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Abstract

Drug addiction is a chronically relapsing disorder characterized by loss of control over intake and 

dysregulation of stress-related brain emotional systems. Since the discovery by Wylie Vale and his 

colleagues of corticotropin-releasing factor (CRF) and the structurally-related urocortins, CRF 

systems have emerged as mediators of the body’s response to stress. Relatedly, CRF systems have 

a prominent role in driving addiction via actions in the central extended amygdala, producing 

anxiety-like behavior, reward deficits, excessive, compulsive-like drug self-administration and 

stress-induced reinstatement of drug seeking. CRF neuron activation in the medial prefrontal 

cortex may also contribute to the loss of control. Polymorphisms in CRF system molecules are 

associated with drug use phenotypes in humans, often in interaction with stress history. Drug 

discovery efforts have yielded brain-penetrant CRF1 antagonists with activity in preclinical 

models of addiction.. The results support the hypothesis that brain CRF-CRF1 systems contribute 

to the etiology and maintenance of addiction.
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Introduction

According to a 2012 report by the Substance Abuse and Mental Health Services 

Administration, within the past 12 months, approximately 15% of the population aged 12 

and older experienced substance use disorders on alcohol, cigarettes, or an illegal drug. 

Alcohol use disorders alone have an annual prevalence of approximately 10% and account 
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for 4.6% of all disability-adjusted life-years in developed countries (Rehm et al., 2009). 

Available pharmacotherapies for substance use disorders have only modest long-term 

efficacy and are underutilized (Heilig et al., 2011). Since the successive discovery by Wylie 

Vale and his colleagues of corticotropin-releasing factor (CRF) (Vale et al., 1981), the 

structurally-related urocortins (Ucn 1, Ucn 2, Ucn 3), and their cognate receptors (CRF1, 

CRF2) (Bale and Vale, 2004;Fekete and Zorrilla, 2007), CRF systems have emerged as 

therapeutic targets for substance abuse.

CRF binds with high and moderate potency to CRF1 and CRF2 receptors, respectively. Ucn 

1 is a high-affinity agonist at both of these G-protein coupled receptors, whereas the type 2 

urocortins (Ucn 2 and Ucn 3) are selective CRF2 receptor agonists (Bale and Vale, 

2004;Zorrilla and Koob, 2004;Fekete and Zorrilla, 2007). Vale and colleagues first 

demonstrated that CRF initiates the hypothalamic-pituitary-adrenal (HPA) axis 

neuroendocrine stress response by binding CRF1 receptors in the anterior pituitary after 

release into portal blood. In addition, however, CRF1 receptors are widely distributed in 

stress-responsive brain regions, including the neocortex, central extended amygdala, medial 

septum, hippocampus, thalamus, cerebellum, and autonomic midbrain and hindbrain nuclei 

(Grigoriadis et al., 1996; Primus et al., 1997;Sanchez et al., 1999;Van Pett et al., 2000). The 

brain CRF1 receptor distribution resembles the distribution of its natural ligands CRF (Fig. 

1) and Ucn 1 and accounts for the dissociable, non-endocrine role of extrahypothalamic 

CRF1 systems (i.e., outside the HPA axis) to mediate behavioral and autonomic stress 

responses (Swanson et al., 1983;Kozicz et al., 1998;Bale and Vale, 2004;Zorrilla and Koob, 

2004;Fekete and Zorrilla, 2007).

Extensive preclinical data suggest that extrahypothalamic CRF1 systems subserve negative 

emotional states. Accordingly, small-molecule CRF1 antagonists are being developed as 

potential treatments for affective-like disorders, including posttraumatic stress disorder, 

irritable bowel syndrome, anxiety disorders, and major depression (Zorrilla and Koob, 

2004;Holsboer and Ising, 2008;Zorrilla and Koob, 2010;Koob and Zorrilla, 2012;Zorrilla et 

al., 2013a). Indeed, Dr. Vale was a major force in the pharmaceutical development of drug-

like small-molecule CRF1 antagonists. He co-founded Neurocrine Biosciences, which 

successfully developed a wide range of such compounds, spanning multiple patents.

One proposed clinical indication for CRF1 antagonists is drug addiction (Fig. 1), where the 

brain stress systems are hypothesized to impact key elements of the addiction cycle. Drug 

addiction is a chronically relapsing disorder characterized by loss of control over drug intake 

and emergence of a negative emotional state during abstinence. Drug addiction has been 

conceptualized as a cycle progressing through three stages—binge/intoxication, withdrawal/
negative affect, and preoccupation/anticipation—that become worse over time and 

ultimately lead to a severe neurobiological disorder. CRF systems are hypothesized to play a 

key role in all three stages of the addiction cycle but particularly in the withdrawal/negative 
affect stage. Chronic use of a drug of abuse, even if initiated for its rewarding effects, 

increasingly leads to negative emotional symptoms and negatively reinforced substance use. 

