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Objective. To assess the hypothesis that postoperative survival exhibits heterogeneity
associated with the timing of quality metrics.
Data Sources. Retrospective observational study using the Nationwide Inpatient
Sample from 2005 through 2009.
StudyDesign. Survival analysis was performed on all admission records with a proce-
dure code for major cardiac surgery (n = 595,089). The day-by-day hazard function
for all-cause in-hospital mortality at 1-day intervals was analyzed using joinpoint
regression (a data-drivenmethod of testing for changes in hazard).
Data ExtractionMethods. Acomprehensive analysis of a publicly available national
administrative database was performed.
Principal Findings. Statistically significant shifts in the pattern of postoperative mor-
tality occurred at day 6 (95 percent CI = day 5–8) and day 30 (95 percent CI = day
20–35).
Conclusions. While the shift at day 6 plausibly can be attributed to the separation
between routine recovery and a complicated postoperative course, the abrupt increase
in mortality at day 30 has no clear organic etiology. This analysis raises the possibility
that this observed shift may be related to clinician behavior because of the use of 30-
day mortality as a quality metric, but further studies will be required to establish causal-
ity.
Key Words. Cardiac surgery, quality metrics, Nationwide Inpatient Sample,
surgical outcomes, Hawthorne effect

Despite substantial improvements in outcomes over the past decades (Hickey
et al. 2013), cardiac surgery remains a field with comparatively high postoper-
ative mortality. As with many areas in medicine, 30-day mortality is one of the
most common outcome measures used to describe and assess the postopera-
tive course of cardiac surgical patients. The premise behind the use of this
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metric is that it provides a uniform way of evaluating the aggregate outcomes
that result from the performance of surgeons, hospitals, and perioperative sur-
gical care teams (including anesthesiologists, intensivists, nurses, and consult-
ing and supporting services). In addition to its use as a standard clinical
endpoint for research, 30-day mortality has become a benchmark for quality
assurance and improvement used by hospitals, professional groups, and
patient safety organizations (Vaduganathan, Bonow, and Gheorghiade 2013),
a metric for publicly available interhospital comparisons (for instance, by the
Centers for Medicare and Medicaid Services [QualityNet 2013]), and it has
been suggested for use in individual-level physician comparisons and pay-for-
performance schema (Werner 2012).

Most discussions focus on the observational function of quality mea-
sures. Little attention has been paid to the possibility that use of a quality
benchmark may exert feedback effects on the phenomenon being observed—
for instance, that the act of measuring 30-day mortality may alter patterns of
mortality. Some or all of the actors who play a role in the care of cardiac surgi-
cal patients have the potential to exhibit different behavior in response to the
use of a quality benchmark. Physician decisions about the use of aggressive
interventions for critically ill patients, the timing of family meetings and shifts
in treatment priorities, and hospital decisions about the design and coordina-
tion of systems for caring for these patients (e.g., inpatient and outpatient reha-
bilitation, hospice, and palliative care services) may interact with the implicit
incentives created by the use of a short-term survival outcome as a quality
metric.

We used the Nationwide Inpatient Sample to examine survival patterns
after major cardiac surgery and assess the hypothesis that postoperative sur-
vival exhibits a heterogeneous temporal pattern with shifts that may be associ-
ated with the timing of assessments used as quality metrics, such as 30-day
mortality.
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METHODS

The Stanford University Institutional Review Board granted an exemption
from review because this research uses publicly available, de-identified data.
Administrative records were extracted from discharge datasets for the years
2005–2009 from the Nationwide Inpatient Sample (NIS), Healthcare Cost
and Utilization Project (HCUP), Agency for Healthcare Research and Quality
(HCUP 2013). HCUP-supplied Clinical Classifications Software (CCS) for
international classification of diseases, ninth revision, clinical modification
(ICD-9-CM) was used to generate procedural classification codes.

Using the HCUP definition of Procedure Classes for diagnostic and
therapeutic procedures, discharge records in which a major cardiac operation
(revascularization and/or valve repair or replacement) was performed were
identified (L2PCCS1 codes 7.1 and 7.2). Survival analysis was carried out for
the primary outcomes of all-cause in-hospital mortality, as recorded in the
NIS dataset (variable DIED). Right-censoring at a survival time equal to the
length of stay was performed for records without an in-hospital death. Life
tables were used to estimate the day-by-day hazard rate (occurrence of mortal-
ity in a specific time interval conditional on survival to the beginning of that
interval) for 1-day intervals up to 60 days after surgery.

