
INTRODUCTION
The G protein-coupled receptors

(GPCRs) chemokine (C-X-C motif) recep-
tor 4 (CXCR4) and atypical chemokine
receptor 3 (ACKR3, formerly known as
RDC1 and CXCR7 [1]) play important
roles during the development of the car-
diovascular system. CXCR4 deficiency
results in cardiac and vascular defects,

whereas animals lacking ACKR3 show
abnormal heart valve development (2–5).
Both receptors share chemokine (C-X-C
motif) ligand 12 (CXCL12, stromal cell-
derived factor-1α) as a common cognate
ligand (1,6,7). CXCR4 fulfills pleiotropic
functions in the immune system and
contributes to various pathophysiologi-
cal processes, such as tissue repair, can-

cer metastases or human immunodefi-
ciency virus infection (2,8,9). Functions
of ACKR3 after birth are less well under-
stood. Whereas ACKR3 was described
initially as a scavenger receptor for
CXCL12, recent evidence suggests that it
is an active cell surface receptor, which
induces G protein independent signaling
(10–12).

CXCR4 and ACKR3 are expressed in
many tissues after birth, including the
heart and vasculature (10,13,14). Infor-
mation on their possible roles in the reg-
ulation of cardiovascular function, how-
ever, is sparse. While interactions
between CXCR4 and β2-adrenergic recep-
tors (ARs) have been described in car-
diomyocytes, the physiological relevance
of this observation remains unclear
(15–17).
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Several lines of evidence, however,
suggest that CXCR4 and ACKR3 may
contribute to the regulation of cardiovas-
cular function in pathological conditions.
Ubiquitin, a noncognate CXCR4 agonist
(1,18), improved hemodynamic stability
in large animal models of endotoxic and
traumatic-hemorrhagic shock, while
blockade of CXCR4 with the selective 
antagonist AMD3100 (1,1′-[1,4-
phenylenebis(methylene)]bis-1,4,8,11-
tetraazacyclotetra-decane octahydrochlo-
ride, generic name: plerixafor) impaired
hemodynamic stability (19–21). Further-
more, AMD3100 decreased chronic hy-
poxia-induced pulmonary hypertension
and the selective CXCR4 antagonist
AMD3465 (N-[(4-[1,4,8,11-tetraazacy-
clotetradec-1-ylmethyl]phenyl)methyl]-2-
pyridinemethanamine hexahydrobro-
mide), which has a several-fold higher
affinity for CXCR4 than AMD3100 (22),
attenuated mineralocorticoid excess-in-
duced hypertension in mice and rats
(23,24). CCX771, an ACKR3 ligand (25),
also reduced chronic hypoxia-induced
pulmonary hypertension in a mouse
model (26). The mechanisms underlying
these cardiovascular effects of the
CXCR4 and ACKR3 modulators, how-
ever, remain to be determined. Because a
better understanding of the roles of
CXCR4 and ACKR3 in cardiovascular
physiology and pathology may identify
new approaches to control hemodynam-
ics and blood pressure, it was the aim the
present study to assess how pharmaco-
logical modulation of CXCR4 and
ACKR3 regulate cardiovascular function.
Thus, we studied the effects of a panel of
natural and synthetic CXCR4 and
ACKR3 ligands on cardiovascular func-
tion in rats in vivo and on vascular reac-
tivity of isolated mesenteric rat vessels in
pressure myography experiments.

MATERIALS AND METHODS

Proteins and Reagents
Ubiquitin, anti-ACKR3 (CXCR7) 11G8

and IgG1 isotype control were purchased
from R&D Systems, Minneapolis, MN,
USA. TC14012 was from Tocris Bio-

science, Minneapolis, MN, USA. Phenyle-
phrine, endothelin-1 and AMD3100 were
from Sigma-Aldrich, St. Louis, MO, USA.
CCX771 and CCX704 (inactive analogue
of CCX771) were kindly provided by
Mark Penfold, ChemoCentryx, Mountain
View, CA, USA. CXCL12 was produced
as described previously (27).

Human CXCL11 was cloned into pre-
viously described pQE30 vectors that in-
corporate an N-terminal His6 and Saccha-
romyces cervisiae small ubiquitin-related
modifier (SUMO) protein (Smt3) fusion
tag (28–30) to be used for purification.
The final, purified CXCL11 construct has
a native N-terminal sequence vital for
proper function. All expression vector in-
serts have been verified by DNA sequenc-
ing. His6Smt-CXCL11 vectors were trans-
formed into E. coli strain BL21 (pREP4).
Cells were then grown at 37°C in Terrific
Broth medium. His6Smt-CXCL11 produc-
tion was induced with 1 mmol/L iso-
propyl β-D-1-thiogalactopyranoside per
liter upon reaching OD600nm of 0.6. After
5 h of incubation at 37°C cells were pel-
leted at 5,000g and then stored at –80°C
until further processing. Cell pellets were
resuspended in 20 mL of 50 mmol/L
Na2PO4, 300 mmol/L NaCl, 10 mmol/L
imidazole, 0.2% sodium azide, 1 mmol/L
phenylmethylsulfonyl fluoride and 0.1%
β-mercaptoethanol. Resuspended pellets
were then lysed via three passages
through a French press. Cell lysates were
clarified by centrifugation at 15,000g. The
supernatant was loaded onto 5 mL of 
Ni-NTA resin. After 30 min, the column
was washed with 2 × 10 mL of buffer 
AD (6 mol/L guanidinium chloride, 
50 mmol/L Na2PO4 [pH 8.0], 300 mmol/L
NaCl, 10 mmol/L imidazole, 0.2%
sodium azide). The insoluble inclusion
body pellet was dissolved in 20 mL
buffer AD and loaded onto the equili-
brated resin. After 1 h, the column was
washed with 4 × 10 mL of buffer AD
plus 0.1% β-mercaptoethanol followed
by elution with 6 mol/L guanidinium
chloride, 50 mmol/L Na2PO4 [pH 7.4],
300 mmol/L NaCl, 500 mmol/L imida-
zole, 0.2% sodium azide, and 0.1% 
β-mercaptoethanol. The eluate was

