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Abstract

Inference of Transcriptional Regulatory Networks (TRNs) provides insight into the mechanisms 

driving biological systems, especially mammalian development and disease. Many techniques 

have been developed for TRN estimation from indirect biochemical measurements. Although 

successful when initially tested in model organisms, these regulatory models often fail when 

applied to data from multicellular organisms where multiple regulation and gene reuse increase 

dramatically. Non-negative matrix factorization techniques were initially introduced to find non-

orthogonal patterns in data, making them ideal techniques for inference in cases of multiple 

regulation. We review these techniques and their application to TRN analysis.
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I. Introduction

Transcriptional Regulatory Networks (TRNs) provide a method for cells to reprogram their 

functions as needed for survival or multicellular interactions. These networks comprise 

transcriptional regulators (or transcription factors, TFs) and their target genes. As one of 

these genes may encode an additional TF, a propagation of primary, secondary, tertiary, etc. 

transcription can occur, with a branching out from the activation of an initial TF to a 

growing set of TFs and targets. Overall, the TFs so induced form the TRN.

Following the advent of microarrays for measurement of global mRNA levels in the 

mid-1990’s, it was realized that time series data gathered during the course of an 

experimental protocol could be used to look at TRNs globally within cellular systems. Early 

success was shown by Hartemink et al and Shmulevich et al in recovering TRNs in yeast 

[1]–[3] and Sabatti et al in bacteria [4], however translation to higher eukaryotes and 

mammalian systems did not prove successful. Unfortunately, it has become routine for 

methods that succeed dramatically within yeast to prove problematic when applied to higher 

organisms in other computational areas as well [5]. For example, prediction of TF targets 

from transcription factor binding sites (TFBS) identified through sequence similarity does 

not predict expression in higher organisms. Similarly, while Chromatin 
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ImmunoPrecipitation on microarray (ChIP-chip) technology can identify all candidate TF 

targets, it has not provided good predictors of gene expression in higher organisms. The 

reasons for this failure likely lie in the differences in gene regulation and genomic 

complexity.

There are three primary factors that complicate TRN prediction in multicellular organisms. 

First, gene reuse in multiple biological processes is dramatically increased in higher 

organisms. This leads to multiple regulation of genes by multiple TFs, which introduces 

mathematical complexity to the determination of the TF responsible for a change in 

expression of a target. Second, many genes are regulated post-transcriptionally, either 

through translational regulation or post-translational modification. For instance, many TFs 

require post-translational modification or cofactor binding to initiate transcription. Third, 

epigenetics, such as silencing by chromatin formation or DNA methylation, play a far larger 

role in multicellular systems than in prokaryotes and yeast. This substantially complicates 

the relationship between TF activity and target expression.

These three complications require new approaches and sometimes new data sources when 

building TRNs. The multiple regulation issue is being addressed through matrix 

factorization methods, which we will focus on in this review. The post-transcriptional 

regulation of genes leads to several issues. Perhaps most critically, it leads to many genes 

not being under transcriptional control, leading to substantial variance in transcript levels for 

these genes independent of protein level changes and functional consequences. This 

suggests a need to incorporate estimates of random variability in expression, which can be 

incorporated into individual matrix factorization techniques. The epigenetic factors 

influencing TFBS site access and transcriptional availability of genes requires techniques 

that limit the strength of priors from TFBS data to insure accurate inference in multicellular 

systems. In addition, integration of data measurements, such as methylation status of TFBS 

elements, can provide additional information to guide TRN estimation from expression data.

In this review, we focus on the development of matrix factorization in the analysis of 

microarray data. We highlight particularly the value of these methods to TRN prediction and 

address the value of including error modeling within the analyses.

II. Matrix Factorization for Expression Data

In order to address problems similar to those arising in multicellular gene expression data, 

new matrix factorization techniques coupled to dimensionality reduction were introduced 

simultaneously by ourselves in Bayesian Decomposition (BD) for spectral imaging [6] and 

by Lee and Seung in Nonnegative Matrix Factorization (NMF) for image processing [7]. 

Both techniques aimed to address the limitations of analytical methods in handling 

inherently positive data where the natural basis vectors to describe the data were non-

orthogonal. The techniques developed to deduce the non-orthogonal basis vectors showed 

particular potential in inferring multiple regulation for TRN inference.
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A. The Universe of Matrix Factorization

The fundamental problem of factoring a matrix to find structure to explain the physical 

world recurs in numerous fields, which has led to the development of similar methods under 

many names. Following the broader history in the development of matrix factorization 

techniques, the first methods that were widely used in microarray studies included the 

standard statistical techniques of Singular Value Decomposition (SVD) and Principal 

Component Analysis (PCA) [8]. The realization of the limits of orthogonality led us to apply 

BD to microarray data in 2002, showing that this significantly improved inference on the 

yeast cell cycle [9]. Later studies demonstrated the value of BD when applied to human 

patient data [10], and we developed an open-source algorithm, CoGAPS, linked to R to 

simplify applications [11]. While BD can be considered a form of Independent Component 

Analysis (ICA), it is driven to inherently sparse solutions, which appears important for 

inference on expression data.

