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Abstract

Purpose of review—In this era of modern combination antiretroviral therapy (cART) HIV-

associated neurocognitive disorders (HAND) continues to be a debilitating condition affecting a 

large portion of the infected population. In this review we highlight recent discoveries that help to 

define the interplay between HIV life cycle, the innate immune system, and cellular autophagy in 

the context of the CNS.

Recent findings—Investigators have recently elucidated themes in HAND, which place it in a 

unique framework. Cells of macrophage lineage and probably astrocytes play a role in 

disseminating virus through the CNS. Each of these cell types responds to a diverse population of 

constantly evolving virus existing in an inflammatory environment. This occurs though the failure 

of both host antiviral mechanisms, such as autophagy, and innate immunological signaling 

pathways to control viral replication.

Summary—The newest findings detailed in this review help define why HIV CNS disease is a 

difficult target for therapeutics and create hope that these new mechanisms may be exploited to 

attenuate viral replication and eliminate disease.
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Introduction

The most deadly consequence of HIV infection, acquired immunodeficiency syndrome 

(AIDS), can be successfully combated by combination antiretroviral therapy (cART). 

However, HIV enters the CNS very early after infection (1) and continues to cause HIV-

associated neurocognitive disorders (HAND) in approximately 50% of HIV-infected 

individuals in the post-cART era (2, 3). cART-treated HIV-infected individuals are living 

longer and there is growing evidence that the aging HIV-infected population may suffer 

from earlier onset of neurocognitive deficits (4). In the periphery, HIV primarily replicates 
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in CD4+ T cells. However, cells of the macrophage lineage are the primary virus producers 

in the CNS. Thus, viral life cycle and immune responses are governed by unique 

mechanisms in brain. In this review we highlight the most recent advances in understanding 

viral life cycle, innate immune responses, and autophagy, one aspect of the innate immune 

response, in the CNS (Fig 1). These concepts are of critical importance for both eradication 

strategies and developing therapeutic targets to treat HAND.

HIV life cycle in the CNS

During the course of the thirty-year epidemic, much has been learned about HIV infection of 

neuroglia and viral replication in the CNS. However, many recent discoveries have 

important implications as the field renews hope for solving the problem of eradication and 

searches for treatments for HAND.

Viral entry into cells of macrophage lineage

In the CNS, cells of macrophage lineage are the primary virus producers whereas astrocytes 

likely support only restricted virus replication (5). Having a complete understanding of viral 

entry into these cells and evolution of viral tropism during different stages of disease has 

important treatment consequences and may affect both peripheral and CNS disease 

progression.

Viruses were historically categorized based on two somewhat related sets of criteria: 1.) the 

ability to infect T cells (T-Tropic) or macrophages (M-tropic) or 2.) usage of the coreceptor 

CCR5 (R5) or CXCR4 (X4) for binding and fusion with target cells. Defining true 

macrophage tropism has been historically difficult due to the high level of inter- and intra-

donor macrophage variation, in addition to the fact that viral tropism/coreceptor usage are 

not always mutually exclusive (6). Two recent studies used the recently developed 

Affinofile cell line (7) to titrate levels of CD4 and CCR5 and quantitatively evaluate CD4 

and CCR5 requirements of both classically defined and patient-derived T-tropic (isolated 

from blood or lymph node) and M-tropic (isolated from brain or CSF) Env proteins. They 

found that M-tropic Env proteins are not CD4 independent, but rather are capable of 

infecting cells with very low CD4 surface densities (8, 9). Furthermore, the conformation of 

brain-derived, M-tropic Env proteins had increased CD4 binding site exposure and 

alterations in the physical interactions with CCR5 compared to lymph node-derived, T-

tropic isolates (9).

