT GGAAACGGTGATG AATCATAAT GGAAACG ATG AATCATAACAATGGAAACGAACGATGATG 	480 CC CC CC CC CC CC CC CC CC CC CC CC CC

Figure 2. Alignment of ITS sequences from *Acorus gramineus*, *A. calamus*, and *A. tatarinowii*, showing the sequence used to design the primer pair.

SCAR analysis

The diagnostic band for *A. calamus* amplified using RAPD primer UBC-681 (5'-CCCCG-GACT-3'), which was approximately 246 bp in length, was purified using a LaboPassTM gel extraction kit (Cosmo Genetech). Cycle sequencing and the sequencing reaction itself were performed by an external company (Solgent). These sequences were used to construct alignments based on SCAR markers, and primers for Aca681-F/R and were designed using Primer Express (Bioneer, Daejeon, Korea). The PCR conditions for each 20 µL reaction were as follows: 1 µL of genomic DNA (~ 20 ng) was added to 10 µL 2 × EF-Taq Premix (Solgent) and 1 µL each of 10-pM primers. PCR was performed using a C1000[™] Thermal Cycler (Bio-Rad), with 5 min of denaturation at 95°C, 30 cycles of 40 s at 95°C, 30 s at 55°C with a ramp time of 1°C/s, 1 min at 72°C, and 5 min of a final extension at 72.

Results

ITS sequence analysis and the design of specific primers for distinguishing A. calamus and A. tatarinowii from A. gramineus

Amplified ITS sequences, 564 bp long, from the 3 species of *Acori* were compared. Compared to *A. gramineus*, the sequence of *A. calamus* showed 27 bp of substitutions, 16 bp of insertions, and 4 bp of deletions, which correlates to

	10	20	30	40	50	60	70	80	90	100
A.gramineus	AAAGCGCTACGTATG									
A.calamus	AMOUTINUTINU				nomoonna					
A.tatarinowii										
	110 .									
A.gramineus	TACGTGATGATTATAT	TGAAAAAGAC	GAAGTCGTGG	GTAT ITTTTT	CACTCAAGATI	GGG <mark>TCTCTAT</mark>	GCCAGGTGTT	TTGCCCGTAG	CTTCCGGTGG)TAT
A.calamus	•••••	•••••	·····					•••••	•••••	• • •
A.tatarinowii	•••••	•••••••	IntAce	o-R2					•••••	
		220			250					300
A.gramineus	TCACGTTTGGCATAT	CCTGCCTTGA	CGAGATCTT	GGGGATGAT	ICTGTACTACA	GTTCGGTGGA	GGAACTTTAG	GACACCCTTG	GGGAAA <mark>t</mark> gCa	ICCT
A.calamus	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	
A.tatarinowii			•••••	•••••	••••••	••••	•••••••••		••••••	••••
	310		330		350	360				
A.gramineus	GGTGCAGTAGCCAAT									
A.calamus	•••••									
A.tatarinowii		•••••	G	•••••	•••••	••••				

Figure 3. Comparison of rbcL sequences from Acorus gramineus, Acorus calamus, and Acorus tatarinowii showing the sequences used to design the internal primer pair (IntAco-F2/R2).

	10				50	60	70
Aca-UBC681	TCCTGAACACTGTCC						
	80	90	100	110	120	130	140
Aca-UBC681	ACTCACAAACACCAAA	AAGAAA <mark>TT</mark> A	AAATATTAGA	ATTGTAGCGT	TTTTGGTCCC	ATTCAACGA	AGTCTA
	150			180			210
Aca-UBC681	CAAGAAAGGAAAAGA						
Act obcoor	Charlona and Charlen of		681-F →		in the second second		
	220			250		270	280
Aca-UBC681	TTGAACGGGGAGGAAG						
	290	300		320	330	340	350
New Marcat							
Aca-UBC681	GAAG <mark>T C</mark> AAGAGAAAAA						
	360			390			420
Aca-UBC681	AGAAAATCAAGAAATT						
					- Aca681-		
	430	440	450	460			490
Aca-UBC681	TCAAAGACATTATTG1	TGAGTATTA	TCAGAATCT1	ITTAAACAGGG	AAACTGGTCT	CCCAGTTCC	TCAAA T
	500			530			
Aca-UBC681	GCATTTCCACTCCCAG						
ACG-OBCOOL			ACIGAMAAI	AIAGCCIICI	IGCATIGCAG	GOGAT GAGA	IICGCI
	570	580					
Aca-UBC681	CCACAATGTTTAGCAT						


Figure 4. Characteristics of specific primers designed for discrimination of *A. calamus*. Sequence of *A. calamus* amplified by the UBC-681 RAPD primer and the *A. calamus*-specific RAPD amplicon (Aca681-F/R).