NMF methods, which are again similar to ICA, were applied to microarray data by Kim and 

Tidor in 2003 [12], and the term metagene in the NMF context was coined by Brunet et al in 

2004 [13]. As with ICA, initial NMF variants tended to smooth solutions that appeared to 

limit the inference of biological processes, leading Gao and Church to introduce sparse-

NMF in 2005 [14]. Additional NMF methods continue to be introduced, with constant 

improvements in speed.

A second Bayesian approach to matrix factorization, Bayesian Factor Regression Modeling 

(BFRM) [15], was applied to microarray data by Carvalho et al in 2008 [16], although it had 

been applied to microarray data in clinical studies prior to this publication. BFRM induces 

sparse solutions by removing the mean behaviors in the data, which tends to highlight 

differences between samples.

B. Related Techniques

There are a number of techniques closely related to matrix factorization that have been 

applied to expression data. Blind Source Separation (BSS) was developed to isolate the 

signal coming from a single source within a background of multiple sources, such as the 

speech of a single individual in a crowded room. BSS was applied to microarray data 

initially in 2004 [17]. Biclustering is a technique focused on identifying subsets of similar 

behavior within a matrix, where these subsets may overlap. Unlike matrix factorization, it 

does not lead to a decomposition into two matrices that can reconstruct the original matrix, 

but instead provides insight into two-dimensional correlations within the data [18].

C. Basic Nomenclature

In this section we introduce the nomenclature we will use for this paper. Different 

techniques have defined and normalized the computed matrices in different ways, and we 

will attempt to follow the statistical approach here, with Y representing a matrix of 

observations and X the true expression levels in the samples. In NMF, it is typical to 

decompose X into matrices H and W (X = HW), with normalization being performed on the 

columns of H. However, in gene expression, it is somewhat easier to interpret a 
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decomposition into A and P, with normalization on the rows of P. This allows interpretation 

of the rows of P as basis vectors defining the presence or absence of Patterns of 

coexpression across samples and A as the assignment of genes to the patterns. Figure 1 

provides the relationship of the matrices together with an indication of the dimensionality 

reduction.

The fundamental equation therefore is

(1)

where the terms are described in the previous paragraph except for σ, which provides an 

element-level noise or error value on Y. The indices in the summation form are n indexing 

the genes, m indexing the samples (typically time series measurements for TRN estimation), 

and p indexing the patterns (i.e., rows of P). Because σ arises from both the biological 

system and technical artifacts, it is sometimes treated as two terms. However, with modern 

technology it is now clear that technical noise, excluding batch effects, is trivial compared to 

the variation seen on transcript levels in biological systems, so we use a single term and treat 

only “biological noise”.

Estimating the biological random noise is always part of finding A and P, even if it is 

implicit in the methodology. Typically, if the noise is not explicitly addressed within the 

mathematical model, fitting will treat the noise as Gaussian with each individual matrix 

element of Y including i.i.d. (independent, identically distributed) samples from the implied 

common error distribution. However, even in yeast, this assumption is not justified by the 

biology. As demonstrated in an experiment including 63 flasks of yeast under identical 

growth conditions, roughly 10% of yeast genes varied by orders of magnitude in transcript 

levels without any corresponding effect on phenotype [19]. Furthermore, studies in yeast 

[20] and human [21] showed poor correlation between mRNA levels and protein levels. This 

suggests that methods should explicitly include noise terms and not treat these as equal for 

all genes, but instead use gene-specific estimates of variance. It is hoped as data sets grow, 

that cell-type gene specific variance estimates may become available. Even simple models 

of noise identified in early work [22] have been shown to improve estimates of biological 

activity from microarrays [23].

It is possible that in the future this error estimation may be further improved through 

increased understanding of translational and regulatory processes related to individual genes. 

This may allow for gene-specific models that include a priori modeling of the probability of 

the translation of the mRNA to protein and potential inclusion of models of alternative 

splice variants and their proteins.

D. TRN Estimation

While matrix factorization will provide insight into multiple regulation by identifying 

coordinated patterns that can be linked to TF activity, it does not directly solve TRN 

structure. This relies on more complicated modeling approaches that balance adherence to 
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the underlying biology against computational complexity and parameter explosion. A review 

of the methods utilized for TRN prediction from expression data and prior knowledge is 

beyond the scope of this work, however Karlebach and Shamir summarized widely-used 

techniques previously [24].

TRN prediction often relies on two additional pieces of information beyond gene expression 

data. The first piece of information is TFBS data and prediction, though as noted above this 

should not provide too strong a prior in multicellular systems. TFBS data can be generated 

through ChIP-chip measurements, and coupling of this data with expression data allowed 

modeling of the yeast cell cycle [25]. More recently TFBS data has been generated through 

ChIP-seq measurements, where the immunoprecipitation pulldown is directly sequenced. 