To determine whether a change in the hazard function occurred and
to identify the timing of any change(s), joinpoint regression of hazard rates
was used. Joinpoint regression methodology has been described previously
(Kim et al. 2000), but in brief, it is used for time-ordered data and uses
least-squares estimation to fit a model with up to kmax joinpoints, that is,
points of discrete change in the hazard function. The regression process
begins with a model of 0 joinpoints (i.e., a straight line) and performs per-
mutation testing with an alternate hypothesis of ki joinpoints in an iterative
fashion beginning with k = 1 up to kmax. The p-value for each iteration is
obtained using Monte Carlo methods with a Bonferroni-corrected asymp-
totic significance level.

A number of methods have been proposed for investigating the ques-
tions we asked, that is, whether the observed hazard rate changed; if so, how
many times, and when. Change point analysis using Taylor’s cumulative sums
method with bootstrapping has been described for detecting multiple change
points in time-ordered data (Kass-Hout et al. 2012), but it relies on assump-
tions of identically distributed and independent observations. Day-to-day haz-
ard rates for postoperative mortality are not likely to be independent. Several

Temporal Changes in Survival after Cardiac Surgery 1661



authors have described similar data-driven, least-squares-based methods of
detecting a single change point (Matthews and Farewell 1982; Gijbels and
G€urler 2003). An iterative extension of these methods has been used to detect
multiple change points (Goodman, Li, and Tiwari 2011), and others have
employed an alternative Bayesian approach (Wilson, Nassar, and Gold 2010),
but these methods all have focused on data that demonstrate a piecewise con-
stant hazard instead of a piecewise linear hazard. In contradistinction to clini-
cal settings with a steady hazard rate (e.g., cancer incidence in a broad
population), the hazard function overall for in-hospital mortality after surgery
is not constant, as routine recovery selects for increasing hazard with each
postoperative day among the population remaining at risk (those still in the
hospital). Therefore, a piecewise linear hazard model is more appropriate than
a piecewise constant hazard model in this setting.

Joinpoint regression has similarities with the use of nonlinear least
squares regression modeling (e.g., PROC NLIN in SAS) to create a piecewise
linear model, but it does not require the a priori specification of the number of
points of change in the hazard function. Instead, it allows iterative hypothesis
testing such that model with the optimal number of points of change (join-
points) can be determined from the data, including the calculation of confi-
dence intervals (CIs) around the joinpoints (Lerman 1980). Joinpoint
regression also allows for appropriate methodological compensation for data
which do not have a constant variance (heteroscedasticity) or are not indepen-
dent observations (autocorrelation).

After the timing of changes in the hazard function were identified
through joinpoint regression, subsequent piecewise linear regression was per-
formed on each segment of the hazard function to allow for discontinuity at
the joinpoints in the final illustrative model. This additional step of repeating
modeling with a three-segment piecewise linear regression model allowed us
to combine the advantages of joinpoint regression (first using a data-driven
process to determine the number and location of changes in the hazard) with
the ability to model discontinuity at the points of change.

Initial dataset definition, survival analysis, and linear regression were
performed using SAS (SAS 9.3; SAS Institute, Cary, NC, USA). Joinpoint
regression was performed using dedicated software developed by the National
Cancer Institute ( Joinpoint Regression Program, Version 4.0; Statistical Meth-
odology and Applications Branch, NCI Surveillance Research Program,
Bethesda, MD, USA).With this software, a default value of kmax is determined
algorithmically based on the number of data points. The highest default kmax

(for large datasets) is 5, but values up to 9 can be employed at the cost of
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significantly increased computational intensity. We had no prior literature to
suggest a kmax greater than 5 would be needed, so we accepted the default
value of kmax = 5. These settings result in iterative testing for up to 5 joinpoints
separated by any number of days between joinpoints. For Monte Carlo simu-
lation, 4,500 permutations were used for testing. A standard-error-weighted
least squares modification was used to account for nonconstant variance.
Because the day-specific hazard rates demonstrated nonindependence, the
option of fitting an autocorrelated errors model based on the data was used to
correct for nonindependent observations.