Viral replication cells of macrophage lineage

Once inside the host cell, many factors can modify viral replication. Proinflammatory 

conditions enhance viral replication in most cell types. CXCL8 (IL-8) is produced by most 

cell types in the brain, enhances HIV replication in macrophages and T cells (10), and is 

elevated in the CSF of patients with HIV-associated dementia compared with 

neurocognitively normal HIV-infected patients (11). Mamik and Ghorpade extended these 

studies and found that CXCL8 increased formation of 2-LTR circles, a marker of nuclear 

import of viral DNA or enhanced infectivity, in macrophages and primary microglia and that 

enhanced replication was dependent on NF-κB (12).
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Micro RNAs (miRNAs) have also gained recent attention as modulators of HIV replication. 

miRNAs are small ~22 nucleotide RNAs that inhibit translation of target mRNAs, usually 

via binding to the 3’ UTR (13). miRNAs can regulate the HIV life cycle by directly binding 

to and inhibiting translation of viral mRNA or by inhibiting translation of proteins involved 

in any stage the HIV life cycle. The number of publications implicating miRNAs in HIV 

regulation has exploded over the past several years (14–17). This review will highlight only 

the most recent publications that have relevance to viral replication in cells of the 

macrophage lineage. Using simian immunodeficiency virus (SIV) as a model, Sisk and 

colleagues recently identified 4 host miRNAs (miRs-29a, -29b, -9 and -146a) that directly 

inhibit virus production and are produced in macrophages upon viral infection, likely via 

stimulation of interferon β (IFNβ) or tissue necrosis factor α (TNFα) (18). These miRNAs 

were also upregulated in human macrophages in response to IFNβ or TNFα and 2 of the 

miRNAs (miRs-29a and -29b) directly target HIV-1 transcripts (17, 18). These findings 

support the growing body of literature highlighting the importance of miRNAs in not just 

the viral life cycle, but also in the context of the immune response (19, 20). Rather than 

directly binding to viral mRNA, Ma and colleagues recently showed that miRNA-1236 

represses translation of Vpr binding protein (VprBP), thereby inhibiting HIV infection of 

monocytes, implicating miRNA-1236 as an endogenous inhibitor of viral replication (21). 

Differential expression of miRNA-1236 in monocytes (high) vs macrophages (low) appears 

to partly explain the differential permissivity of these cells to viral replication (21). Virus 

itself also usurps miRNA mechanisms for its own benefit. Casey Klockow recently 

demonstrated that HIV enhances macrophage infection by targeting the miRNA processing 

protein Dicer for proteosomal degradation via Vpr (22). Overall, miRNA regulation of HIV 

replication is a rapidly growing field of investigation with many questions left to answer at 

all stages of viral replication, particularly in the CNS.

Viral latency in macrophages and microglia

In the current atmosphere of renewed hope for eradication, understanding latency in 

macrophages and microglia is of utmost importance. While multiple mechanisms of latency 

have been identified (23), recent studies have further defined the role of COUP-TF 

interacting protein 2 (CTIP-2). CTIP-2 was previously shown to inhibit LTR transcription 

via histone deacetylase (HDAC) and histone methyltransferase (HMT) recruitment (24). The 

same group has now found that CTIP-2 is part of a large, inactive P-TEFb complex on the 

HIV LTR in a microglial cell line and is recruited by HMGA1 (25, 26). Furthermore, the P-

TEFb-related transcriptional silencing mechanism is independent of CTIP-2 recruitment of 

HDAC and HMT (25).

Infection of astrocytes

In contrast to macrophages, microglia, and T cells, much less is known about HIV entry and 

replication in astrocytes, which do not express CD4. Gray and colleagues recently identified 

intracellular vesicles containing the tetraspanin-family protein CD81 as compartments 

containing HIV in astrocytes (27). Knocking down this protein decreased cell-associated 

virus, but the virus still associated with residual CD81-containing vesicles, further 

supporting CD81-vesicles as important compartments for the viral life cycle in astrocytes.
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Viral latency in astrocytes

Once infected, astrocytes only support very limited or restricted viral replication, although 

they may be capable of producing infectious virus in proinflammatory conditions (5). 

Because astrocytes are the most numerous cell type in the brain, fully understanding 

mechanisms of viral replication and latency in these cells is critical. Narasipura and 

colleagues used primary human progenitor-derived astrocytes and astrocytic cell lines to 

demonstrate that class I HDACs and HMTs, likely SU(VAR)3–9 in particular, are important 

in epigenetic silencing of HIV proviral DNA in astrocytes (28). SAHA, the class I HDAC 

inhibitor used for these experiments, is currently used in latency reversing eradication 

strategies (29, 30). While the view of astrocytes as viral reservoirs is contentious, 

reactivation of HIV in these cells may have yet unforeseen consequences.