The second piece of information is the result of text mining, with a focus on identification of 

targets of TFs as reported in the literature. While all these data sources can provide direct 

evidence of regulation, context often plays a role through epigenetics, so care must be taken 

in the use of this information as well.

Matrix factorization can provide an important insight for TRN estimation. The patterns will 

indicate when corresponding genes are active, and as shown in Sections IV.B and V.A, the 

genes associated with patterns can provide inference on TF activity. Since the factorization 

methods can be designed to appropriately utilize variance estimates and epigenetic 

measurements, the TF activity estimates should be more robust.

E. Issues for Matrix Factorization

The mathematics of the decomposition (or factorization) of Eqn. 1 introduces a number of 

issues. First, since the rows of P can be considered basis vectors, there are an infinite 

number of sets of these bases that fit the data equally well. Second, it is often the case that 

the actual number of dimensions that are required to fit the data within the noise is less than 

the smaller dimensionality of the Y matrix, but the minimum is often unknown. Third, the 

matrix X is unchanged by exchanges of magnitude between columns of A and rows of P.

The first issue of infinitely many solutions can be resolved by considering Fig. 2, in which 

we imagine a distribution in three dimensions that can be described by the standard 

Cartesian system (labelled x, y, z). Naturally, any rotation of the standard system will also 

describe the data, or alternatively a non-orthogonal system (labelled a, b, c) can be used 

provided a⃗,b⃗,c⃗ are non-colinear. Ideally these non-orthogonal bases will be related to the 

biological processes active within the samples. As PCA and SVD define dominant directions 

in the data and force orthogonality in the basis vectors along directions of maximum residual 

variance, each vector would then necessarily combine signals from many processes active in 

the biological system, confounding inference of multiple regulation in analyses relying on 

these methods.

One method to limit potential solutions is essentially to limit the matrix X. For microarray 

data, since gene expression is an inherently positive value as it represents an estimation of 

the concentration of mRNA, it is natural to treat X > 0. This leads to the basis abc being 

natural for the factorization, as it fully captures the distribution of the positive data with 
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coordinates that naturally match the underlying structure in the data. It still remains to 

choose the best non-orthogonal bases, and this is done in different ways, as discussed below.

The second issue of dimensionality estimation remains problematic. Numerous methods that 

have been developed in other fields have had only limited success in applications to gene 

expression data. Both ad hoc methods [26] and formal methods [27] have been proposed and 

applied, however a definitive method remains elusive. Many of these dimensionality 

estimates rely on strong assumptions about the error model in Y, which are inapplicable to 

the strongly correlated and deeply structured microarray data. The best approach may be to 

try many dimensionalities and look for robust patterns in the results, similar to robust 

clustering methods.

The third issue of flexibility of solutions to exchange of flux between the A and P matrices 

is generally solved by normalization of either a column of A or a row of P. Either is a valid 

mathematical solution, and we have argued above for normalization of rows of P to increase 

biological interpretability. However, the best choice will depend on the particular 

application.

III. Review of Matrix Factorization Methods

Here we review the basics of matrix factorization methods applied to gene expression data, 

focusing on those methods that have been applied widely to gene expression data.

A. Independent Component Analysis

One method closely related to matrix factorization is independent component analysis 

(ICA). Like typical applications of PCA to microarray data, ICA performs matrix 

decomposition by projecting the data onto a lower dimensional space, using statistical 

independence between components rather than orthogonality. Since the observed microarray 

signals are a result of a mixture of underlying biological processes, the factorization of the 

data matrix, Y, can be expressed as

(2)

where A represents assignment of genes to patterns and P the patterns as in Eqn. 1.

For the case of linear ICA, the estimation of P can be formulated as

(3)

so that we need to find a matrix W (the unmixing matrix), such that the rows of matrix P̂ are 

statistically independent though not orthogonal. The process of finding the unmixing matrix 

can be performed by different algorithms, based on different metrics of statistical 

independence. Pournara and Wernisch provided a thorough review of ICA and other factor 

analysis approaches in TRN estimation [28].
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B. Bayesian Decomposition and CoGAPS

Although the statistical independence requirements of ICA are not as strict as the 

orthogonality requirements of SVD and PCA, the assumption of independence between the 

underlying processes may not be fully justified in most microarray data due to multiple 

regulation and coordinated activation of biological processes. In order to allow bases that 

were not statistically independent, BD was introduced in 1999 for spectral imaging [6]. It 

was first applied to gene expression data in 2002 [9], and an open-source approach linked to 

R/Bioconductor, called CoGAPS, was created in 2010 [11].

BD applies several approaches to identify those A and P matrices that best explain the data 

Y for gene expression data. First, it applies a sparseness criterion through use of an atomic 

prior that is penalized for the addition of structure [29]. Second, for expression data, it 

applies a positive mapping from the inherently positive atomic domain to A and P limiting 

the solutions to positive matrices. Third, dimensionality reduction is typically used to limit 

the number of parameter estimates needed, so that p ≪ min(N, M).