An extension of the “opponent process theory of affective regulation” (Solomon and Corbit, 

1974), this hypothesis of addiction proposes that drugs of abuse initially activate brain 

structures that subserve positive emotional states (e.g., pleasure, contentment). The positive 
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reinforcing effects of drugs are regulated in part by the ventral striatum and extended 

amygdala reward system, as well as by dopaminergic and opioid inputs from the ventral 

tegmental area (VTA) and arcuate nucleus of the hypothalamus, respectively. To maintain 

emotional homeostasis, however, a counter-regulatory opponent process then decreases 

mood and increases vigilance/tension via downregulation of brain reward systems (e.g., 

ventral striatum) and upregulation of brain stress systems, including CRF and 

norepinephrine systems in the extended amygdala (Heilig and Koob, 2007;Heilig et al., 

2010a;Heilig et al., 2010b;Koob and Zorrilla, 2010;Breese et al., 2011;Heilig et al., 

2011;Logrip et al., 2011;Koob and Zorrilla, 2012). With continued cycles of intoxication/

withdrawal, the opponent process allostatically predominates over the primary rewarding 

process (Fig. 2). As a result, more substance of abuse is needed simply to maintain 

euthymia. If drug use stops, negative emotional symptoms emerge (i.e., acute withdrawal: 

anxiety, dysphoria, irritability). With a sufficient drug use history, stress-like symptoms of 

dysphoria may episodically and spontaneously resurge even weeks or months after 

detoxification (i.e., protracted withdrawal). Furthermore, exaggerated responses to otherwise 

mild stressors may be seen despite continued abstinence. Under this conceptualization of 

addiction, substance abuse escalates because the drug of abuse mitigates the counter-

regulatory negative emotional symptoms of acute and protracted withdrawal (Heilig and 

Koob, 2007;Koob and Zorrilla, 2010;Zorrilla et al., 2013a).

The reviewed opponent process putatively of otherwise silent brain CRF1 receptor stress 

systems of the extended amygdala. For example, in dependent rat models, acute alcohol 

withdrawal activates CRF systems in the central nucleus of the amygdala (CeA) (Merlo Pich 

et al., 1995;Zorrilla et al., 2001;Funk et al., 2006;Roberto et al., 2010) and bed nucleus of 

the stria terminalis (Olive et al., 2002). Extracellular CRF in rats also increased in the CeA 

during precipitated withdrawal from chronic nicotine (George et al., 2007), withdrawal from 

binge cocaine self-administration (Richter and Weiss, 1999), and precipitated withdrawal 

from opioids (Weiss et al., 2001) and cannabinoids (Rodriguez de Fonseca et al., 1997). 

Nicotine withdrawal in rats also increased CeA CRF mRNA and, especially in females, NAc 

CRF mRNA levels (Aydin et al., 2011;Torres et al., 2013). Conversely, amygdala CRF 

tissue content is reduced during acute withdrawal from ethanol exposure (Zorrilla et al., 

2001;Funk et al., 2006;Wills et al., 2010) and from binge cocaine self-administration 

(Zorrilla et al., 2001;Zorrilla et al., 2012), suggesting degradation and depletion after 

sustained secretion. Supporting a functional role for central extended amygdala CRF1 

receptor activation in the negative affect/withdrawal stage, site-specific injections of CRF 

receptor antagonists into the central amygdala reduce anxiety-like behavior, motivational 

deficits for other reinforcers, and excessive self-administration of addictive substances 

during acute withdrawal (Heilig and Koob, 2007;Heilig et al., 2010b;Koob and Zorrilla, 

2010;Logrip et al., 2011;Parylak et al., 2011).

The opponent process also may involve pituitary CRF1-dependent activation of the HPA-

axis, reflected by elevated ACTH and corticosteroids, because withdrawal from all drugs of 

abuse studied to date leads to an activated HPA stress response. Interestingly, 

glucocorticoids, effectors of the HPA-axis, can activate and sensitize CRF-CRF1 systems of 

the extended amygdala, causally linking the neuroendocrine and extrahypothalamic CRF 

system stress responses. Consistent with a functional role for the HPA-axis component of 
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the opponent process, glucocorticoid receptor antagonists can reduce the development and 

expression of excessive alcohol self-administration that results from repeated, intermittent 

ethanol intoxication (Vendruscolo et al., 2012).

Of preclinical relevance, systemic injections of small molecule CRF1 receptor antagonists 

that block pituitary and brain CRF1 receptors can also reduce the heightened anxiety-like 

behavior in dependent rodents acutely withdrawn from alcohol at doses that do not alter the 

anxiety-like behavior of non-dependent animals (Knapp et al., 2004;Overstreet et al., 

2004;Breese et al., 2005a;Breese et al., 2005b;Gehlert et al., 2007;Sommer et al., 2008). 

Similarly, withdrawal from the repeated administration of cocaine, nicotine, cannabinoids, 

opiates, and benzodiazepines produces an anxiogenic-like response that can be reversed by 

intracranial administration of non-selective peptide CRF receptor antagonists (Sarnyai et al., 

1995;Rodriguez de Fonseca et al., 1997;Basso et al., 1999;Tucci et al., 2003) or systemic 

administration of brain-penetrant CRF1-selective nonpeptide receptor antagonists (George et 

al., 2007;Skelton et al., 2007;Park et al., 2013). Furthermore, the aversive state of opiate 

withdrawal and the decreased brain reward function associated with nicotine withdrawal are 

both CRF1 receptor-dependent (Contarino and Papaleo, 2005;Stinus et al., 2005;Bruijnzeel 

et al., 2007;Bruijnzeel et al., 2009;Bruijnzeel et al., 2012;Garcia-Carmona et al., 2012). 

Likewise, intracerebroventricular administration of a nonselective CRF1/2 antagonist 

ameliorated the decreased brain reward function resulting from ethanol withdrawal 

(Bruijnzeel et al., 2010). Supporting the motivational significance of these effects for 

addiction, systemic injections of small-molecule CRF1 antagonists reduced the increased 

alcohol intake of dependent or postdependent rodents (Sabino et al., 2006;Chu et al., 

2007;Funk et al., 2007;Gehlert et al., 2007;Gilpin et al., 2008;Richardson et al., 2008) as 

well as the increased intravenous self-administration of cocaine (Specio et al., 2008), 

nicotine (George et al., 2007), and heroin (Greenwell et al., 2009) in rats with a history of 

extended access to the drug of abuse. Similarly, both global (Chu et al., 2007) and 

conditional brain-specific Crhr1 knockout (Crhr1[NestinCre]) mice (Molander et al., 2012) 

show reduced ethanol intake during withdrawal in the postdependent state compared with 

their wildtype littermates.