RESULTS

Out of 63.9 million NIS admission records, 595,089 records were identified
that included a major cardiac operation. Death occurred in 19,454 (3.27 per-
cent) at a mean (� standard deviation) of 17.5 � 22.3 days. Figure 1 shows
the day-by-day hazard rate for each postoperative day up to 60 days after sur-
gery. Right-censoring was performed at a survival time equal to the length of
stay for all records without an in-hospital death (n = 575,635; 96.73 percent).
There was no loss to follow-up for the purposes of our analysis; in this data-
base of inpatient admissions, the absence of a recorded death indicates an alive
discharge.

Figure 1: Hazard Function (Mortality Events per Day) in One-Day Intervals
(Circles) for Mortality after Cardiac Surgery
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Details of the iterative Monte Carlo permutation testing for joinpoint
regression are shown in Table 1. The regression identified a piecewise linear
model with 2 joinpoints (p = .0002), located at day 6 (95 percent CI = day 5–
8) and day 30 (95 percent CI = day 20–35). The coefficient of determination
for the model (R2) was 0.951. Table 2 shows the detailed parameters of the
regression model. Figure 2 shows the fit of the regression model to the hazard
function.

Subsequent piecewise linear regression performed on each segment of
the hazard function (after identification of the timing of abrupt changes in the
hazard) allowed for an improved model (R2 = 0.998) because of the flexibility
of permitting discontinuity at the joinpoints. In particular, the joinpoint at day
30 appeared to be the locus of both an absolute increase in hazard and a

Table 2: Parameters for Joinpoint Regression Model and Piecewise Linear
RegressionModel with Discontinuity

Applicable Range (Day) Parameter Estimate Parameter Standard Error

Parameters for joinpoint regressionmodel
Intercept 1 1–6 0.00143157 0.000067926
Intercept 2 7–29 0.000023988 0.000115451
Intercept 3 30–60 0.007834307 0.00128956
Slope 1 1–6 0.0000773372 0.0000212525
Slope 2 7–29 0.0003119343 0.0000099508
Slope 3 30–60 0.0000515903 0.0000309763

Parameters for piecewise linear regressionmodel with discontinuity
Intercept 1 1–6 0.0014542913 0.0001564724
Intercept 2 7–29 0.0005629491 0.0002404929
Intercept 3 30–60 0.0077530428 0.0008537572
Slope 1 1–6 0.0000729234 0.0000401784
Slope 2 7–29 0.0002754195 0.0000127790
Slope 3 30–60 0.0000560679 0.0000186084

Table 1: Monte Carlo Permutation Testing for Joinpoint Regression

Test Number
(Iteration)

Number of
Joinpoints,

Null Hypothesis

Number of
Joinpoints,

Alternative Hypothesis
Selected

Hypothesis p-Value
Bonferroni-Adjusted
significance level (a)

0 0 1 Alternative .00022 0.01667
1 1 2 Alternative .00022 0.025
2 2 3 Null .17 0.05
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change in slope of the day-to-day hazard function. This final model involved
three segments: day 1–6, day 6–30, and day 30–60 (full parameters are shown
in Table 2). The fit of this model to the hazard function is shown in Figure 3.

Figure 2: Hazard Function (Mortality Events per Day) in One-Day Intervals
(Circles) for Mortality after Cardiac Surgery with Overlay of Joinpoint
RegressionModel (Solid Line)

Figure 3: Hazard Function forMortality after Cardiac Surgery with Overlay
of Multi-Segment Discontinuous Piecewise Linear Regression Model (Solid
Lines). Open circles comprise segment one (day 1–6), shaded circles comprise
segment two (day 6–30), and squares comprise segment three (day 30–60)
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DISCUSSION

The principal finding of this study is that postoperative mortality after major
cardiac surgery exhibits a heterogeneous temporal pattern, with abrupt
changes in the hazard function observed at day 6 and 30.

The major limitation of this study is that it provides information on the
occurrence of postoperative deaths, without the contextual information that
would be required to ascribe specific causal explanations to the changes
observed. We can only make a few informed speculations about the observed
temporal patterns in mortality. The earliest phase following surgery appears
to be characterized by the lowest hazard for mortality (with a relative peak at
day 2); this may reflect the high success rate of modern surgical and intensive
care practices in supporting even the sickest of patients through an operation
and immediate postoperative period. The first change in hazard, identified at
day 6, may reflect the survivorship of those patients with a routine postopera-
tive recovery, such that those who remain at risk (in the hospital) begin dem-
onstrating an increased hazard.