Innate immunity in the context of HIV Associated Neurological Disease

The innate and adaptive immune systems play integral roles in minimizing host damage and 

clearing infection. Our understanding of HIV-induced dysfunction of the immune system is 

still evolving. For example, recent studies have revealed that pyroptosis, cell death 

specifically induced by inflammasome activity and mediated by caspase 1, is responsible for 

much of T cell death during infection. Monroe et al (31) recently showed that loss of 

bystander, unactivated, CD4+ T cells is largely due to pyroptosis and accompanies IL-1β 

secretion. This was demonstrated with both in vitro and in vivo data and pyroptosis may be 

able to be attenuated therapeutically. Doitsh et al (32) identified an inducible protein which 

binds both dsDNA and ssDNA and induces CD4+ T cell pyroptosis. Further, knockdown of 

this protein reduced CD4+ T cell depletion. While no specific role for pyroptosis in the 

development of HAND has been identified, it is a potential mechanism for cellular loss in 

the CNS.

A better understanding of the role of host immunity, particularly innate immunity, in HAND 

could mitigate both direct cytopathological effects and hyper-activation of adaptive 

immunity. In the last decade immunologists have discovered and defined several 

mechanisms by which cells of the innate immune system respond to challenge; discoveries 

that drive our appreciation of innate immunity well beyond the convention of generic 

interferon (IFN) response.. Of particular interest are pattern recognition receptors (PRRs), 

which respond to specific pathogen associated molecular patterns (PAMPs), and have made 

investigators take note of the complex responses the immune system can mount without 

adaptive immunity and memory. PRRs trigger a variety of signal transduction events that 

result in the expression of genes that have activity against pathogens (TNF, INFα/β, 

chemokines, interleukins, etc). PRRs such as Toll like receptors (TLRs), retinoic acid-

inducible gene 1 (RIG-I), and RIG-I like receptors (RLRs), have been implicated in 

contributing to aberrant inflammation in the CNS through recognition of tissue damage 

molecular signals and aberrant responses to self (33–37) (Fig 1).

Specific components of the innate immune system have been associated with HAND. For 

example, CXCL10 is induced by several PRRs as well as HIV proteins. CXCL10 also 

recruits both T cells and monocytes/macrophages to the brain exacerbating inflammation 

(34, 36). Further, innate immune stimulation in HAND is attenuated by a number of evasive 
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strategies. Host factors in brain tissue that restrict viral replication such as interferon 

regulatory factor 3 (IRF3) and RIG-I are targeted by HIV proteins for sequestration and 

degradation (34, 36, 37) (Fig 1).

Recent developments in the literature have elaborated on and reaffirmed some of these 

previously described immunological processes. In the setting of acute SIV infection in 

macaques, IFNα transcripts were substantially lower in the brain vs the periphery and 

changes specifically involved IFNα subtype 6 (38). Polyak et al (39) used human fetal 

microglia to reveal that stimulation with IFNα and HIV induced tetherin expression, a host 

restriction factor, which restricts viral budding. Additionally, virus isolated from the brain of 

a HAND patient induced significantly less tetherin and Mx1 than virus isolated from 

toxoplasmosis encephalitis CSF. This indicates that neurovirulent HIV strains may evade 

tetherin and Mx1 via an undefined mechanism. These data were recapitulated using two 

feline immunodeficiency virus (FIV) strains, divergent in their Env proteins; after ten days 

post infection tetherin and Mx1 were elevated in both. Further, analysis of an in vivo FIV 

model of HIV neurovirulence demonstrated that while one strain induced TNFα and CD40, 

the other had a significant increase in tetherin and Mx1. These changes in tetherin/Mx1 were 

associated with IFN-related genes IRF3/9 and not IFNα, TNFα, or IL1-β. These studies 

support previous evidence that the brain is immunologically discrete, neurological 

inflammation may be dependent on viral strain, and its complexities present unique 

challenges as therapeutic targets (34, 36, 37, 40) (Fig 1).

Recent studies have elucidated some functions of multi nucleated giant cells (MNGCs), 

which are a common hallmark of HIV infection. Tarassishin et al (41) recently demonstrated 

that MNGCs in the brain that were highly associated with IRF3 induction. Another group, 

Hornik et al (42) demonstrated in a microglia cell line that multinucleation could be 

triggered by TLR ligands, IFNβ, and proteins associated with Parkinson’s disease alpha-

synuclein) and Alzheimer’s disease ((amyloid-beta). This multinucleation occurred through 

abscission failure, not fusion or endocytosis. Additionally, these MNGCs had increased 

phagocytic activity. These studies reinforce the idea that HIV neurological disease has 

mechanisms in common with other neurodegenerative disorders.