CRF1 receptor knockout mice also drink less 20% v/v ethanol under basal conditions (Pastor 

et al., 2011). Moreover, both CRF and CRF1 knockout mice show reduced ethanol intake 

and blood ethanol concentrations in a murine model of scheduled, limited access to ethanol 

(“drinking-in-the-dark”) that can produce binge-like intake (Kaur et al., 2012), suggesting an 

early role for CRF in neuroadaptations associated with the binge/intoxication stage of the 

addiction cycle. Perhaps accordingly, systemic administration of small-molecule CRF1 

antagonists can reduce binge-like but not non-binge-like ethanol intake in C57BL/6J mice 

and outbred rats (Lowery et al., 2010;Cippitelli et al., 2012;Simms et al., 2013) (but see 

(Giardino and Ryabinin, 2013) for additional findings suggesting that these effects may not 

be specific for ethanol). Site-specific infusion of CRF1 antagonists into the CeA or VTA 

likewise could reduce heightened ethanol intake under intermittent access schedules 

(Lowery-Gionta et al., 2012;Hwa et al., 2013).

Many individuals who suffer from symptoms of anxiety or depression may turn to a 

substance of abuse for its potential anxiolytic (e.g., alcohol) or mood-enhancing (e.g., 
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cocaine) effects (Pohorecky, 1991). By reducing dysphoria, CRF1 receptor antagonists may 

help treat individuals who “self-medicate” their anxious or depressed state with a drug of 

abuse. Consistent with this hypothesis, small-molecule CRF1 receptor antagonists reduce 

alcohol drinking in rodent models with high innate anxiety, including genetically selected 

Marchigian Sardinian alcohol-preferring rats (Ciccocioppo et al., 2006;Hansson et al., 

2006;Hansson et al., 2007;Heilig and Koob, 2007;Sommer et al., 2008) and isolation-reared 

Fawn-hooded rats (Lodge and Lawrence, 2003) at doses that do not alter the intake of 

normal, outbred rodents.

We and others also found evidence that addiction-like activation of CRF systems may play a 

role in the motivational properties of palatable food. Specifically, rats acutely withdrawn 

from intermittent access to a high-sucrose, chocolate-flavored diet showed increased 

anxiety-like behavior (Cottone et al., 2009). As has been seen with substances of abuse, the 

increased anxiety-like behavior was accompanied by increased mRNA and peptide 

expression of CRF in the CeA; similar molecular changes were seen by Bale and colleagues 

in mice withdrawn from high-fat diet (Teegarden et al., 2009). Systemic pretreatment with 

the selective CRF1 antagonist R121919 blocked food withdrawal-associated anxiety at doses 

that did not alter the behavior of chow-fed controls. CRF1 antagonist pretreatment also 

decreased the magnitude of overeating of the palatable sucrose-rich diet by diet-cycled 

animals at doses that did not alter the food intake of chow-fed controls or of animals fed the 

sucrose-rich diet, but without a history of diet cycling. Moreover, R121919 reduced evoked 

inhibitory postsynaptic potentials in the CeA more in diet-cycled rats than in chow-fed 

controls, suggesting greater control over CeA GABAergic neurotransmission by CRF1 

receptors. The findings resemble the enhanced modulatory influence of CRF1 antagonists on 

CeA GABAergic synaptic transmission that is seen during withdrawal from alcohol 

(Roberto et al., 2010). When diet-cycled animals had access to the preferred, sucrose-rich 

diet, both their anxiety-like behavior and CeA CRF levels normalized, supporting the 

hypothesis that activation of the amygdala CRF-CRF1 system helped subserve the palatable 

food withdrawal-like state.

Protracted withdrawal

Symptoms of negative affect can persist for weeks and months after detoxification from 

drugs of abuse (Alling et al., 1982). These negative emotional symptoms of protracted 

withdrawal, including anger, frustration, sadness, anxiety and guilt, are subacute and appear 

to be key precipitants of relapse (Hershon, 1977;Lowman et al., 1996;Zywiak et al., 

1996;Annis et al., 1998) in the preoccupation/anticipation stage of addiction. 

Neuroadaptations in amygdala CRF1 systems have been proposed to promote such 

protracted abstinence syndromes. Consistent with this hypothesis, increased levels of CRF 

and the CRF1 receptor have been reported weeks after detoxification from repeated cycles of 

alcohol intoxication/withdrawal in animal models (Zorrilla et al., 2001;Sommer et al., 2008), 

and CRF1 receptor antagonists reduce the potentiated anxiogenic-like and ethanol intake 

behavior responses to otherwise ineffectual stressors seen during protracted withdrawal 

(Rimondini et al., 2002;Valdez et al., 2002b;Valdez et al., 2003b;Sommer et al., 2008). 

CRF1 antagonists also attenuate the increased spontaneous anxietylike behavior (Overstreet 

et al., 2002;Valdez et al., 2002b;Breese et al., 2005a;Breese et al., 2005b;Zhao et al., 
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2007b;Sommer et al., 2008) and alcohol intake that can be seen in postdependent rats even 

under low exteroceptive stress conditions (Rimondini et al., 2002;Valdez et al., 

2002b;Sommer et al., 2008). Both sets of findings are significant because the resurgence of 

negative emotional states during protracted withdrawal is a major predictor of relapse in 

alcoholics (Mossberg et al., 1985;Pickens et al., 1985).