pooled and refolded via infinite dilution
into a 100-mmol/L Tris (pH 8.0), 
10 mmol/L cysteine and 0.5 mmol/L
cystine solution. After refolding
overnight, the solution was concentrated
by ultrafiltration (molecular weight cut-
off [MWCO] 10 kDa), and the tag was
cleaved through incubation with 500 μg
of Ulp1 protease supplemented with
10 mmol/L cysteine at 30°C for 12 h. The
His6Smt was separated from the protein
through cation- exchange chromatogra-
phy. Samples were loaded onto SP
Sepharose Fast Flow resin (GE Health-
care, Chalfont St Giles, Buckinghamshire,
UK) and washed with 100 mmol/L Tris
(pH 8.0), 50 mmol/L NaCl to remove the 
His6Smt-tag. Protein was then eluted
with a buffer containing 100 mmol/L
Tris (pH 8.0) and 2 mol/L NaCl. Finally,
samples were purified using reverse-
phase high-performance liquid chro-
matography with a 30 min gradient
from 30% to 60% acetonitrile in aqueous
0.1% trifluoroacetic acid. CXCL11 was
frozen, lyophilized and stored at –20°C.
Purification of CXCL11 was verified by
sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE), matrix-
assisted laser desorption/ionization
time-of-flight (MALDI-TOF) spec-
troscopy, and nuclear magnetic reso-
nance (NMR) spectroscopy.

All reagents used in pressure myogra-
phy experiments and in in vivo studies
were tested for endotoxin contamination
utilizing the ToxinSensor Chromogenic
LAL Endotoxin Assay Kit (GenScript, Pis-
cataway Township, NJ, USA), as de-
scribed (21). The endotoxin concentra-
tions in all solutions were less than
0.05 EU/mL, which would be suitable for
parenteral use in humans (31 [Bacterial
Endotoxins/Pyrogens]).

Animals
All procedures were performed ac-

cording to the National Institutes of
Health guidelines for using laboratory
animals (32) and were approved by the
Institutional Animal Care and Use Com-
mittee of Loyola University Chicago and
the US Army Medical Research and
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 Materiel Command Animal Care and
Use Review Office. Male Lewis rats (300
to 350 g) were purchased from Harlan
(Indianapolis, IN, USA).

Pressure Myography
Pressure myography was performed as

described in detail previously (33–36). In
brief, animals were euthanized by car-
diac extirpation under 4% isoflurane
anesthesia. The mesentery was immedi-
ately removed, placed in 145 mmol/L
NaCl, 4.7 mmol/L KCl, 1.2 mmol/L
NaH2PO4, 1.2 mmol/L MgSO4, 
2 mmol/L CaCl2, 2 mmol/L pyruvic
acid, 0.02 mmol/L EDTA, 3 mmol/L 
3-(N-morpholino)propanesulfonic acid
(MOPS), and 5 mmol/L D-glucose with
1% BSA, pH 7.4 at 0°C, with the osmolar-
ity adjusted to 300 ± 1 mOsm/L with 
D-glucose. Third or fourth order mesen-
teric vessels were then dissected free
from the mesentery, mounted onto two
glass cannulae with 11-0 sutures and
pressurized as required in a DMT 110P
Pressure Myograph System (DMT-USA
Inc., Ann Arbor, MI, USA). The intralumi-
nal solution contained 145 mmol/L NaCl,
4.7 mmol/L KCl, 1.2 mmol/L NaH2PO4,
1.2 mmol/L MgSO4, 2 mmol/L CaCl2, 
2 mmol/L pyruvic acid, 0.02 mmol/L
EDTA, 3 mmol/L MOPS, 5 mmol/L
D-glucose and 1% BSA, pH 7.4, osmolar-
ity adjusted to 300 ± 1 mOsm/L with 
D-glucose. The vessel bath solution con-
tained the same solution without BSA.
The inner diameter (i.d.) of the pressur-
ized vessel was then continuously mea-
sured and recorded via digital video-
edge detection. For each condition or
drug treatment, the vessel was observed
for at least 15 min or until the inner di-
ameter remained stable. Mechanical en-
dothelial denudation was performed in
mesenteric arteries by rubbing the arte-
rial lumen with a human hair, followed
by air insufflation and washing the
lumen with normal saline to remove the
endothelium, as described (34).

