Table 2. Model performance estimation by 10-fold cross validation.
Multi-instance transfer learning | Multi-instance Learning | Multi-instance Learning Novel | Single Instance Learning | ||||||||
SP | SE | MCC | SP | SE | MCC | SP | SE | MCC | |||
Positive | 0.7692 | 0.8065 | 0.6338 | 0.7246 | 0.8065 | 0.5936 | 0.7031 | 0.7258 | 0.5290 | ||
Negative | 0.7966 | 0.7581 | 0.6284 | 0.7818 | 0.6935 | 0.5780 | 0.7167 | 0.6935 | 0.5234 | ||
Accuracy | 78.23% | 75% | 70.97% | ||||||||
MCC | 0.6306 | 0.5833 | 0.5260 | ||||||||
ROC-AUC | 0.8335 | 0.8176 | 0.8003 | ||||||||
PR-AUC | 0.8678 | 0.8369 | 0.8325 | ||||||||
F1 Score | 0.80 | 0.76 | 0.71 | ||||||||
*Random forest [16] | SP | SE | |||||||||
Positive | 0.817 | 0.407 | |||||||||
F1 Score | 0.52 | ||||||||||
*Multi-task learning [17] | F1 Score | 0.758 |
Note: * denotes the existing models.