Stress-induced reinstatement

Exposure to external stressors can also increase drug craving (Childress et al., 1994;Cooney 

et al., 1997;Sinha et al., 2000) and lead to relapse. This stress-induced relapse is 

hypothesized to be motivated by self-medication of the associated negative emotional 

symptoms of stress (Lowman et al., 1996;Zywiak et al., 1996), in a fashion similar to self-

medication of symptoms of protracted withdrawal, but here elicited by external stimuli. 

Consistent with this hypothesis, systemic injection of yohimbine, an α2 adrenoceptor 

antagonist that induces stress-and anxiety-like responses (Bremner et al., 1996), can induce 

alcohol and heroin craving in human drug addicts (Stine et al., 2002;Umhau et al., 2011). 

Moreover, yohimbine can reinstate drug-seeking behavior in rats (Shepard et al., 

2004;Feltenstein et al., 2012) and monkeys (Lee et al., 2004), as well as the seeking of 

alcohol (Marinelli et al., 2007) or palatable food in rats (Ghitza et al., 2006). Supporting a 

role for CRF systems in this relapse mechanism, yohimbine-induced reinstatement of 

substance-seeking can be prevented by systemic pretreatment with brain-penetrant CRF1 

receptor antagonists or intracranial pretreatment with peptide CRF receptor antagonists (Le 

et al., 2002;Marinelli et al., 2007;Shalev et al., 2010).

Likewise, CRF1 antagonists can reduce stressor-induced reinstatement of substance-seeking 

in animal models, suggesting a key role for CRF in the preoccupation/anticipation stage of 

the addiction cycle. For example, systemic injections of CP154,526 attenuated footshock-

induced reinstatement of alcohol seeking in nondependent rats (Le et al., 2000b), and 

subsequent studies showed that antalarmin and MTIP, brain-penetrant nonpeptide CRF1 

antagonists, likewise attenuated footshock-induced reinstatement of alcohol seeking, 

particularly in alcohol-dependent rats and genetically selected, Marchigian Sardinian 

alcohol-preferring rats (Gehlert et al., 2007), each of which show increased activity of 

extended amygdala CRF systems (Hansson et al., 2006;Francesconi et al., 2009;Roberto et 

al., 2010). Mixed CRF1/CRF2 antagonists injected intracranially into the extended 

amygdala, median raphe, and VTA (see below for details) and small-molecule CRF1 

antagonists administered systemically also blocked stressor-induced reinstatement of 

cocaine-, opiate-, nicotine-, and methamphetamine-seeking behavior (Shaham et al., 

1998;Le et al., 2000a;Lu et al., 2003;Shaham et al., 2003;Bruijnzeel et al., 2009;Nawata et 

al., 2012). A CRF1 antagonist also reduced social defeat stress-induced locomotor 

sensitization to cocaine and escalated “binge” operant self-administration of cocaine 

(Boyson et al., 2011) as well as stress-induced reinstatement of cocaine-seeking behavior in 

rats with a history of extended access to cocaine (Blacktop et al., 2011). A selective CRF1 

antagonist reduced shock-induced reinstatement of nicotine-seeking behavior (Plaza-Zabala 

et al., 2010). Finally, CRF1 knockout mice were resistant to the ability of repeated forced 

swim stress to increase ethanol intake following deprivation as compared to wildtype mice 

(Pastor et al., 2011), and conditional brain-specific Crhr1 knockout (Crhr1[NestinCre]) mice 
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were partly resistant to the ability of social defeat stress and forced swim stress to increase 

ethanol intake (Molander et al., 2012).

CRF1 antagonists are ineffective in blocking cue-, substance-, and context-induced 

reinstatement, however, indicating specificity of their actions on the stress component of the 

addiction cycle. This specificity of action is consistent with the unique neuroanatomical and 

neuropharmacological bases for stress-induced reinstatement as contrasted from 

overlapping, but distinct, neurocircuits that differentially subserve drug prime- or drug cue- 

(discrete, discriminative or contextual) induced reinstatement (see (Koob, 2008;Steketee and 

Kalivas, 2011;Bossert et al., 2013) for reviews).

Data indicate that stressor-induced reinstatement is not mediated by activation of the HPA 

axis. For example, adrenalectomy did not alter fooshock-induced reinstatement (Le et al., 

2000b), and antalarmin had no effect on yohimbine-induced corticosterone secretion at 

doses that reduced “relapse” behavior (Marinelli et al., 2007). Rather, CRF1 receptor 

antagonists can reduce stress-induced reinstatement via extrahypothalamic brain sites, as has 

been shown for alcohol (Le et al., 2000b), cocaine (Erb et al., 1998), heroin (Shaham et al., 

1997), nicotine (Zislis et al., 2007), and methamphetamine (Nawata et al., 2012). For 

example, site-specific blockade of CRF receptors in the median raphe nucleus (Le et al., 

2002;Le et al., 2013) was sufficient to attenuate footshock- and yohimbine-induced 

reinstatement of alcohol seeking. Likewise, intracerebral injections of a mixed CRF1/CRF2 

antagonist or a small-molecule CRF1 antagonist into the bed nucleus of the stria terminalis 

or VTA, but not the amygdala or nucleus accumbens (NAc), reduced reinstatement of 

substance-seeking behavior (Lu et al., 2003;Shaham et al., 2003). The results agree with 

other evidence that activation of extrahypothalamic CRF sites subserves stress-induced 

reinstatement behavior (Shaham et al., 1997;Erb et al., 1998;Wang et al., 2005;Wang et al., 

2006;Blacktop et al., 2011). Consistent with this hypothesis, intra-VTA (Wang et al., 2005) 

or intracerebroventricular (Blacktop et al., 2011;Kupferschmidt et al., 2011;Brown et al., 

2012;Buffalari et al., 2012;Kupferschmidt et al., 2012) infusion of CRF can reinstate 

cocaine-seeking behavior in rats.