Measurement of Sarcomere Length
Adult rat (Sprague Dawley) left ven-

tricular cardiomyocytes, isolated using a

standardized enzymatic dispersion tech-
nique (37), were kindly provided by X Ji
and S Sadayappan, Loyola University
Chicago. Left ventricular cardiomyocytes
were superfused in 141.4 mmol/L NaCl,
4 mmol/L KCl, 0.33 mmol/L NaH2PO4, 1
mmol/L MgCl2, 10 mmol/L HEPES, 5.5
mmol/L glucose, 1.8 mmol/L CaCl2 and
14.5 mmol/L mannitol, pH 7.4, field-
stimulated (20 V, 2 Hz, 6 ms pulse dura-
tion) and changes in sarcomere length
during contractions after addition of ve-
hicle or various concentrations of
CXCR4/ACKR3 ligands (1 nmol/L to
10 μmol/L) measured using a video-
 sarcomere detection system (IonOptix
Corp), as described (38,39). Measure-
ments of 60 steady state contractions
were averaged for each condition. All ex-
periments were carried out at 36 ± 1°C.

Light Microscopy
Arteries with and without mechanical

endothelial denudation were fixed in
10% formalin and embedded in paraffin.
Sections were stained with hematoxylin
and eosin (H&E). Slides were examined
under light microscopy (magnification
40×, 100×, 200×, 400×), as described (40).

In Vivo Experiments
Animals were anesthetized with

100 mg/kg ketamine and 10 mg/kg xy-
lazine intraperitoneally (IP). This dose al-
lowed the animals to be deeply sedated
but able to breathe spontaneously
throughout the experiment. After a mid-
line laparotomy, the aorta was instru-
mented with a 22-gauge angiocatheter for
monitoring of arterial blood pressure,
blood withdrawal and administration of
the CXCR4/7 modulators. The abdomen
was then closed with monofilament su-
ture. Core body temperature was main-
tained using warming lamps. For left
ventricular pressure-volume (PV) loop
analyses, animals were instrumented
with a 1.9 F PV catheter (FTS-1912B-8018;
Scisense, London, ON, Canada) that was
placed into the right carotid artery and
advanced through the aortic valve into
the left ventricle. Left ventricular function
was then monitored using the Scisense

ADVantage PV System with the iWorx
data acquisition and analysis software.
Left ventricular function indices were de-
termined from 25 to 40 consecutive PV
loops. CXCR4/7 modulators were in-
jected in a total volume of 0.5 mL in 0.9%
NaCl under normal conditions, in a hem-
orrhagic shock model with fluid resusci-
tation and in a lethal hemorrhagic shock
model without fluid resuscitation, as de-
scribed previously (41). In brief, in the
hemorrhage and resuscitation model, ani-
mals were hemorrhaged to a mean arte-
rial blood pressure (MAP) of 30 mmHg
for 30 min. The hemorrhage blood vol-
ume to achieve MAP of 30 mmHg was
similar in all groups (p > 0.05). At t =
30 min, CXCR4/7 modulators or vehicle
(0.9% NaCl) were administered and the
animals were then resuscitated with nor-
mal saline until MAP returned to
70 mmHg. MAP was then maintained at
70 mmHg by continuous fluid adminis-
tration for a total of 45 min, as required.
At the end of the resuscitation period, the
animals were euthanized by rapid exsan-
guination, followed by thoracotomy re-
sulting in bilateral pneumothorax. In the
lethal hemorrhagic shock model, animals
underwent withdrawal of 40% of the
blood volume within 10 min. Blood was
withdrawn at a rate of approximately 
1 mL/min. At t = 15 min, CXCR4/7 mod-
ulators or vehicle were administered.
Thereafter, 2% of the blood volume were
withdrawn every 15 min until death, as
defined by asystole or disappearance of a
pulse pressure. Animals after administra-
tion of CXCR4/7 modulators under nor-
mal conditions were euthanized by
exsanguination and bilateral pneumotho-
rax at the end of the observation period
while being under deep anesthesia.

Data Analyses
Data are described as mean ± SE. Data

were analyzed with Student t-test, one-
way analyses of variance (ANOVA) or
two-way repeated measures (mixed
model) analysis of variance and Bonfer-
roni post hoc tests to correct for multiple
testing, as appropriate. Best-fit values
were compared with the extra sum-of-
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squares F test. Survival was plotted using
the Kaplan-Meier method and survival be-
tween groups was compared with the log-
rank test. All data were analyzed using the
GraphPad Prism 5 software (GraphPad
Software Inc., La Jolla, CA, USA). A two-
tailed p < 0.05 was considered significant.

All supplementary materials are available
online at www.molmed.org.

RESULTS

CXCR4 and ACKR3 Ligands Modulate
Hemodynamics and Blood Pressure

To assess whether modulation of
CXCR4 and ACKR3 alters blood pressure

in normal animals, we first studied the
effects of CXCL12, the cognate CXCR4
and ACKR3 agonist (1), ubiquitin, a
noncognate CXCR4 agonist without
affinity for ACKR3 (1,18,42), AMD3100, a
selective CXCR4 antagonist (43), and
TC14012, a CXCR4 antagonist and
ACKR3 agonist (44). As expected
(19,21,45–47), CXCL12, AMD3100 and
ubiquitin did not affect normal blood
pressure or fluid requirements in rats
when administered systemically in a
dose of 350 nmol/kg (Supplementary
Figure 1). Systemic administration of
TC14012, however, resulted in cardiovas-
cular collapse despite fluid resuscitation
(Figures 1A–C). The deleterious effects of

TC14012 on hemodynamics occurred
dose dependently. TC14012 did not affect
sarcomere length of isolated cardiomy-
ocytes (Figures 1D, E) or left ventricular
function in vivo (Figures 1F, G). The he-
modynamic effects, however, severely
compromised survival of normal animals
and therefore precluded further in vivo
testing of TC14012.