Specific microenvironments in the brain contain unique cells that exacerbate cytopathy in 

the brain. In a brain endothelial cell (EC) line it was shown by Li et al (43) that TLR ligands 

can induce IFNβ/λ expression in a dose-dependent manner. Application of supernatants from 

polyI:C activated ECs to infected macrophages resulted in reduction of viral replication in a 

dose dependent manner. This was accompanied by an increase in the IFN associated genes 

ISG56, Mx1, and OAS-1. Treatment of neutralizing antibody to IFNβ and IL10-β receptor 

inhibited these effects. Geffin et al (44) used neural epithelial cell (NEP) derived astrocyte/

neuron co-cultures to further investigate gene expression. Treatment with virus containing 

medium up regulated 20 genes having to do with antigen presentation and immunity; 

including tetherin. The gene Apolipoprotein E (ApoE), which is linked with other 

neurocognitive diseases, was also investigated. Between NEP cultures with either E3/E3 or 

E3/E4 genotypes, E3/E4 cultures had significantly reduced expression patterns in eight of 

the previously identified 20 genes. These data demonstrate that cells other than classical 

inflammatory cells may play a critical role in inflammatory homeostasis in the brain. 
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Further, host factors like genetics may dictate dysregulation in these cell types of the brain 

(Fig 1).

Autophagy and HIV infection of the CNS

Autophagy is an important cellular mechanism that provides quality control of proteins and 

eliminates defective older intracellular organelles (45). This is accomplished by the creation 

of autophagosomes, which consist of double membrane bodies that form within the 

cytoplasm and engulf cytoplasmic constituents such as sub-cellular organelles and microbial 

pathogens, including viruses, and target them for degradation by fusion with a lysosome (Fig 

1). This process constitutes an important innate immune defense mechanism for host cells.

HIV appropriates autophagy for replication

As an intracellular parasite, HIV is dependent upon its ability to subvert host cell machinery 

for replication and dissemination, and to circumvent cellular processes that prevent its 

growth. Autophagy is one such intracellular process. HIV proteins can both promote and 

delay autophagy to facilitate different stages of viral replication in cells of monocyte/

macrophage lineage. This suggests that these processes are also important in viral replication 

in the brain, where productive replication occurs almost exclusively in cells of macrophage 

lineage, which might modulate the pathogenesis of HAND. In fact, post mortem 

examination of brains from individuals with HIVE have more markers of autophagy than 

brains of HIV-infected individuals without encephalitis or uninfected individuals (46, 47), 

suggesting a dysregulation of autophagy in HIVE (48).

HIV replication in primary macrophages and monocytes is inhibited when autophagy-

associated genes are silenced by RNAi (49–52), suggesting that HIV induces autophagy but 

blocks the late proteolytic stage. HIV assembly is thought to occur on endocytic membranes 

that intersect with recycling endosomes in macrophages (53, 54), and Gag proteins 

colocalize with autophagosome membrane proteins suggesting that autophagy might be 

involved in Gag processing (55). The HIV accessory protein Nef has been shown to induce 

autophagosome formation and enhance HIV replication (56). Additionally, during 

permissive infection, HIV prevents the fusion of autophagosomes with lysosomes (57), 

further demonstrating how HIV may subvert autophagosomes to benefit the viral life cycle.

Autophagy as a host innate defense mechanism

On the other hand, there is much evidence supporting autophagy as an important player in 

the host’s innate defense against HIV pathogenesis. In a recent study, PBMCs from HIV-

infected long term non-progressors and elite controllers were shown to have significantly 

higher numbers of autophagic vesicles and higher levels of autophagic markers than normal 

progressors. In macrophages, virions were detectable in cells with moderate but not high 

levels of accumulated autophagosomes (52). This suggests that autophagic vesicles limit 

viral pathogenesis in HIV-1 infection by targeting viral components for degradation (58).

Deficits in autophagy have been identified in a number of aging-associated diseases 

including Alzheimer’s disease (59, 60) and Parkinson’s disease (61, 62). This association 
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with aging is important, given that the aging population represents one of the fastest-

growing populations of HIV-infected individuals (63).