Some evidence supports a role for NAc CRF1 systems in promoting substance consumption, 

if not seeking, during stress. For example, restraint stress during deprivation from ethanol 

can stimulate increased ethanol intake upon renewed access in ethanol-preferring P rats, an 

effect that can be blocked by intra-NAc, but not intra-amygdala, intra-dorsal raphe, or intra-

VTA, administration of a CRF1 antagonist (Knapp et al., 2011). Consistent with above, CRF 

injection into the NAc, but not VTA, raphe, or amygdala, can potentiate ethanol intake 

following a deprivation period (Knapp et al., 2011). More research is needed to determine 

conditions under and mechanisms via which CRF1 systems of the VTA and NAc may 

differentially influence reinstatement of seeking vs. consummatory behavior, respectively.

Corticotropin-releasing factor, stress, and the frontal cortex

Converging evidence may link the impairment of medial prefrontal cortex (mPFC) cognitive 

function, activation of CRF in the PFC, and overactivation of the CeA with the development 

of compulsive-like responding for drugs of abuse, again suggesting a role for CRF in the 
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binge/intoxication stage of the addiction cycle (Briand et al., 2008a;Briand et al., 

2008b;George et al., 2008). Extended access to drugs of abuse, such as cocaine self-

administration, can induces a compulsive-like pattern of intake taking that associates with 

impaired working memory (George et al., 2008). Whereas long-access (LgA) and short-

access (ShA) rats both exhibit mostly correct responses in a delayed non-matching-to-

sample task under low cognitive demand (delay < 10 s), working memory performance of 

LgA rats is substantially impaired by increasing the delay. The magnitude of escalation of 

cocaine intake correlates directly with the impaired working memory performance at the 

long delay. Furthermore, deficits in working memory were accompanied by a decreased 

density of dorsomedial PFC (dmPFC) neurons or oligodendrocytes that persisted for months 

despite cocaine cessation. Thus, dmPFC dysfunction might contribute to the loss of control 

associated with compulsive drug use and facilitate the progression to drug addiction.

CRF may be implicated in the reviewed frontal cortex dysfunction. Rats receiving chronic 

intermittent access to two-bottle choice alcohol drinking, a paradigm that leads to escalated 

alcohol intake (Wise, 1973;Simms et al., 2008), show increased activation of GABA and 

CRF neurons in the mPFC during abstinence. Working memory impairments in these rats 

correlate directly with greater alcohol drinking during acute abstinence (George et al., 2012). 

Abstinence was also associated with a functional disconnection of the mPFC and CeA, but 

not hippocampus or NAc. The results show a recruitment of a subset of GABA and CRF 

neurons in the mPFC during alcohol withdrawal and suggest that disconnection of the PFC-

CeA pathway may be key to impaired executive control over motivated behavior. In 

summary, dysregulation of mPFC interneurons may be an early index of the transition to 

alcohol dependence.

Clinical trials of CRF1 receptor antagonists in addiction

Collectively, the reviewed studies demonstrate a key role for brain CRF1 receptors in three 

addiction-related domains: (1) negative emotional symptoms of acute and protracted 

withdrawal that can occur sans exteroceptive stress, (2) escalated, compulsive-like substance 

intake (e.g., with substance dependence), and (3) stress-induced relapse to substance 

seeking. Accordingly, small-molecule CRF1 antagonists are currently in clinical trials for 

stress-related aspects of the addiction process. GlaxoSmithKline and the National Institutes 

of Health (NIH) are evaluating whether verucerfont can reduce stress-induced alcohol 

craving in anxious, stress-reactive alcoholic women (NCT01187511). Bristol Myers Squibb 

and NIH are testing whether pexacerfont can prevent stress-induced craving for palatable 

food in dieters (NCT01656577), stress-induced craving for tobacco in abstaining smokers 

(NCT01557556), and stress-induced craving for alcohol in anxious alcoholic women 

(NCT01227980) (Zorrilla et al., 2013a).

Functional and genetic heterogeneity of substance use disorders

The effectiveness of medications for substance use disorders differs across individuals and 

even within individuals at different times of their disease process (Heilig et al., 2010b;Koob 

and Zorrilla, 2010;Heilig et al., 2011;Logrip et al., 2011;Logrip et al., 2012). Based on the 

reviewed evidence, CRF1 receptor antagonists would be expected to be most effective if 
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substance use has transitioned to use driven by negative reinforcement (withdrawal/negative 
affect) and to protect against stress-induced relapse (stress-related craving). On the other 

hand, CRF1 antagonists would be predicted to less effectively reduce reward-motivated, 

recreational substance abuse earlier in the addiction process (Heilig and Koob, 2007) or to 

mitigate relapse episodes that were precipitated by cues or contexts associated with previous 

drug taking (Liu and Weiss, 2002).