Next, we studied the effects of the
CXCR4 and ACKR3 ligands that did not
influence normal blood pressure in a 
hemorrhagic shock model. This model
consisted of 30 min hemorrhage to a
mean arterial blood pressure (MAP) of
30 mmHg followed by crystalloid fluid
resuscitation to a MAP of 70 mmHg.
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Figure 1. The CXCR4 antagonist and ACKR3 agonist TC14012 causes cardiovascular collapse in normal animals. Arrows indicate the time
point of drug injection, n = 5/group. Open squares: vehicle. Yellow circles: 7 nmol/kg. Blue circles: 35 nmol/kg. Red circles: 175 nmol/kg.
Black circles: 350 nmol/kg. (A) Mean arterial blood pressure (MAP, mmHg). (B) Cumulative fluid requirements to maintain hemodynamics
(mL/kg). (C) Kaplan-Meier survival curve (p < 0.001 between groups). (D,E) Left ventricular cardiomyocytes were field-stimulated (20 V, 
2 Hz, 6-ms pulse duration) and changes in sarcomere length during contractions measured using a video-sarcomere detection system.
(D) Representative recording of the sarcomere length upon addition of increasing concentrations of TC14012 (1 nmol/L to 10 μmol/L).
Concentrations of TC14012 were increased every 5 min. (E) Changes in sarcomere length (Δμm) upon addition of CXCR4/ACKR3 ligands.
Measurements of 60 steady state contractions were averaged for each dose; n = 3-5. (F) Increasing doses of TC14012 (5 to 125 nmol/kg)
were injected every 5 min and left ventricular contractility (dP/dtmax/Pmax) and (G) isovolumic relaxation constants (τ[Mirsky]) analyzed 
2 min after injection. Data are expressed as % of control; n = 3 to 5/group.



When the same doses were administered
5 min before blood withdrawal, CXCR4
activation with ubiquitin reduced
whereas coactivation of CXCR4 and
ACKR3 with CXCL12 increased systemic
fluid requirements to maintain MAP at
the resuscitation target of 70 mmHg.
AMD3100 pretreatment did not affect re-

suscitation fluid requirements in this
model (Figures 2A–C). As pretreatment
protocols lack translational relevance, we
then tested the effects of the CXCR4 and
ACKR3 ligands when administered at
the end of the shock period, prior to
fluid resuscitation (Figure 2D–F).
Whereas CXCR4 activation with ubiqui-

tin stabilized hemodynamics, coactiva-
tion of CXCR4 and ACKR3 with CXCL12
and blockade of CXCR4 with AMD3100
reduced hemodynamic stability, as esti-
mated based on the systemic fluid re-
quirements to maintain MAP. The effects
of ubiquitin and AMD3100 were abol-
ished when both CXCR4 ligands were
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Figure 2. CXCR4/ACKR3 ligands modulate hemodynamics during the cardiovascular stress response to hemorrhagic shock and resuscita-
tion. Rats were hemorrhaged to a MAP of 30 mmHg for 30 min, followed by crystalloid resuscitation to maintain MAP of 70 mmHg. *: p <
0.05 versus vehicle. (A–C) CXCR4/ACKR3 ligands (350 nmol/kg) were injected 5 min before hemorrhage. Open circles: vehicle (n = 5);
Red circles: ubiquitin (n = 5); Yellow squares: AMD3100 (n = 7). Blue squares: CXCL12 (n = 3). (A) Blood volume hemorrhaged (mL/kg). (B)
MAP (mmHg). (C) Cumulative fluid requirements to maintain MAP at 70 mmHg (mL/kg). (D–F) CXCR4/ACKR3 ligands (350 nmol/kg) were
injected at the end of the shock period (t = 30 min), prior to fluid resuscitation. Open circles: vehicle (n = 7); Red circles: ubiquitin (n = 7);
Yellow squares: AMD3100 (n = 7). Blue squares: CXCL12 (n = 9). Green diamonds: ubiquitin plus AMD3100 (350 nmol/kg each; n = 6). (D)
Blood volume hemorrhaged (mL/kg). (E) MAP (mmHg). (F) Cumulative fluid requirements to maintain MAP at 70 mmHg (mL/kg). (G) Rep-
resentative left ventricular pressure-volume loops at baseline, during the shock period and 30 min after drug injection and fluid resuscita-
tion. (H) Left ventricular contractility (dP/dtmax/Pmax, n = 3 to 5/group). (I) Isovolumic relaxation constants (τ[Mirsky], n = 3 to 5/group). 



coadministered. As observed for
TC14012, none of the CXCR4/ACKR3
ligands affected sarcomere length of iso-
lated cardiomyocytes (Figure 1E) or left-
ventricular function in vivo (Figures 2G–I).