In order to determine how to place and size atoms within the atomic domain, a Markov 

chain Monte Carlo (MCMC) procedure is used. Atoms are created ex vacuo according to the 

prior, and atoms can be resampled, destroyed, moved, or have flux moved to neighboring 

atoms (see [30] for details). Using

(4)

convolution functions map atoms to matrix elements allowing preferred correlations 

between matrix elements to increase in probability. Through the convolutions, a set of 

values (e.g., A) can be constructed from a family of measures, φ (the atoms), using kernels, 

K. In the simplest case, an atom simply maps to a single matrix element.

The probability for each combination of A and P is determined from Bayes rule,

(5)

where p(A, P|Y) provides the conditional probability of the model given the data (the 

posterior), p(Y|A, P) the conditional probability of the data given the model (the likelihood), 

and p(A, P) the probability of the model (the prior).

A key feature of BD and CoGAPS, as well as most other Bayesian methods, is explicit 

modeling of the error distribution. In BD and CoGAPS, a least squares likelihood model is 

used, effectively treating the errors as Gaussian with zero mean. As the data is more closely 

log-normal than normal in distribution and the error appears to be multiplicative with 

expression level, it is usually best to work on log-transformed data. For BD and CoGAPS, 

the individual error elements, σij, can be estimated from the data, which addresses the wide, 

phenotype-independent variance seen in expression levels in eukaryotic systems. 
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Furthermore, the MCMC framework can be easily extended for inference using RNA-seq 

measurements by including error models for count data.

CoGAPS utilizes an MCMC structure like BD, however CoGAPS incorporates more control 

over hyperparameters that determine sparseness. Both methods handle missing data in a 

parsimonious way, since the fitting of the model utilizes the likelihood, allowing missing 

data to be incorporated through use of high uncertainties (σij ≫ 1).

C. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) was adapted for analysis of gene expression data 

by Kim and Tidor [12] and Brunet et al [13], with the columns of A being referred to as 

metagenes. The goal of the NMF analysis is to find a small number of metagenes, 

effectively performing a dimensionality reduction. The expression estimates X are then 

approximated as a positive linear combination of the metagenes.

As with BD and CoGAPS, NMF provides an inherent reduction in dimensionality. In an 

NMF simulation, random matrices A and P are initialized according to some scheme, such 

as from a uniform distribution U[0, 1]. The matrices are updated iteratively using

(6)

which guarantees reaching a local maximum in the likelihood and minimizes

(7)

Since P is obtained without any requirements on relationships between the rows, there are 

no independence criteria, as exist in SVD or ICA. The key assumptions allowing 

identification of a unique solution are non-negativity of the A and P matrices and the 

reduction of dimensionality. The absence of additional constraints does lead to a tendency 

for the recovery of signal-invariant metagenes that carry little or no information. Gao and 

Church introduced sparse NMF (sNMF), which penalized solutions based on the number of 

non-zero components in A and P, to address this issue [14]. Carmona-Saez et al. applied a 

similar approach in non-smooth NMF (nsNMF) through introduction of a smoothness matrix 

into the factorization [31].

As traditional NMF techniques do not account for uncertainty information, overfitting of the 

data can be an issue. In addition, the treatment of all variances as equal raises a potential 

problem for eukaryotic data. Least-squares NMF (lsNMF) introduced new updating rules, 

effectively replacing the criterion for distance minimization with a minimization of the χ2 

error [23], given by
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(8)

Using this measure, the update rules become

(9)

and the algorithm proceeds as with NMF to find a local maximum in probability according 

to the minimization of Eqn. 8.

All NMF methods fail to explore the posterior probability distribution, due to the inability to 

escape local maxima. The approach to this problem has been to routinely begin with 50 to 

200 different initial random A and P matrices, then to look for the solution which provides 

the best fit to the data, as measured by Eqns. 7 or 8 [32]. Alternatively, robust solutions can 

be looked for within the factorizations, providing an indication of reliable patterns (i.e., 

metagenes) within the data. However, in our experience, the metagenes obtained from 

reasonably complex data sets can vary in terms of their χ2 fit to the data by two orders of 

magnitude. As such, care must be taken to make sure that an adequate number of 

simulations using an NMF method have been attempted before interpreting the results.

Witten, Tibshirani, and Hastie provided a generalized penalized matrix decomposition 

framework [33]. This framework allows specification to a number of specific forms, 

including sparse SVD and non-negative sparse coding, similar to sNMF. An R package is 

now available for implementing many NMF approaches [34].