Given that substance use disorders are partly heritable, pharmacogenetic differences also 

may be relevant to CRF1 antagonist pharmacotherapy, as is true of other treatments (Heilig 

et al., 2011;Sinha, 2011). Indeed, animal models support the hypothesis that gene variants 

for CRF system molecules may promote negatively-reinforced alcohol intake. For example, 

many msP alcohol-preferring rats carry two G-to-A polymorphisms in allelic identity with 

one another in the distal promoter of the Crhr1 gene. These mutations are not seen in other 

alcohol-preferring lines or outbred rats (Hansson et al., 2006; Logrip, Walker, Ayanwuyi, 

Sabino, Ciccocioppo, Walker, Koob and Zorrilla, unpublished observations). Perhaps as a 

result, the msP line exhibits increased CRF1 receptor expression in several stress-related 

brain regions, increased anxiety-like behavior, and increased sensitivity to the ability of 

CRF1 receptor antagonists to reduce alcohol self-administration and stress-induced 

reinstatement of alcohol seeking (Ciccocioppo et al., 2006;Hansson et al., 2006;Gehlert et 

al., 2007;Ayanwuyi et al., 2013; Logrip, Walker, Ayanwuyi, Sabino, Ciccocioppo, Walker, 

Koob and Zorrilla, unpublished observations). Similarly, rhesus monkeys that carry a C-to-T 

single nucleotide polymorphism in the promoter of the Crh gene do not show normal 

glucocorticoid feedback inhibition of CRF peptide expression. This gene variant is 

associated with two-fold greater alcohol consumption in monkeys exposed to early life 

stress, without altering the basal drinking of unstressed monkeys (Barr et al., 2009).

Several polymorphisms in human CRF system molecules have also been associated with 

alcohol use phenotypes, often in interaction with stress history. Several Crhr1 haplotype 

variants in adolescents predict binge drinking and lifetime prevalence of intoxication and 

alcohol dependence (Treutlein et al., 2006). Crhr1 single-nucleotide polymorphisms (SNPs) 

also predicted greater alcohol consumption in already dependent individuals (Treutlein et al., 

2006). A study of 1,049 Caucasian subjects from 209 families in the Collaborative Study on 

the Genetics of Alcoholism (COGA) also found significant associations between the P3 

amplitude and alcohol dependence with multiple SNPs in the Crhr1 gene (Chen et al., 2010). 

Stress history produces greater increases in future alcohol intake (Blomeyer et al., 

2008;Schmid et al., 2010) and an earlier onset of drinking (Schmid et al., 2010) in 

adolescents homozygous for the C allele of the rs1876831 SNP of the Crhr1 gene. 

Adolescent carriers of the A allele of the rs242938 Crhr1 SNP similarly reported more 

drinking when exposed to stress in some (Schmid et al., 2010) but not other (Blomeyer et 

al., 2008) studies. Conversely, adolescents homozygous for the H2 haplotype containing the 

rs1876831 minor allele are protected against early abuse-associated increases in alcohol 

intake and dependence (Nelson et al., 2010).

CRF system polymorphisms in the CRF binding protein (CRF-BP), which the Vale 

laboratory discovered to moderate the ability of CRF to interact with its receptors (Potter et 

al., 1991;Potter et al., 1992;Behan et al., 1993;Behan et al., 1995), also have been linked to 
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human alcohol phenotypes. For example, Crhbp gene SNPs are associated with an 

endophenotype of alcoholism (i.e., decreased electroencephalographic alpha wave power) 

and are more prevalent in alcohol use disorders (Enoch et al., 2008), including in alcoholics 

with comorbid anxiety disorders (Enoch et al., 1999). A Crhbp polymorphism (rs10055255) 

has also been associated with greater stress imagery-induced alcohol craving and dysphoria 

(Ray, 2011). Furthermore, SNPs in the Crhbp (rs3811939) and Crhr1 (the widely studied 

rs110402 polymorphism) genes jointly predicted comorbid alcohol use disorder in patients 

with schizophrenia (Ribbe et al., 2011), with greater ratios of mononuclear Crhr1/Crhbp 
mRNA seen in dual carriers of the polymorphism (Ribbe et al., 2011). Finally, a recent 

prospective study showed that CRF-BP genotype moderated the relationship between stress-

induced negative affect and the self-reported negative consequences of drinking (Tartter and 

Ray, 2012). Further work is needed to determine whether similar gene variants are 

associated with phenotypes for other substance use disorders. Perhaps pharmacogenomic 

profiling could identify patients for whom CRF1 receptor antagonist pharmacotherapy 

would be especially useful to prevent relapse (Sinha, 2011).

CRF2 systems and addiction

Whereas CRF1 systems are generally recognized to exert an overarching, pro-stress-like 

effect, CRF2 receptor activation may, in addition to suppressing food intake (Spina et al., 

1996;Inoue et al., 2003;Fekete et al., 2007), decrease stress responsiveness (Valdez et al., 

2002a;Valdez et al., 2003a). In the context of addiction-related behavior, 

intracerebroventricular infusion of Ucn 3, a selective CRF2 agonist, reduced the heightened 

anxiety-like behavior and increased ethanol self-administration in dependent rats during 

acute withdrawal (Valdez et al., 2004) as well as the alcohol intake of mice that receive 

limited, binge-like access to alcohol (Sharpe and Phillips, 2009;Lowery et al., 2010). Site-

specific infusion of Ucn 3 into the CeA likewise reduced the heightened alcohol self-

administration in withdrawn, dependent rats (Funk and Koob, 2007), and microinjection of 

Ucn 1 into the CRF2 receptor-rich lateral septum potently reduced the acquisition and 

expression of alcohol intake in rats (Ryabinin et al., 2008). There is controversy in this area, 

however, because pharmacological activation of CRF2 receptors has been found to decrease 

anxiety-like behavior, increase anxiety-like behavior, or not alter stress-related behavior, 

depending on the neuropharmacological probe, dose, and brain site (Ho et al., 

2001;Takahashi et al., 2001;Fekete and Zorrilla, 2007;Zhao et al., 2007a). Accordingly, 

(any) influence of the CRF2 system on addiction-related behavior may also be brain-region 

specific.