The association between aging and autophagy dysfunction was supported by a recent study, 

in which differences in HIV viral load (VL), CNS immune activation and expression of 

autophagy-related proteins were compared between HIV-infected individuals with 

encephalitis that were older than or younger than 50 years of age. Young HIVE patients 

displayed an increase in beclin-1, cathepsin-D and light chain (LC)3, whereas these 

autophagy markers were reduced in aged HIVE cases compared to age-matched HIV+ 

donors (46). Similar alterations in autophagy markers were observed in aged gp120 

transgenic (tg) mice (46).

Autophagy as a therapeutic target for HAND

Since autophagy works at the host cellular level to induce degradation of HIV, there has 

been substantial interest in identifying therapeutics that can manipulate this cellular process 

in combination with antiretroviral drugs to treat and potentially eradicate HIV. In addition, 

since autophagy is a naturally occurring host clearance mechanism, it is unlikely that viral 

resistance would develop.

Rapamycin, a specific mTOR inhibitor and inducer of autophagy, inhibits HIV replication 

through both the downregulation of CCR5 (64) and the induction of autophagy (55). It also 

inhibits HIV infection in human peripheral blood leukocyte-reconstituted SCID mice and 

synergizes with a number of inhibitors of HIV entry (65). However, rapamycin has 

immunosuppressive and other adverse effects that limit its potential usefulness in the 

treatment of HIV.

Vitamin D has well known antimicrobial effects, and low levels of 25-

hydroxycholecalciferol (25D3) and/or the active metabolite 1a,25-dehydroxycholecalciferol 

(1,25D3) are associated with increased risk of or severity of infection with HIV (64, 66), 

thought to occur as a result of upregulation of autophagy (51, 67). Vitamin D has also been 

implicated in the autophagic response to PAMPs by PRRs as TLR7/8 stimulation activates a 

variety of antiviral effector functions including the induction of autophagy (50, 68).

A recent study described production of a cell-permeable HIV Tat-Beclin-1 fusion protein 

that binds to Nef and markedly inhibits HIV replication in primary human macrophages 

through the induction of autophagy (69). This peptide, which also restricts replication of a 

number of other viruses that cause encephalitis, holds therapeutic promise.

Conclusions

Surprisingly, after 30 years of intensely studying the HIV life cycle, we still are discovering 

new facets of this process, particularly in cells of macrophage lineage, which emphasize the 

complexity of this virus’s adaptations to host cell defenses. These new data emphasize the 

importance of innate defense mechanisms and basic homeostatic mechanisms for control of 

virus in the CNS, where adaptive immune mechanisms are inadequate. Manipulation of the 
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process of autophagy is attractive as a potential therapeutic target, but this complex 

mechanism requires further investigation.
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Key Points

• Macrophage tropic viruses require lower cell densities of CD4.

• CTIP-2 promotes HIV latency in macrophages by multiple mechanisms.

• HIV initiates inflammatory cascades in both infected and bystander cells; the 

interplay between the two is what dictates neurological disease.

• Host factors such as age and genetics are important determinants of 

susceptibility to HAND.

• The increased severity of HIV CNS disease in aging patients is likely at least 

partly associated with age-related declines in cellular autophagy.
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Fig 1. 
Recent discoveries in HIV life cycle, innate immunity, and autophagy in the CNS. Virus 

binding and fusion with macrophages is based on divergent Env proteins’ ability to engage 

cell surface receptors despite a low CD4 density. Once in the cell, viral replication is 

influenced by a number of host and viral factors. CTIP-2 can form an inhibitory complex 

with P-TEFb, shutting down viral transcription and inducing latency. CXCL8 production by 

multiple cells in the brain enhances viral replication via NFkB signaling. miRNAs, 

inhibitors of mRNA translation, can affect nearly any stage of viral life cycle by targeting 

viral mRNAs or by targeting mRNAs of inhibitors or enhancers of viral replication. 

Furthermore, HIV Vpr can affect global miRNA production by degrading Dicer. PRRs 

(TLRs, RIG-I, IFNR) respond to interstitial and cytoplasmic viral epitopes and intracellular 

cytokines inducing expression of signaling molecules, which produce restriction factors such 
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as Mx1 and tetherin. The viral protein Nef can subvert these innate host responses by 

increasing host clearance of viral components though autophagy. Inversely Tat can further 

increase replication by inhibiting the autophagosome.
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