D. Bayesian Factor Regression Modeling

BFRM is a Bayesian MCMC technique, like BD and CoGAPS. However, it includes 

simultaneous solution of a linear model of the covariates, by solving

(10)

where A can be viewed as factor loadings for latent factors P [16]. The h matrix provides 

known covariates in the data, and the mean vector, μ, provides a gene specific term that 

adjusts all genes to the same level. The patterns then are those needed after accounting for 

mean behavior and covariates. Like BD and CoGAPS, BFRM seeks to minimize structure in 

A and P.

BFRM also addresses the issue of the number of patterns through an evolutionary stochastic 

search. The algorithm attempts to increase the number of patterns by thresholding the 

Ochs and Fertig Page 9

IEEE Symp Comput Intell Bioinforma Comput Biol Proc. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



probability of inclusion of a new factor. The model is refit with the additional pattern with 

retention of the additional dimension if there is an improvement according to the criterion 

chosen. Evolution ceases when no additional factors are accepted. The BFRM software also 

allows running without this evolution.

E. Network Component Analysis

Network Component Analysis (NCA) uses information on the binding of TFs to DNA to 

reduce the possible A and P matrices [35]. Essentially, a two layer network is created, with 

one layer populated by transcriptional regulators and the other by their gene targets. Edges 

then connect each TF to the genes they regulate.

NCA handles the problem of multiple potential solutions in Eqn. 1 by including all potential 

solutions through

(11)

where AT includes all potential A matrices. By requiring T to be diagonal, A and P are 

unique up to a scaling factor. Diagonality of T can be guaranteed if 1) A is full column rank, 

2) removal of a TF yields a network where A is still full column rank, and 3) P is full row 

rank. Criterion 3 demands that a set of TFs be considered linearly independent, which is 

reasonable biologically.

The solutions, A and P, are determined by minimizing Eqn. 7, just as for NMF. As with 

lsNMF, this could be easily extended to gene and array specific errors by inclusion of 

specific error terms. As with BD and CoGAPS, the rows of P are normalized so that each 

row provides the average effect of a regulator.

When applying NCA to microarray data, the relative strength of the TF in regulating its 

target must be determined. For each gene and each TF, the gene regulation is assumed to be 

proportional to the binding affinity of the TF to the promoter for a gene. Since each gene can 

be regulated by multiple regulators, the expression of a gene at a time point must be 

estimated as a combination of the regulation from different factors. For each time point, this 

is estimated as

(12)

where Yi is the expression for gene i, with the superscript indicating the time point, TFj is the 

activity of the jth transcriptional regulator with the superscript indicating the time point, R is 

the total number of regulators, and Affik is the binding affinity for the kth transcriptional 

regulator on the ith gene. This is effectively a log-linear model where the transcriptional 

binding affinity is taken as a measure of the strength of gene activation, and each regulator 

effectively leads to a multiplicative increase in gene expression.
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IV. Comparisons of Matrix Factorization Methods

The matrix factorization methods presented here have a number of tunable parameters 

making complete comparison difficult. Comparisons have been made through simulations, 

where the ground truth is well-defined but errors do not reflect likely strong correlations 

between genes and processes, and through analysis of data, where ground truth is generally 

not known but data is realistic. We present a brief summary of previous comparisons and 

then provide an example from our work in cancer, where several TFs were validated by 

Western blots using phosphoantibodies.

A. Previous Reviews

A number of reviews have focused on comparison of different NMF methods [32], the 

ability of NMF to recover biologically meaningful patterns [36], different methods for 

identifying coregulation [37], and methods for gene set analysis [38].

Devarajan notes that sparseness is a critical aspect for “parts-based” decomposition in NMF, 

as it provides localized patterns, so that the whole can be reconstructed from these localized 

features [32]. This sparseness may need to be enforced by penalizing non-sparse solutions. 

In addition, the use of cophenetic correlation is discussed as a method to estimate 

dimensionality, similar to scree plots in SVD or PCA.

Kossenkov and Ochs generated a simulated yeast cell cycle data set with errors based on real 

data and compared a wide variety of methods in terms of recovery of known coregulation in 

the background of multiple regulation [37]. BD and sNMF performed best, with AUCs of 

0.98 and 0.94 respectively. NMF, lsNMF, and ICA also performed well, while PCA and 

clustering techniques performed relatively poorly.

In a second study, they used the Rosetta Compendium of yeast deletion mutants [19] and 

functional annotation to study which methods recovered biological behaviors from the data 

when coupled to gene set analysis of 15 well-studied processes [38]. After factorization, 

signatures of enrichment were identified for each method. In this case BD performed best, 

identifying 7 terms, with BFRM identifying 5. Clustering methods identified 4 terms, while 

NCA, PCA, and ICA all did more poorly. This may reflect the lack of sparseness as sNMF 

was not used in this study.

Overall this suggests that the Bayesian factorization methods, which naturally include 

sparseness, or sparse NMF methods should be the first choices for matrix factorization when 

the goal is TRN estimation.