Because the resuscitation target of a
MAP of 70 mmHg could be achieved in

all animals, we then tested the effects of
the CXCR4/ACKR3 ligands in a shock
model without fluid resuscitation to be
able to assess their direct effects on blood
pressure regulation during the cardiovas-
cular stress response to hemorrhage. In
this fixed volume hemorrhage model,

40% of the blood volume were with-
drawn within 10 min followed by an ad-
ditional 2% blood volume hemorrhage
every 15 min without intervention. The
CXCR4/ACKR3 ligands or vehicle were
administered at t = 15 min. As shown in
Figures 3A–C, median survival time was
41 min with vehicle administration.
CXCR4 activation with ubiquitin stabi-
lized blood pressure and prolonged me-
dian survival time to 129 min (p < 0.001
versus vehicle, hazard ratio [95% confi-
dence interval] 7.5 [2.9–18.8]). AMD3100
and CXCL12, however, reduced blood
pressure and median survival time to 
22 min (p = 0.0045 versus vehicle, hazard
ratio [95% confidence interval] 0.12
[0.03–0.5]) and 18 min (p < 0.001 versus
vehicle, hazard ratio [95% confidence in-
terval] 0.11 [0.03–0.4]), respectively. To
further assess whether the prolonged
survival time after ubiquitin treatment
could provide a therapeutic benefit, we
then evaluated if a resuscitation target of
MAP of 70 mmHg can be achieved when
resuscitation is initiated at a time point
when mortality was 100% in vehicle-
treated animals. As shown in Figures
3D–G, in five out of seven animals with
ubiquitin treatment, blood pressure
could be restored to the resuscitation
endpoint when crystalloid infusion was
started at t = 85 min.

CXCR4 and ACKR3 Agonists Have
Opposing Effects on α1-AR-Mediated
Vasoconstriction

The observation that none of the
CXCR4/ACKR3 ligands affected contrac-
tility of isolated cardiomyocytes or left
ventricular function in vivo suggested
that their effects on blood pressure are
mediated through modulation of vascular
function. Thus, we then utilized pressure
myography to study the effects of various
natural and synthetic CXCR4 and ACKR3
ligands on isolated mesenteric arteries
and veins. The CXCR4/ ACKR3 ligands
did not affect the diameter of arteries in
the absence of vasoconstrictors. Ubiquitin
enhanced vascular reactivity to the selec-
tive α1-AR agonist phenylephrine,
whereas CXCL12 and TC14012 reduced
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Figure 3. CXCR4/ACKR3 ligands regulate blood pressure during the cardiovascular stress
response to hemorrhage. Rats underwent 40% blood volume (BV) hemorrhage followed by
2% BV hemorrhage every 15 min without intervention. CXCR4/ACKR3 ligands (350 nmol/kg)
were injected at t = 15 min (arrow). Open circles: vehicle (n = 19). Yellow squares:
AMD3100 (n = 6). Red circles: ubiquitin (n = 8). Blue squares: CXCL12 (n = 8). (A) Blood vol-
ume (mL/kg) hemorrhaged. (B) MAP (mmHg). (C) Kaplan-Meier survival curve (dashed
line: 50% survival; p < 0.0001 among groups). (D–G) Same hemorrhage model as in A–C.
Animals were treated with 350 nmol/kg ubiquitin at t = 15 min (n = 7). At t = 85 min, crys-
talloid resuscitation to a MAP of 70 mmHg was started. (D) Blood volume (mL/kg) hemor-
rhaged. (E) MAP (mmHg). (F) Resuscitation fluid requirements (mL/kg). (G) Kaplan-Meier
survival curve. For comparison, the line without symbols shows the survival curve from ani-
mals after vehicle treatment (from C).



phenylephrine responsiveness (Figure
4A; p < 0.01 versus groups). AMD3100
did not affect phenylephrine responsive-
ness (see Figure 4A). In these experi-
ments, CXCR4/ ACKR3 ligands were ad-
ministered to the organ bath; more robust
effects of CXCL12 and TC14012 were ob-
served when the CXCR4/ACKR3 modu-
lators were administered intraluminally
(Figure 4B; p < 0.01 versus groups).

When arteries were constricted with the
EC50 concentration of phenylephrine, ad-
dition of ubiquitin enhanced, whereas
CXCL12 and TC14012 antagonized vaso-
constriction in a dose-dependent manner
(Figure 4C).

We next tested whether CXCR4- and
ACKR3-mediated effects of CXCL12 can
be differentiated by blockade of CXCR4
with AMD3100. Consistent with the op-

posing effects of CXCR4 and ACKR3,
blockade of CXCR4 by AMD3100 en-
hanced the antagonistic effects of
CXCL12 (Figures 5A, B) on phenyle-
phrine-induced vasoconstriction. In con-
trast, AMD3100 antagonized the effects
of ubiquitin on phenylephrine-induced
vasoconstriction (Figures 5 A, C).

To further confirm the role of ACKR3,
we then tested chemokine (C-X-C motif)
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Figure 4. (A,B) CXCR4/ACKR3 ligands regulate vasoconstriction upon α1-AR activation. Vasoconstriction was measured as change of the
i.d. in pressure myography experiments. Mesenteric arteries were pressurized to 80 mmHg. *: p < 0.05 versus control (ctrl). Dose response
to phenylephrine in the presence and absence of CXCR4/7 modulators (CXCL12, n = 4, ubiquitin [Ub], n = 5 [10 μmol/L] – 9 [1 μmol/L];
TC14012, n = 9; AMD3100, n = 6; vehicle, n = 15). Phenylephrine and CXCR4/7 modulators were (A) added to the organ bath or (B) ad-
ministered intraluminally. Vasoconstriction is expressed as % of i.d. in the absence of phenylephrine. (C) Mesenteric arteries were con-
stricted with the EC50 dose of phenylephrine (1 μmol/L) and the effects of the CXCR4/7 modulators tested. The effects of the CXCR4/7
modulators (n = 4 to 7) are expressed as % change of i.d.