CRF2 receptors in stress-induced reinstatement

CRF2 receptors outside the extended amygdala have been suggested to act in concert with 

CRF1 receptors to facilitate aspects of compulsive-like drug seeking. VTA CRF2 receptors 

have been proposed to facilitate stress-induced reinstatement of cocaine seeking, in which 

footshock exposure in cocaine-experienced rats elicited the release of extended amygdala-

derived CRF into the VTA (Wang et al., 2005). The CRF-mediated stress-induced 

reinstatement of cocaine seeking is putatively mediated by the sensitization of VTA 

glutamate release. The activation of VTA CRF2, rather than CRF1, receptors, was proposed 
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to mediate these actions (Wang et al., 2007), but it should be noted that the putative CRF2 

antagonist used, anti-sauvagine-30, is not highly selective for CRF2 receptors (Zorrilla et al., 

2013b). Indeed, others who used the more selective CRF2 antagonist astressin2-B did not 

observe a reversal of stress-induced reinstatement of substance seeking (Bruijnzeel et al., 

2009), and negligible CRF2 receptor mRNA is detected in the rodent VTA by in situ 
hybridization under basal conditions (Chalmers et al., 1995;Van Pett et al., 2000). 

Nevertheless, the possible role for CRF2 receptors in stress-induced relapse to drug seeking 

also implicates a possible role for the CRF peptide family members that have high affinity 

for CRF2 receptors (Gysling, 2012), including Ucn 1, 2 and 3.

CRF2 receptor and opioid withdrawal

Recent studies have obtained evidence that the CRF2 receptor may play a key role in opiate 

withdrawal. First, whereas knockout of the CRF1 receptor exacerbated the somatic signs of 

opiate withdrawal (Papaleo et al., 2007), genetic deletion of the CRF2 receptor blocked the 

somatic signs of opiate withdrawal (Papaleo et al., 2008). Moreover, CRF2 knockout mice 

did not manifest the dysphoria-like or anhedonia-like behaviors of opiate withdrawal 

(Ingallinesi et al., 2012), whereas they showed normal neuroendocrine responses, as indexed 

by HPA activation (e.g., CRF in the paraventricular nucleus the hypothalamus). The 

findings potentially implicate CRF2 receptors in driving extrahypothalamic CRF and 

dynorphin responses that subserve opiate withdrawal distress, perhaps via presynaptic 

positive regulation of CRF synthesis and release (Ingallinesi et al., 2012).

Urocortin 1 and alcohol intake

In the brain, Ucn 1, which has equal activity at CRF1 vs. CRF2 receptors, is synthesized 

principally in cell bodies of the stress-responsive (Korosi et al., 2005) perioculomotor Ucn 

1-containing area (pIIIu), now also known as the nonpreganglionic Edinger-Westphal 

nucleus (Weitemier et al., 2005), and, to a lesser extent, in the lateral superior olive 

(Vaughan et al., 1995;Ryabinin et al., 2005). Ucn 1 was first implicated in alcohol 

consumption based on the preferential induction of Fos expression in Ucn 1-containing 

neurons (Bachtell et al., 2002;Ryabinin et al., 2003;Spangler et al., 2009) of the pIIIu 

following voluntary alcohol drinking in multiple species (Topple et al., 1998;Ryabinin et al., 

2001;Weitemier et al., 2001;Bachtell et al., 2003;Sharpe et al., 2005;Turek and Ryabinin, 

2005;Kaur and Ryabinin, 2010;Anacker et al., 2011) and because basal Ucn1 

immunoreactivity in the pIIIu is elevated in several inbred or selectively bred rodent lines 

that demonstrate high alcohol drinking phenotypes (Bachtell et al., 2002;Bachtell et al., 

2003;Turek and Ryabinin, 2005;Fonareva et al., 2009) or that show increased sensitivity to 

the rewarding, hypothermic, or sedative actions of ethanol (Bachtell et al., 1999;Kiianmaa et 

al., 2003;Ryabinin and Weitemier, 2006;Turek et al., 2008). Accordingly, electrolytic 

lesions of the centrally projecting Edinger-Westphal nucleus in C57BL/6J mice attenuated 

ethanol intake and preference in a two-bottle choice paradigm without influencing the 

consumption of sucrose, quinine, saccharin, or saline (Bachtell et al., 2004;Weitemier and 

Ryabinin, 2005). Consistent with a role for Edinger-Westphal Ucn 1 in ethanol preference, 

either electrolytic lesion of the Edinger Westphal nucleus or Ucn 1 knockout reduces ethanol 

preference, but neither treatment produces an additional effect above and beyond the other 
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(Giardino et al., 2011). Furthermore, ethanol did not promote a conditioned place preference 

in mice deficient in Ucn 1 or the CRF2 receptor (Giardino et al., 2011). The reviewed results 

support the hypothesis that centrally projecting Ucn 1 neurons from the Edinger-Westphal 

nucleus may promote ethanol intake, preference, or reward, perhaps via actions on CRF2 

receptors. Limiting this conclusion, however, bilateral administration of Ucn 1 into the 

mouse lateral septum selectively attenuated alcohol self-administration during both the 

acquisition and expression of a limited access alcohol drinking procedure (Ryabinin et al., 

2008). More work is needed to elucidate which specific Ucn 1-containing circuits promote 

vs. oppose ethanol use and the applicability of reviewed findings to other substances of 

abuse.