B. A Mammalian Example

For this work, we reanalyzed gastrointestinal stromal tumor (GIST) cell line data using 

SVD, ICA, two NMF methods, and BD/coGAPS, since this data had a number of TF 

activities validated by direct phosphoprotein measurements [10]. In brief, the data comprised 

triplicate growth of GIST cells in the presence of imatinib, the targeted tyrosine kinase 

inhibitor of the KIT receptor tyrosine kinase. Imatinib, also known as Gleevec, is used 
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therapeutically in GIST patients, and the inhibition of KIT phosphorylation was validated 

experimentally in the cell line. Cells were harvested at nine time points and Agilent Whole 

Human Genome Microarrays were run on each of the three samples at each time point. Data 

was processed to provide mean and standard deviations for each gene at each time point. 

Only targets of known TFs recorded in TRANSFAC Professional Release 2008.4 were 

retained, providing a Y matrix of 1363 genes (rows) by 9 samples (columns) together with 

standard deviations on each element.

Analysis was then run on this data using R [39]. The implementations used included the 

stats package (for SVD), the fastICA package based on the fastICA algorithm [40], the NMF 

package [34], and the coGAPS package [11]. The algorithms applied were SVD, ICA, the 

Brunet et al NMF algorithm [13], nsNMF [31], and coGAPS. The coGAPS analysis was 

equivalent to the original analysis performed with BD [10], as coGAPS was created using 

this as a test data set. For SVD and ICA, a single run was made. For the NMF methods, 500 

runs with different random initial matrices were made, and the 50 runs with smallest 

residuals were retained. Mean and standard deviations were generated for A and P from the 

50 samples. For CoGAPS, the analysis included sampling of the posterior distribution, 

which was used to generate mean and standard deviation estimates.

In Fig. 3, the identified patterns are shown. In all cases, the dimensionality was set to 5, 

however to reduce clutter in the figures only the three patterns that were analyzed in detail 

are shown. It is clear that the matrix factorization methods and CoGAPS identify the same 

three patterns in the data. The two patterns not shown do differ between the methods, with 

CoGAPS producing two relatively flat patterns that capture biosynthesis and metabolic 

patterns (based on gene membership), and the NMF methods both producing a pattern 

spiking at 9 and 24 hours and a pattern with a broad peak at 12–18 hours. We refer to the 

three patterns shown in Fig. 3 as “Falling” (black line), “Transient” (red line), and “Rising” 

(blue line) respectively.

We then looked at the specific signaling process readouts used in the original publication. 

First, MAPK and PI3K signaling were downregulated due to imatinib suppression of KIT 

signaling, which appears as upregulation of the TFs downstream of MAPK and PI3K in the 

Falling pattern. Second, the Transient pattern showed strong upregulation of p53. 

Upregulation of p53 was validated through Western blots of the DNA damage response 

proteins and p53 across the time series. Third, the Rising pattern showed upregulation of 

ELK1 and STAT3, which was validated by phosphoprotein antibodies as well. To visualize 

the results, we converted a permutation-based Z-score statistic (see Section V.A) for each TF 

based on its known TRANSFAC targets to a strength of activity, with high activity reflected 

as bright yellow and low activity as dark blue. The results for coGAPS and the NMF 

methods are presented in Fig. 4. It is clear that in all cases the NMF methods do not provide 

either a consistent view of downstream activity (i.e., for the Falling pattern) nor accurate 

prediction of individual TF activity. On the other hand, CoGAPS provides consistent 

estimation of the full network readout downstream of KIT (i.e,, SP1, ELK1, MYC, E2F1, 

AP1, CREB high and FOXO low), as well as correct identification of TF activity in the 

other two patterns.
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To verify that the results were not a driven by a larger number of significant TF activities 

being predicted by Co-GAPS, we generated a list of all TFs out of the 230 tested that 

showed high activity at a permutation p < 0.05 for each pattern. In all cases, the numbers of 

TFs determined to be significant were roughly the same between CoGAPS and the NMF 

methods. For example, in the Transient pattern, CoGAPS showed p53 activity at the limit of 

p < 0.002 based on the 500 permutations with 26 additional active TFs. Brunet-NMF and 

nsNMF detected 17 and 22 significant active TFs respectively, but p53 was not significant 

(p = 0.958 and p = 0.788 respectively). In order to check whether p53 might instead be 

associated with the additional pattern peaking at 12–18 hours, we identified the 12 and 9 

TFs statistically significant in these patterns in Brunet-NMF and nsNMF respectively, but 

p53 was not significant (p ~ 1 for both algorithms).

Overall, the results of this mammalian data analysis suggest that CoGAPS is more effective 

at identifying correct TF activity, although both NMF methods appear equally good at 

determining the patterns. The reason for the failure in detection of TF activity is unclear, but 

it is consistent with the previous poor results in detection of biological processes in the yeast 

compendium data [38]. In both cases, the A matrix is far larger than the P matrix, and it is 

possible that solutions remain too smooth in this domain. Careful tuning of the NMF 

methods may create appropriate constraints to guide the methods to useful A matrices as 

well as P matrices, however such tuning often is counterproductive in biological studies as 

the methods tend to get fit to the peculiarities of individual data sets. Interestingly, BFRM, 

which was not used here, was also good at finding biological process signatures in the yeast 

data, so that it is possible that the ability of MCMC methods to more fully explore the 

posterior probability distribution is important.