ligand 11 (CXCL11, interferon-inducible
T cell α chemoattractant), an alternative
natural agonist of ACKR3 that does not
bind or activate CXCR4 (48), and
CCX771, a small molecule ACKR3 lig-
and, which has often been described as
an antagonist at ACKR3 (25). As shown
in Figure 6A, CXCL11 also antagonized
phenylephrine-induced vasoconstriction
and its effects could be antagonized 
with 100 nmol/L CCX771. CCX771 
(100 nmol/L) also antagonized the ef-
fects CXCL12 (see Figure 4B) and
TC14012 (Figure 4C) on phenylephrine-
induced vasoconstriction. CCX704, an in-
active analogue of CCX771, did not affect
the effects of the ACKR3 agonists (Fig-
ures 6A–C). At higher concentrations 
(1 to 2 μmol/L), however, CCX771 alone
antagonized vasoconstriction in response
to phenylephrine (Figure 6D), whereas
CCX704 was inactive. The specific
ACKR3 antibody 11G8 (49) also antago-
nized phenylephrine-induced vasocon-
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Figure 5. Blockade of CXCR4 with AMD3100 antagonizes effects of ubiquitin (Ub) and en-
hances effects of CXCL12 on phenylephrine-induced vasoconstriction. Mesenteric arter-
ies were constricted with the EC50 dose of phenylephrine (1 μmol/L) and the effects of the
CXCR4/7 modulators tested. The effects of the CXCR4/7 modulators are expressed as %
change of i.d. *: p < 0.05 versus control (ctrl). (A) Dose response of ubiquitin and CXCL12
in the presence and absence of 50 μmol/L AMD3100; n = 4. (B,C) Addition of AMD3100
(50 μmol/L) (B) enhances CXCL12-mediated effects and (C) antagonizes ubiquitin-
 mediated effects; n = 4.

Figure 6. ACKR3 ligands function as agonists with varying efficacy. Mesenteric arteries were constricted with the EC50 dose of phenyle-
phrine (1 μmol/L) and the effects of the CXCR4/7 modulators tested. The effects of the CXCR4/7 modulators are expressed as % change
of i.d. *: p < 0.05 versus control (ctrl). (A–C) Dose-dependent effects of (A) CXCL11, (B) CXCL12 and (C)TC14012 in the presence and ab-
sence of 100 nmol/L of the ACKR3 ligand CCX771 and CCX704 (control, inactive analogue of CCX771); n = 3 to 6. (D) Dose-dependent
effects of the ACKR3 ligand CXC771; CCX704 was used as a control; n = 3. (E) Dose-dependent effects of the ACKR3 antibody 11G8;
IgG1 was used as a control. n = 4. Ub: ubiquitin. 



striction, whereas a nonspecific IgG1 iso-
type control antibody was inactive (Fig-
ure 6E). The receptor selectivity of the
various CXCR4 and ACKR3 ligands and
their effects on phenylephrine-induced
vasoconstriction are summarized in
Table 1.

Effects of CXCR4 and ACKR3 Ligands
Are Specific and Independent of the
Vascular Endothelium

To assess the specificity of the ob-
served effects of the CXCR4 and ACKR3
ligands on vascular reactivity, we next
tested their effects on vasoconstriction
induced via activation of voltage-
 operated Ca2+ channels by KCl or vaso-
constriction mediated through the
GPCR endothelin receptor. None of the
CXCR4 and ACKR3 agonists, however,
influenced vasoconstriction induced 
by KCl (Figure 7A) or endothelin-1 (Fig-
ure 7B).

To further characterize the vascular ef-
fects of the CXCR4 and ACKR3 ligands,
we then tested the influence of the trans-
mural vascular pressure in pressure
myography experiments. The CXCR4
and ACKR3 ligands did not affect the di-
ameter of arteries in the absence of vaso-
constrictors at various transmural pres-
sures (Figure 7C). As observed for
arteries pressurized to 80 mmHg, the
CXCR4/ACKR3 ligands also modulated
phenylephrine-induced vasoconstriction
in arteries maintained at a low trans-
mural pressure (30 mmHg, Figure 7D)

the CXCR4/ACKR3 agonists on phenyle-
phrine-mediated vasoconstriction in
mesenteric arteries after mechanical en-
dothelial denudation (Figure 8A). En-
dothelial denudation abolished the ef-
fects of the endothelium-dependent
vasodilator carbachol on phenylephrine-
induced vasoconstriction, but did not
significantly influence the modulatory
actions of TC14012 (Figure 8B), CXCL12
(Figure 8C) and ubiquitin (Figure 8D).

DISCUSSION
In the present study, we demonstrate

that pharmacological modulation of
CXCR4 and ACKR3 in vivo influences
blood pressure in normal and pathologi-
cal conditions. Furthermore, our findings
suggest that activation of CXCR4 and
ACKR3 have opposing effects on α1-AR-
mediated vasoconstriction of isolated
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Table 1. Receptor selectivity of CXCR4 and ACKR3 ligands and their effects on 
α1-AR-mediated vasoconstriction of isolated mesenteric arteries.