Concluding remarks

On a personal note, Wylie Vale was the impetus and driving force behind our early work on 

the role of CRF in behavioral responses to stressors. We (Floyd Bloom, George Siggins, and 

myself, George Koob) joined Vale on the NIH program project grant from the National 

Institute on Diabetes and Digestive and Kidney Diseases when CRF was discovered in 1981. 

We subsequently injected CRF into the brain of rats and charted their behavioral responses 

in collaboration with Vale and colleagues (Sutton et al., 1982). The resulting behavioral 

profile and subsequent studies led to the overall hypothesis that CRF, in addition to its 

effects on the HPA axis, also mediated behavioral responses to stressors. This work 

proceeded in parallel, but independent of, our addiction work until we conceptualized 

between-system neuroadaptations as explanations for opponent process (Koob and Bloom, 

1988) and invoked the hypothesis that activation of the brain CRF systems was a key player 

in such between-system neuroadaptations. During this period, as data implicating the role 

for CRF in addiction consolidated, Eric Zorrilla joined our joint Salk/Scripps project 

extending our work to protracted abstinence and compulsive eating.

Wylie Vale was the guiding light to our work conceptually, innovatively, and 

motivationally. He embraced our overall hypothesis that CRF drove the “dark side” of 

addiction, provided the molecular advances and tools to test this hypothesis (knockout mice, 

discovery of the CRF1 and CRF2 receptors, powerful antibodies, discovery of urocortins, 

etc.), and delighted us with his constant enthusiasm for each new finding. Wylie Vale was a 

force of nature who had a tremendous impact on the fields of neuroendocrinology and 

neuroscience because he embraced any reasonable hypothesis that was supported by the data 

and let the work on CRF be guided not by preconceived notions. Not to mention his 

wonderful humor, incredible curiosity and intellect. We miss him terribly.
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Highlights

CRF systems have emerged as mediators of the body’s response to stress and, relatedly, 

the pathophysiology of addiction.

CRF systems have a prominent role in driving the addiction via actions in the central 

extended amygdala.

Addiction-related actions include anxious behavior, brain reward deficits, excessive drug 

use and stress-induced drug-seeking.

Polymorphisms in CRF system molecules are associated with drug use phenotypes in 

humans, often with stress history.
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Figure 1. Brain CRF mediates the facilitation of compulsive-like drug use
As shown in the sagittal brain schematic, corticotropin-releasing factor (CRF), first isolated 

by Professor Wylie Vale (photo), is expressed in neuronal cell bodies (filled circles) and 

projections (blue arrows) that subserve behavioral, autonomic and neuroendocrine responses 

to stress. As summarized from left-to-right by the arrows, CRF systems play an integral role 

in regulating the intersection between drug self-administration and stress systems. For 

example, drug or alcohol withdrawal elevates CRF activity in the central extended 

amygdala, including the central nucleus of the amygdala (CeA), leading to a negative 

emotional state that motivates resumption of and maintenance of drug-taking. 

Pharmacological studies with CRF antagonists show that increased CRF-CRF1 system 

activation underlies several withdrawal-induced behavioral phenotypes, including anxiety-

like behavior, aversion, and elevated drug self-administration. CRF1 antagonists also reduce 

the effect of acute stressors on drug-related behaviors, including stress-induced 

reinstatement. In contrast, CRF1 antagonists do not alter non-stress mechanisms that 

reinstate drug-seeking, such as drug primes, cues or contexts, reflecting the distinct 

neuroanatomical substrates of relapse behavior. Blockade of CRF-CRF1 systems does not 

have intrinsic rewarding (or aversive) properties in place conditioning models and has little 

effect on baseline intake in nondependent individuals.
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Figure 2. The progression to compulsive drug use alters emotional homeostasis via opponent-
process upregulation of CRF activity in multiple brain nuclei
The top-panel illustrates the opponent-process, emotional allostasis model of drug addiction. 

In the model, acute drug use initially elicits positive shifts in mood (“a” process). This is 

subsequently countered, however, by homeostatic decrements in mood (“b” opponent-

process). With repeated drug use, the “b” opponent-process manifests earlier and more 

prominently, such that each drug experience elicits a smaller, briefer positive shift in mood. 

The associated neuroadaptations alter the individual’s emotional set points, yielding 

allostatic states of decreased reward function and increased stress function. The individual’s 

mood in a drug-free state does not return to the drug-naïve baseline (homeostatic point). 

Rather, new, stable allostatic states result, in which the drug-free baseline mood (allostatic 

points) becomes increasingly more negative, experienced as dysphoria in the absence of 

drug. With continued use, further drug-taking can no longer reattain the baseline, drug-naïve 

homeostatic set point, let alone a subjective positive “high” (Koob and Le Moal, 2001). 
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Compulsive, escalating drug use is motivated by the negative emotional allostatic state in 

negative reinforcement fashion in a futile attempt to reduce dysphoria and regain euthymia. 

The bottom panel hypothesizes the successive recruitment of CRF systems across different 

brain regions during the transition to compulsive drug-taking and loss of control. During the 

initial phases of drug self-administration, when drug-taking still effectively elicits positive 

mood states and maintained by positive reinforcement, brain regions central to reward 

processes (ventral tegmental area, nucleus accumbens) are recruited. With continued drug 

use, neuroadaptations in CRF systems in the ventral tegmental area and prefrontal cortex 

may contribute to the generation of compulsive drug seeking. Finally, opponent-process 

activation of CRF systems in the extended amygdala and recruitment of circuitry linked to 

the dorsal striatum underlie the negative emotional state and habitual drug-seeking, 

respectively, observed in individuals with severe addiction.
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