However, while MCMC methods are designed to escape local maxima in the probability 

distribution and sample the distribution more fully, they are computationally expensive. For 

instance, CoGAPS analysis of the GIST data took several hours, while the 500 runs of the 

NMF methods took only a few minutes. The apparent superiority of MCMC methods in TF 

activity estimation suggests that recent methods developed in machine learning to replace 

the inherently slow MCMC approach in other disciplines may be worthy of study in 

expression analysis and TRN estimation (e.g., [41], [42]).

V. Incorporating Matrix Factorization into TRN Estimation

There are two approaches to incorporate improved inference of regulation from matrix 

factorization into TRN estimation. We refer to these as Reverse Inference and Forward 

Inference. The former term refers to estimation of TF activity from the behavior of known 

TF targets, while the latter refers to inference of TF targets given TF activity. In either case, 

methods that extend the known targets (see below) can be used to extend the inferences.

A. Reverse Inference

Matrix factorization will provide an indication of the activity of a TF through interpretation 

of the P and A matrices. Using the association of genes (columns of A) with patterns (rows 

of P) permits estimation of when a TF is active. This can be done through a gene set analysis 

Ochs and Fertig Page 13

IEEE Symp Comput Intell Bioinforma Comput Biol Proc. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of the scores associated with a gene in a column of A for a set of genes that are known to be 

regulated by a TF. Specifically, for methods that generate error estimates for the matrix 

elements, a Z-score test can be used, where the Z-score for a TF within a pattern p is defined 

from the measured Z-scores of its targets,

(13)

where r indexes the genes that are targets of TF T. This can then be compared to a random 

sample of genes from pattern p to determine the significance of the Z-score and the 

probability of activity of the TF. The amplitude of the corresponding row of P then gives an 

indication of the level of activity of the TF (see [10] for an example in cancer). This statistic 

was used to generate estimates in Section IV.B.

Alternative statistics can be generated from the A and P matrices for cases where only mean 

estimates of the element values are obtained. At the simplest level, these can include 

threshold values based on targets, although analyses based on sparse components or binary 

models are likely to be more robust.

B. Forward Inference

The knowledge that a TF is active, either through the inference noted above or by other 

predictive methods, permits one to estimate the probability that a novel target, potentially a 

TF itself, is activated by the TF. The most straightforward way of estimating this is to use 

the strength of the scores for the known targets, either the distribution of Z-scores for the 

targets of a TF or the distribution of the mean values in a pattern p. This then allows the 

other genes in pattern p to be compared.

One complexity is the likely activity of multiple TFs within any pattern. In the case where 

the activity of the TFs differ in different patterns, the behavior of the targets for a TF across 

all patterns can be used to isolate the genes that are tied to the specific TF. If the activity of a 

subset of TFs agree across all patterns, then it is necessary to have additional information to 

infer the probability that one of the active TFs is responsible. This would be an excellent use 

of comparative TFBS information, as in this focused case it is likely that the additional 

presence of a TFBS could resolve the potential multiple driving TFs. However, in this case 

the TFBS data used for forward inference must be sufficiently independent to ensure the 

identifiability of the inference algorithm.

VI. Extensions and Alternatives to Matrix Factorization Methods

Over the last few years the interest in NMF and other factorization methods for high-

throughput biological data has increased. A number of extensions have been made to the 

basic techniques in order to address issues in biological data that can impact use in TRN 

estimation.
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One recurring issue with different methods of NMF is that the basis vectors (i.e., patterns) 

identified may not provide a minimal representation of the expression data, in the sense of 

Fig. 2. While this is generally addressed through sparse matrix methods, Zhang et al 

addressed this issue instead by penalizing the angle between the basis vectors, effectively 

encouraging solutions fitting bases a⃗,b⃗,c⃗ [43].

The issue of NMF being prone to trapping in local maxima has also led to development of 

methods that look to improve NMF robustness. Fogel et al used trimmed least squares fitting 

and dimensionality estimation by mixture modeling to create inferential robust NMF 

(irNMF) [44]. The method also iteratively removes discordant observations, limiting the 

impact of outliers on the model.

Like NMF methods, ICA methods have suffered from the lack of sparseness and the 

associated lack of locality of patterns. Han and Li introduced multi-resolution ICA, which 

utilizes a wavelet transform prior to applying ICA, to address this issue [45].