The second change in hazard, identified at day 30, appears to involve
both an abrupt increase in hazard relative to the general pattern of steady per-
day increases after day 6 (i.e., discontinuity) and a change in slope within that
day-to-day pattern (Figure 3). Since our analysis does not provide patient-spe-
cific information on the timing of complications or clinical deterioration that
ultimately lead to in-hospital postoperative death, it remains theoretically pos-
sible that the observed phenomenon reflects an organic clinical etiology. How-
ever, we cannot hypothesize a change in the risk of infection, deterioration in
cardiac function, respiratory complications, renal injury, or other precipitat-
ing clinical factors which should predict an abrupt change in the risk of postop-
erative death at or around day 30.

An alternative explanation is an association between the use of 30-day
mortality as a key quality indicator and the timing of shifts in clinical treatment
priorities and strategies. Quality benchmarks have as their expressed aim the
alteration of clinician behavior. Most existing discussion of quality metrics
focuses on two possibilities—they will produce desirable changes in provider
behavior, or they will fail to produce any significant changes in provider
behavior (Werner 2012). A third possibility—that they may also have unin-
tended and/or undesired effects on provider behavior (what has been called
the “observer effect” or “Hawthorne effect”)—should be considered. Further
inquiry will be needed to determine whether the observations in the present
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analysis can be explained by such an effect, but our results raise it as a plausi-
ble possibility.

Several other limitations should be noted. First, administrative data are
always subject to coding error and a lag time in availability for analysis (e.g.,
this analysis only reflects patient data through 2009). We are not aware of any
reason that these limitations should introduce any systematic error that would
alter the internal validity of the current observations.

Second, while the iterative methods used in joinpoint regression are
comparatively powerful, the observation of a joinpoint at day 30 must be
interpreted with the knowledge that a narrow CI for this estimate is not pres-
ent (95 percent CI = day 20–35), despite the very large sample size and a
highly significant p-value (p = .0002) for the model containing that joinpoint.
We suspect that the width of the CI owes itself to the subtlety of the phenome-
non we observed, and it reinforces the notion that the joinpoint estimate at
day 30 we observed should be confirmed with further analyses.

Third, heterogeneity exists in the use of 30-day mortality as a quality
measure in addition to or in place of other metrics ( Jacobs et al. 2006; Swin-
kels and Plokker 2010). Inpatient mortality (regardless of timing), global 30-
day mortality (including patients who had already been discharged from the
hospital), or combinations of these metrics are used variously by hospitals,
medical groups, professional societies, local and state health departments, and
consumer websites. In addition, other quality metrics that assess dimensions
of quality of care beyond mortality (admittedly a crude outcome measure) are
used, and they surely play into whatever complex relationship exists between
quality assessment and provider behavior. However, the fact that 30-day mor-
tality is not the sole quality benchmark should not diminish the relative impor-
tance of the present observations.

Fourth, we should note that we have included patients having more than
one specific type of cardiac surgical procedure. While average mortality and
recovery are not identical between, for instance, valve and nonvalve surgical
populations, our reasons for not limiting the analysis to a single procedural
subgroup are twofold: one, we sought to optimize sample size over as narrow
a timeframe as possible to maximize the signal-to-noise ratio in examining a
subtle clinical phenomenon. Two, we believe that procedural distinctions
within the overall population of cardiac surgical patients may become pro-
gressively less important as one departs from the curve of routine or expected
recovery. Those patients in the cardiac surgical intensive care unit at or
around the 30-day mark have all experienced a similarly complicated,
nonroutine postoperative course, and—we suspect—therefore represent
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something of a more procedure-independent single population than they
might have on postoperative day 2.

Fifth, we also should note that while we have examined this phenome-
non in cardiac surgery, we have no reason to believe that it should be exclu-
sive to this setting. But identification of its presence in other clinical settings
may be more difficult if the absolute mortality rate is lower, because of consid-
erations of power.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Appendix SA1: AuthorMatrix.
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