Receptor selectivity Effect on vascular
Ligand CXCR4 ACKR3 References α1-AR reactivity

CXCL11 NB + (1,48) ↓
CXCL12 + + (1,6,7) ↓
TC14012 – + (44) ↓
11G8 NB + (49) ↓
CCX771 NB + (25) ↓
AMD3100 – (+) (1,67,68) ~
Ubiquitin + NB (1,18,42) ↑

NB, not binding; +, agonist; (+),weak allosteric agonist; –, antagonist; ↓, antagonizes
phenylephrine-induced vasoconstriction; ↑, enhances phenylephrine-induced
vasoconstriction; ~, no effect on phenylephrine-induced vasoconstriction.

Figure 7. Effects of CXCR4/ACKR3 ligands on vascular α1-AR reactivity are specific. Vaso-
constriction was measured as change of the i.d. in pressure myography experiments. *: p <
0.05 versus control. (A,B) Arteries were constricted to 40% to 60% of i.d. with (A) 60 mmol/L
KCl (n = 3 to 4), (B) 800 pmol/L endothelin-1 (n = 3 to 6) and the effects of CXCR4/ACKR3
ligands (10 μmol/L) tested. The effects of the CXCR4/ACKR3 modulators are expressed as
% change of i.d. (C) CXCR4/ACKR3 modulators do not affect the i.d. of mesenteric arteries
at various transmural pressures; n = 4 to 8. Arrow: Addition of CXCR4/ACKR3 modulators, 
10 μmol/L . (D) Mesenteric arteries pressurized to 30 mmHg were constricted with the EC50
dose of phenylephrine (1 μmol/L) and the effects of the CXCR4/ACKR3 modulators 
(10 μmol/L) tested; n = 3. (E) Mesenteric veins pressurized to 12 mmHg were constricted
with the EC50 dose of phenylephrine (1 μmol/L) and the effects of the CXCR4/ACKR3
modulators (10 μmol/L) tested; n = 3 to 6.

and in mesenteric veins pressurized to
12 mmHg (Figure 7E).

Because the endothelium plays impor-
tant roles in the regulation of vascular
function, we then evaluated the effects of



vessels, which are independent of the en-
dothelium. While CXCR4 activation en-
hances vascular α 1-AR responsiveness,
ACKR3 activation results in opposite ef-
fects. In combination with the observa-
tion that the CXCR4 and ACKR3 ligands
did not directly affect cardiac function,
our findings imply that CXCR4 and
ACKR3 regulate cardiovascular function
through their modulatory actions on vas-
cular smooth muscle reactivity.

The observed in vivo actions of
TC14012 indicate that simultaneous
blockade of CXCR4 and activation of
ACKR3 causes cardiovascular collapse in
normal animals. As the natural CXCR4
and ACKR3 ligands CXCL11, CXCL12
and ubiquitin are constitutively ex-
pressed in normal plasma (50–52), these
data imply that CXCR4 and ACKR3 may
act as an intricate control system that

regulates vascular function and blood
pressure under normal conditions.

The findings that blockade of CXCR4
with AMD3100 and coactivation of
CXCR4 and ACKR3 with CXCL12 im-
paired blood pressure during the cardio-
vascular stress response to hemorrhage,
whereas selective CXCR4 activation with
ubiquitin-stabilized blood pressure is
consistent with the effects of CXCR4 and
ACKR3 activation on vascular phenyle-
phrine responsiveness ex vivo. In combi-
nation with previously described effects
of ubiquitin in various shock models
(19–21,45), these data indicate that selec-
tive CXCR4 activation stabilizes blood
pressure during the cardiovascular stress
response to hemorrhagic shock, provid-
ing an extended therapeutic window
during which blood pressure can be re-
stored with fluid resuscitation.

Ubiquitin is known to be cosecreted
with catecholamines from chromaffin
cells of the adrenal gland (53). In connec-
tion with the findings from the present
study, these data point toward a physio-
logical linkage between α1-AR and
CXCR4 activation during the fight-or-
flight response.

The observation that AMD3100 did not
affect blood pressure and fluid require-
ments when administered as a pretreat-
ment in the hemorrhagic shock model
can be explained by its pharmacological
properties. After systemic administra-
tion, the volume of distribution of
AMD3100 is small, its half-life in rats is
approximately 60 min and binding of
AMD3100 to CXCR4, unlike binding of
CXCL12 and ubiquitin to CXCR4, does
not result in ligand-induced receptor in-
ternalization (14,43,54). Thus, in our ex-
periments, withdrawal of blood removed
large proportions of AMD3100 from the
systemic circulation and subsequent
fluid resuscitation further reduced the re-
maining drug concentrations. In addi-
tion, the finding that AMD3100 did not
affect phenylephrine-induced vasocon-
striction of isolated arteries is consistent
with the absence of natural agonists in
this model system.

The biological properties that we ob-
served for CXCL12 are in agreement with
the much higher affinity of CXCL12 for
ACKR3, as compared with its affinity for
CXCR4 (7). Furthermore, pharmacologi-
cal blockade of CXCR4 with AMD3100
and partial blockade of ACKR3 with
CCX771 permitted differentiation of the
opposing effects of CXCR4 and ACKR3
upon activation with CXCL12. The find-
ing that AMD3100 was able to block the
effects of ubiquitin is in agreement with
the known receptor selectivity of ubiqui-
tin (42) and the observed effects after in
vivo coadministration of both CXCR4 lig-
ands in the present study.