The initial NCA implementation was computationally expensive and limited in the number 

of transcription factors that could be addressed in an analysis, which led to a number of 

modifications. Galbraith et al modified the original NCA to allow for more transcriptional 

regulators to be modeled. This was accomplished by realizing that the criteria for the 

number of samples, Ns, could be relaxed, so that NTF < Ns could be changed to NTFg < Ns, 

where NTFg is the number of TFs that regulate any given gene [46]. Chang et al introduced 

FastNCA that included an SVD step prior to NCA to reduce the data size [47]. In order to 

escape the need for full network connectivity in NCA, Chen et al utilized FastNCA coupled 

to particle swarm optimization to allow the refinement of gene targets during analysis [48].

A number of methods that serve as alternatives to NMF for TRN estimation in the case of 

overlapping regulation have also been introduced. Asif and Sanguinetti utilized a Hidden 

Markov Model (HMM) with a nonlinear likelihood to capture TRNs in yeast and bacterial 

systems [49]. The TF activities are treated as binary parameters with gene specific 

expression levels linked to the TF activity. Chuang et al introduced a method termed 

AdaFuzzy to link sequence, chromatin IP, and expression data within a constrained 

probabilistic sparse matrix factorization to estimate TRNs for yeast [50].

A number of extensions have focused on guiding an analysis with prior knowledge, either 

through inclusion of an additional matrix in the factorization or through introduction of 

penalties linked to known gene profiles. Yang et al introduced an additional matrix linked to 

gene ontology categories to drive the factorization toward bases that preferentially linked 

genes within the same ontological category [51]. Gong et al used DNA sequence motifs to 

guide clustering and determine TF activity followed by sparse component analysis to 

estimate the strength of regulation for the individual targets [52]. Gaujoux and Seoighe 

introduced marker genes to guide NMF to find patterns that linked samples that were of the 

same cell-type [53].

It still remains to integrate the results of matrix factorization techniques into TRN estimation 

formally. This will require linking two inference mechanisms in a unified framework 
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capable of linking inference from the data decomposition and inference on the graphical 

model expressing the TRN. In addition, data from TFBS studies, ChIP methods, methylation 

measurements, and literature mining should be integrated to improve inference.

VII. Conclusion

Determination of transcriptional regulatory networks (TRNs) provides important insight into 

numerous biological processes driven by cellular reprogramming. In mammals, evolution 

has driven high levels of gene reuse, leading to multiple regulation of genes, which greatly 

complicates TRN estimation. One potential path forward is to integrate matrix factorization 

methods, which have been developed specifically to address multiple regulation, into TRN 

estimation.

We have reviewed the principal methods and their extensions. Sparseness appears to be a 

recurring theme for obtaining good results, whether in identifying coregulation of genes as 

desired for TRN estimation, or for gene set analysis to identify biological processes active in 

the system under study. Bayesian methods implement sparseness through a prior on the 

potential A and P matrices, while NMF methods tend to introduce an additional matrix in 

the decomposition or to penalize non-sparse solutions. Either approach appears to improve 

recovery of coregulation, although the Bayesian methods appear somewhat superior over all, 

perhaps because they explore the parameter space more fully.

In the future, it will be possible to provide additional data to guide matrix factorization and 

TRN inference. Methylation data can provide prior distributions on the probability that a 

given TF target can avoid upregulation by an active TF, so that epigenetically silenced genes 

do not adversely affect TRN estimation. Identification of alternative splice variants, as from 

RNA-seq, can aid in identifying alternative TF isoforms that may have different gene 

targets, deconvolving potentially confusing cases where the TF targets change unexpectedly 

due to presently unmeasured regulatory shifts.

Recently a new set of methods have been introduced that address multiple regulation 

directly during TRN estimation. These techniques should be considered along side 

factorization methods when extending TRN models. An issue yet to be addressed is the 

problem of non-time series data, which will dominate the medically-relevant available data. 

The extension of TRN results to humans will require integration of model organism time 

series data with extremely sparsely sampled human clinical data.
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Fig. 1. 
Matrix Factorization: The fundamental fitting that occurs in the techniques focused on here 

are the derivation of A and P matrices which combine to form a denoised model, X, of the 

measured data. X comprises N rows of genes and M columns of samples.
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Fig. 2. 
Data Distribution: The data utilized in many gene expression studies is inherently positive. 

PCA and SVD can be considered as methods that rotate the standard Cartesian coordinates 

to align with this data. BD, BFRM, and NMF search for non-orthogonal vectors to capture 

the distribution of the data.
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Fig. 3. 
Patterns: The patterns identified in the GIST data by different algorithms are presented. For 

SVD, all five patterns are shown, while for other methods only the three patterns analyzed in 

detail previously are shown. ICA is not shown but was very similar to SVD. Error bars of 

one standard deviation are provided for those cases where they were measured.
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Fig. 4. 
TF Activity: The estimates of TF activity based on known gene targets is presented with 

yellow indicating high activity and blue low activity. Under each TF, the leftmost box is for 

CoGAPS estimation, the middle box for the Brunet et al NMF estimation, and the rightmost 

box for nsNMF estimation.
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