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Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such
communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere
have been identified, and their functions are being studied in order to understand the mechanisms of interaction and
communication among the different members of the rhizosphere community. The importance of root and microbe secretion to
the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of
new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics,
and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we
highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity,
either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging
opportunities to direct future studies.

Due to the increasing human population, the con-
tinued production of food and energy is a basic chal-
lenge today (Edgerton, 2009; Ray et al., 2013). With
more than seven billion people to feed, the produc-
tive yield of crops needs to be higher, more sustain-
able, and more efficient worldwide. Productivity is
not only the plant growth per hectare in the field. It
is also defined by the fitness, food production, and
healthy development of plants (Boyer, 1982; Edgerton,
2009). Most losses in food production are due to dis-
eases caused by different pathogens and pests, the ef-
fect of which is augmented by abiotic stresses such as
heat and drought. Although some microorganisms
responsible for plant diseases colonize the upper
part of the plant, many more are found in the soil
and are capable of either destroying a vast number
of cultivars (Borneman and Becker, 2007; Berendsen
et al., 2012) or building useful symbiotic relationships
(Venkateshwaran et al., 2013).

The criticality of the interaction between roots and
microorganisms to agricultural output is increasingly
recognized. There are many chemicals secreted from
microorganisms and roots, such as amino acids, or-
ganic acids, flavonols, glucosinolates, indole com-
pounds, fatty acids, polysaccharides, and proteins in
the rhizosphere (De-la-Peña et al., 2012a; Nguema-Ona
et al., 2013; Weston et al., 2013; Li et al., 2014; Talboys
et al., 2014; Zhang et al., 2014), that act as signals; once

the recipient organisms recognize them, the process of
communication and interaction begins. The type and
composition of root secretion can alter the microbial
dynamic and diversity of the soil, favoring the growth
of microorganisms that can benefit plant health and
crop productivity, while, in other cases, root-exuded
compounds prevent the growth of harmful microbes
(Bais et al., 2006; Chaparro et al., 2012; Dutta et al.,
2013; Li et al., 2013). Phytochemicals collected from the
root exudates of Arabidopsis (Arabidopsis thaliana)
added into the soil have shown how important these
compounds are to the modulation of microbe compo-
sition (Badri et al., 2013).

Although soil microorganisms are associated with
plant disease and productivity losses, numerous bacte-
ria and fungi species are beneficial for plant produc-
tivity (van der Heijden et al., 2008; Pérez-García et al.,
2011; Venkateshwaran et al., 2013). For instance, the
rhizobia bacteria build a social network with legumes
in a symbiotic structure called a nodule, where atmo-
spheric nitrogen is fixed and transferred to a plant for
its use (Spaink, 2000). To overcome nitrogen deficiency,
legumes release specific flavonoids that attract and
initiate these symbiotic relationships with rhizobia
(Zhang et al., 2009), which secrete exopolysaccharides
needed for symbiosis (Cheng and Walker, 1998; Berge
et al., 2009). This symbiosis introduces 50 to 703 106 tons
of nitrogen annually into the soil of agricultural systems
(Herridge et al., 2008), which reduces the use of fertilizers
that, depending on the dose and type, can have a det-
rimental environmental impact. On the other hand,
arbuscular mycorrhizal fungi (AMF) also benefit plant
productivity by spreading their hyphal networks into
the soil to acquire nutrients, such as phosphorous,
which are then supplied to their hosts (Joner et al.,
2000; Klironomos et al., 2000; Jeffries et al., 2003).
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Based on this explosion of new knowledge of rhizo-
sphere interactions, the question becomes, how many
molecules in the rhizosphere have important roles
in plant productivity? And why are some molecules,
from microbes and/or plants, harmful enough to de-
stroy hectares of cultivars (Shieh et al., 1997; Weir
et al., 2003; Oerke, 2006; Ejeta and Gressel, 2007; Joel
et al., 2007)? With the advance of new technologies,
such as proteomics and metabolomics, the ability to
identify secreted molecules has revealed important
clues about their possible functions (De-la-Peña and
Loyola-Vargas, 2012; Badri et al., 2013; Martin et al.,
2014; Neumann et al., 2014), but the ecological and
environmental relevance of many of them remains
unresolved. In this review, we will focus on how root
exudates are key players involved in the selection of
the microbial community during plant-microbe inter-
action and how this interaction affects the productivity
of plants in the field.