92% (517 bp/564 bp) homology. Additionally, 15 bp of substitutions, 15 bp of insertions, and

2 bp of deletions were found in *A. tatarinowii*, correlating with 94% (532 bp/564 bp) homolo-

Study		
Primer name	Direction	Sequence (5' to 3')
Aca681-F	Forward	TTC TGA GGT CCA GGA GCT TCT
Aca681-R	Reverse	TCC GTG TAC GAG CCA TCA
Acata-F4	Forward	TGA CAG GAA TGA AAG CGG
Acata-R4	Reverse	CAT CGT TTC CAT TCT TAT GAT TC
IntAco-F2	Forward	ACG CCG GTA CAG TAG TAG GTA
IntAco-R2	Reverse	ATA CCA CGA CTT CGG TCT T

Table 4. The sequence of the primers designed in thisstudy

Figure 5. PCR profile using Acata F4/R4 primer designed from the partial ITS gene sequence and Aca681-F/R primer designed form RAPD analysis using the random primer UBC 681 (M: size marker, 1-3: Acorus gramineus, 4-6: A. calamus, 7-9: A. tatarinowii, NTC: No Template Control).

gy (**Figure 1**). Analysis of the phylogenetic tree constructed using ITS sequences showed that *Acori* can be classified into 3 groups: *A. gramineus*, *A. calamus*, and *A. tatarinowii*. *A. gramineus* was shown to be more closely related to *A. tatarinowii* than to *A. calamus* (data not shown).

To distinguish between the 3 species of *Acori*, ITS-specific primers were designed and tested. However, the specific primers proved to be inappropriate for distinguishing between the 3 species because of low reproducibility. Accordingly, a primer recognizing the same locus in both *A. calamus* and *A. tatarinowii* was designed (**Figure 2**). This specific primer was confirmed to be suitable for distinguishing *A. calamus* and *A. tatarinowii* from *A. gramineus*.

Analysis of the rbcL sequence from chloroplast DNA and design of internal primers

Analysis of nucleotide sequences amplified using primers for the rbcL region of chloroplast DNA (cpDNA) showed that the size of the amplified fragment was 523 bp in *A. gramineus*, 437 bp in *A. calamus*, and 380 bp in *A. tatarinowii*. The rbcL region showed no intraspecific nucleotide variation, at the interspecific level, the sequences shared 99% homology, with a 1 bp variation. Thus, the rbcL region of cpDNA was observed to be highly homologous between species, and we designed a pair of primers common to the 3 species of *Acori* based on this region (**Figure 3**).

Development of a pair of specific primers for identifying A. calamus by RAPD analysis

To identify *A. calamus*, a pair of specific primers (Aca681-F/R) was designed based on analysis of the sequencing results from the UBC 681 primer. This primer pair produced a 246 bp amplicon and only recognized A. *calamus* (**Figure 4**). Additionally, a pair of specific primers (Aca681-F/R) was confirmed for all samples.

Multiplex PCR analysis

We developed primers that could be used to simultaneously distinguish between A. gramineus, A. calamus, and A. tatarinowii. Six primers were designed, including A. cata-F4 and A. cata-R4, which amplifies sequences in both A. calamus and A. tatarinowii. Aca681-F and Aca681-R. which amplifies sequence in A. calamus, and IntAco-F2 and IntAco-R2, which simultaneously amplifies sequences in all 3 species (Table 4). When multiplex PCR was conducted using all 6 primers, 246 bp and 153 bp bands were observed in A. calamus, a 153 bp band was observed in A. tatarinowii, and an identical 138 bp band was observed in all 3 species (Figure 5). These results confirmed that the specific primers developed in this study can be used to distinguish between the 3 species of Acori using multiplex PCR. Additionally, optimal PCR conditions were determined.

Monitoring

For monitoring, an allelic discrimination assay was used. This method was also applied to commercially distributed AGR (monitoring no. 1-69) in Korea. A total 52 of monitoring sam-

Monitoring No.	Identification Results	Monitoring No.	Identification Results	Monitoring No.	Identification Results
1	A. gramineus	24	A. tatarinowii	47	A. gramineus
2	A. calamus	25	A. gramineus	48	A. gramineus
3	A. tatarinowii	26	A. gramineus	49	A. gramineus
4	A. gramineus	27	A. gramineus	50	A. gramineus
5	A. gramineus	28	A. gramineus	51	A. tatarinowii
6	A. gramineus	29	A. gramineus	52	A. gramineus
7	A. gramineus	30	A. gramineus	53	A. gramineus
8	A. gramineus	31	A. gramineus	54	A. gramineus
9	A. gramineus	32	A. gramineus	55	A. gramineus
10	A. gramineus	33	A. gramineus	56	A. tatarinowii
11	A. tatarinowii	34	A. gramineus	57	A. gramineus
12	A. gramineus	35	A. gramineus	58	A. calamus
13	A. gramineus	36	A. gramineus	59	A. calamus
14	A. gramineus	37	A. tatarinowii	60	A. calamus
15	A. tatarinowii	38	A. gramineus	61	A. calamus
16	A. gramineus	39	A. gramineus	62	A. gramineus
17	A. gramineus	40	A. gramineus	63	A. calamus
18	A. calamus	41	A. gramineus	64	A. tatarinowii
19	A. gramineus	42	A. gramineus	65	A. gramineus
20	A. gramineus	43	A. gramineus	66	A. gramineus
21	A. gramineus	44	A. gramineus	67	A. tatarinowii
22	A. gramineus	45	A. gramineus	68	A. gramineus
23	A. gramineus	46	A. tatarinowii	69	A. gramineus

Table 5. Monitoring of Acori Graminei Rhizoma purchased from Korean markets

ples clustered with the sequence of *A. gramineus*, 7 monitoring samples clustered with the sequence of *A. calamus*, and 10 monitoring samples clustered with the sequence of *A. tata-rinowii* (**Table 5**). All samples had been sold as *A. gramineus* in the commercial market. These results suggest that our method can be used to identify AGR in the Korean market. The SCAR marker was used to confirm that identification of AGR in the market is possible.