CXCL11 is known to be highly in-
duced following endotoxin and inter-
feron exposure (55). Therefore, it appears
likely that CXCL11 may contribute to the
development of vasodilatory shock and
catecholamine refractoriness, which is
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Figure 8. Effects of CXCR4/ACKR3 ligands on vascular α1-AR reactivity do not depend on
the endothelium. (A) Histology (H&E staining) of normal mesenteric arteries (left) and arter-
ies after mechanical endothelial denudation (right). Arrows indicate endothelium. Scale
bars: 100 μm. (B–D) Mesenteric arteries with (+) and without (–) endothelium were first con-
stricted with the EC50 dose of phenylephrine (1 μmol/L), followed by addition of the en-
dothelium-dependent vasodilator carbachol (10 μmol/L). Following washout of phenyle-
phrine and carbachol, arteries were reexposed to 1 μmol/L phenylephrine and the effects
of (B) TC14012, (C) CXCL12 and (D) ubiquitin (Ub) tested; 10 μmol/L each, n = 3. The effects
of the CXCR4/ACKR3 modulators are expressed as % change of i.d.



characteristic for endotoxic and septic
shock.

All natural, synthetic and antibody
ACKR3 ligands that we tested attenu-
ated phenylephrine responsiveness of
arteries, which indicates that these lig-
ands function as receptor agonists with
varying efficacy. Nevertheless, the syn-
thetic ACKR3 ligand CCX771 acted as a
low efficacy agonist that partially antag-
onized the effects of the endogenous lig-
ands CXCL11 and CXCL12. A more de-
tailed pharmacological exploration of
the role of ACKR3 in the regulation of
cardiovascular function is currently not
possible because ACKR3 ligands with-
out intrinsic activity are not available.
While genetic models may be useful to
dissect the mechanistic basis for our ob-
servations, such studies, however,
would lack translational relevance and
would not provide preclinical evidence
for possible new therapeutic opportuni-
ties. Thus, the development of ACKR3
antagonists without intrinsic activity
will be important to provide a more de-
tailed evaluation of the role of ACKR3 as
a therapeutic target.

The finding that the CXCR4 and
ACKR3 ligands did not affect the diame-
ter of arteries in the absence of vasocon-
strictors at various transmural pressures
suggests that they do not affect myo-
genic tone. The observation that
 endothelin-1 or KCl-induced vasocon-
striction was not affected by CXCR4/
ACKR3 ligands documents specificity for
α1-AR-mediated functions. As CXCR4
and ACKR3 ligands also modulated vas-
cular reactivity at low transmural pres-
sures and in mesenteric veins, these data
indicate that CXCR4 and ACKR3 ligands
modulate effects of α1-AR on vascular re-
sistance and capacitance over a wide
range of vascular  pressures.

CONCLUSION
Our findings identify CXCR4 and

ACKR3 as regulators of vascular α1-AR
function and provide evidence for a new
physiological role of chemokines beyond
their known biological properties, the
regulation of vascular function. We cur-

rently cannot exclude that CXCR4 or
ACKR3 activation affects α1-AR receptor
expression. Such effects could explain
our observations on phenylephrine reac-
tivity of isolated arteries when arteries
were pretreated with CXCR4 and ACKR3
ligands, but are unlikely to account for
the enhancing and antagonizing effects
of the CXCR4 and ACKR3 agonists on
vasoconstriction in response to the EC50

dose of phenylephrine, respectively. Reg-
ulation of GPCR function is complex and
cross-talk between GPCR-signaling path-
ways, whereby activation of one receptor
system positively or negatively affects
the signaling of another signaling recep-
tor system in the same cell, is a well-
 recognized principle that permits fine
tuning of GPCR functions (56–61). Re-
ceptor cross-talk has been attributed to
various molecular mechanisms, such as
interactions between intracellular signal
transduction pathways, receptor transac-
tivation or receptor hetero-oligomeriza-
tion (56–63). The formation of homo-
and/or heteromers between GPCRs is
known to be important for many aspects
of GPCR function (64). α1a-AR and 
α1b-AR have been reported to exist as
homo- and hetero-oligomers, which is
thought to provide a mechanism that
regulates their physiological responses
(65). Interestingly, α1a-AR have recently
been described to colocalize with CXCR2
in the smooth muscle layer of prostate
tissue and to form heteromeric com-
plexes with CXCR2 in a recombinant sys-
tem, resulting in signaling events distinct
from the mono-/homomers (66). Thus, it
appears possible that heteromeric com-
plexes between α1a-AR and CXCR2,
CXCR4, ACKR3 or other chemokine re-
ceptors also exist in vascular smooth
muscle, which may modulate vascular
α1-AR function.

Although the exact molecular events
underlying the regulatory functions of
CXCR4 and ACKR3 on vascular α1-AR
reactivity remain to be determined, our
findings provide initial mechanistic in-
sights, which explain pharmacological
effects of CXCR4 and ACKR3 ligands on
cardiovascular function and point to-

ward CXCR4 and ACKR3 as new thera-
peutic targets to regulate vascular func-
tion and blood pressure. This may enable
development of new classes of drugs for
the treatment of a broad variety of dis-
eases that are associated with impaired
vascular function, such as hypertension,
pulmonary arterial hypertension, va-
sodilatory shock or catecholamine refrac-
toriness in critical illness.
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