Discussion

Analysis of nuclear ribosomal DNA sequence data showed that the ITS regions of *A. gramineus*, *A. calamus*, and *A. tatarinowii* are 601 bp, 660 bp, and 624 bp long, respectively. When these ITS regions were compared with nucleotide sequences from GenBank (National Center for Biotechnology Information, Bethesda, MD, USA) using a BLAST search, *A. gramineus* was confirmed to share 99% homology (600 bp/601 bp) with NCBI *A. gramineus* DQ008849, with only a single one-bp substitution. No nucleotide sequence variation was observed among the 6 samples of *A. gramineus*. *A. calamus* share 99% homology (550 bp/551 bp) with NCBI *A. calamus* DQ008848, with only a single one-bp substitution. No nucleotide sequence variation was observed among the six samples of *A. calamus*. Samples of *A. tatarinowii* were confirmed to share 95-97% homology (529-536 bp/552 bp) with NCBI *A. tatarinowii* DQ008845. Because each sample showed substitutions and insertions of 16-23 bp in diverse locations, *A. tatarinowii* appears likely to contain a large number of intraspecific nucleotide polymorphisms.

Identifying the origin of medicinal herbs is very important because their origin is relevant to the effects of the herbs. However, nearly all imported medicinal herbs are dried or processed, making it difficult to distinguish between similar species and production regions based on appearance. In this study, we developed specific primers that can be used to distinguish between three species of herbs in the genus *Acorus* using multiplex PCR, along with optimal PCR conditions for their use. These specific primers can be used to identify both dried and fresh plants. Additionally, a survey of samples purchased at markets in Korea using these primers confirmed the incorrect labeling of *A. gramineus* bands and showed that most plants from the Acorus are *A. gramineus* in the Korean market.

Acknowledgements

This research was supported by a grant from The Korea Institute of Oriental Medicine (Grant No. K14080) and a grant (09112KFDA890) from The Korean Food & Drug Administration in 2010.

Disclosure of conflict of interest

None.

Address correspondence to: Byoung Seob Ko, KM-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, 1672 Yuseongdae-Ro, Daejeon 305-811, Korea. Tel: +82-42-868-9542; Fax: +82-42-868-9293; E-mail: bsko@kiom. re.kr

References

- Yoo YK. Effects of Plant Growth Regulators and Several Conditions on Rooting and Shoot Growth in Rhizome Cutting of Acorus gramineus. Korean J Hortic Sci 2009; 27: 560-566.
- [2] Zhu S. Universal Salvation Formulary or Prescriptions for Universal Relief. Pu ji fang 1406.
- [3] Gu BS and Lee DU. Antioxidative effect of the essential oil from the Rhizomes of Acorus gramineus. Kor J Life Sci 2001; 11: 503-508.

- [4] Choi GY, Kim HJ and Ju YS. Study on Internal-External Morphological Analysis in Acori Graminei Rhizoma. Kor J Ori Med 2006; 12: 91-100.
- [5] Kim YH, Kim ES, Ko BS, Uddin MR, Oh SE, Choi GY, Chae SW, Lee HW, Lee JH, Park JY, Lee MY. Internal transcribed spacer-based identification of Bupleurum species used as sources of medicinal herbs. J Med Plants Res 2012; 6: 841-848.
- [6] Ryuk JA, Choi GY, Kim YH, Lee HW, Lee MY, Choi JE, Ko BS. Application of genetic marker and real-time polymerase chain reaction for discrimination between *Forsythia viridissima* and *Forsythia suspensa*. Biol Pharm Bull 2010; 33: 1133-1137.
- [7] Shinde VM, Dhalwal K, Mahadik KR, Joshi KS and Patwardhan BK. RAPD Analysis for Determination of Components in Herbal Medicine. Evid-based Compl Alt 2007; 4: 21-23.
- [8] Katoh K and Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformat 2010; 26: 1899-1900.
- [9] Paran I and Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 1993; 85: 985-993.
- [10] Lee JH, Kim IS, Lee SG, Rim KS, Kim SG and Han TH. Analysis of Genetic Diversity of Korean Accessions of the Genus Acorus Using RAPD Markers and NIR Spectroscopy. Korean J Hortic Sci 2011; 29: 232-239.
- [11] Moon BC, Ji Y, Lee YM, Chun JM, Lee AY, Choo BK, Kim HK. Development of SCAR Markers for the Authentication of Acori Rhizoma Based on the Analysis of RAPD and Multiplex-PCR. Kor J Med Crop Sci 2011; 19: 162-169.