BIOTIC INTERACTIONS IN THE RHIZOSPHERE ARE
IMPORTANT FOR PLANT PRODUCTIVITY

The rhizosphere is an environment where plants
interact with other plants, herbivores, and microor-
ganisms (Lynch and Whipps, 1990; Barea et al., 2005;
Bais et al., 2006). The rhizosphere not only represents
the trade zone in which pathogens or neighbor roots
interact with the plant but is also a preventive micro-
bial buffer zone that protects against infection (Baetz
and Martinoia, 2014). In general, the rhizosphere has
three main zones: endorhizosphere, rhizoplane, and
ectorhizosphere. The first zone, the endorhizosphere,
includes the root cortical and endodermal tissue, while
the rhizoplane encompasses the root epidermis and
associated mucilage. The ectorhizosphere covers the
soil near the root (Lynch and Whipps, 1990; Badri and
Vivanco, 2009). The rhizosphere can contain up to 1011

microbial cells per gram of root (Egamberdieva et al.,
2008) and more than 30,000 prokaryotic species that
could influence plant productivity (Mendes et al., 2011,
2013). Although the total number of these micro-
organisms is likely underestimated due to culturing
limitations, it is known that plants are able to shape
their rhizosphere microbiome in order to recruit pro-
tective bacteria or fungi (Berendsen et al., 2012).

Plant development and growth have benefited from
the diversity and complexity of the microbial society.
There is not a single organism responsible for a bene-
ficial effect in plants; rather, the multiple interactions
between all the actors work together. The interspecies
or interkingdom cross talk in the rhizosphere that is
produced during plant-microbe or plant-plant inter-
actions is essential for the function, health, stability,
and sustainability of ecosystems, including the farm-
ing environment (Bais et al., 2004b; Shukla et al., 2008;
Broz et al., 2010; Pellegrino and Bedini, 2014). Some
of the most studied biotic relationships for plant
productivity are those produced by plant growth-

promoting rhizobacteria (PGPRs), AMF, and invasive
plant species.

PGPR Important in Plant Productivity and Defense

Plant roots are able to recruit beneficial soil bacteria,
called PGPRs, from a wide range of genera, including
Acinetobacter, Alcaligenes, Azospirillus, Bacillus, Pseudo-
monas, Rhizobium, and others. These rhizobacteria are
important due to their functions as producers of plant
growth regulators, solubilizers of phosphorus, bio-
fertilizers, and elicitors of tolerance to abiotic and
biotic stresses (Yang et al., 2009; Bhattacharyya and
Jha, 2012).

The major classification of the PGPRs is as biofertilizers,
phytostimulators, and biopesticides (Bhattacharyya and
Jha, 2012; Bhardwaj et al., 2014; Pérez-Montaño et al.,
2014). The function of the biofertilizers is to promote
plant growth by supplying nutrients to the host; ex-
amples of biofertilizers are Allorhizobium spp., Tricho-
derma spp. (e.g. Trichoderma hamatum and Trichoderma
asperellum), Pseudomonas fluorescens, and Rhizobium spp.
(Vessey, 2003; Badar and Qureshi, 2012; Bhattacharyya
and Jha, 2012; Yadav et al., 2013). The phytostimulators,
on the other hand, produce phytohormones such as in-
dole acetic acid (IAA), GA3, and cytokinins, which alter
root architecture and promote plant development
(Vessey, 2003; Spaepen et al., 2007; Apine and Jadhav,
2011; Duca et al., 2014). In this group are Bacillus, Pseu-
domonas, Azosporillus, Enterobacter, Azotobacter, Pantoea,
Streptomyces, and Rhizobium spp. Finally, examples of
biopesticides are Pseudomonas spp. (e.g. P. fluorescens),
Streptomyces spp., and Bacillus spp. (e.g. Bacillus sub-
tilis), which function to inhibit pathogen proliferation
and help plant growth (Copping and Menn, 2000;
Radja Commare et al., 2002; Bhattacharyya and Jha,
2012). Besides the biofertilizers, phytostimulators, and
biopesticides, there are other PGPRs that induce tolerance
in plants to abiotic stress. For instance, Paenibacillus poly-
myxa, Achromobacter piechaudii, and Rhizobium tropici con-
fer tolerance to drought stress in Arabidopsis, tomato
(Solanum lycopersicum), and common bean (Phaseolus
vulgaris), respectively, possibly by abscisic acid ac-
cumulation and degradation of reactive oxygen species
and 1-aminocyclopropane-1-carboxylate (Timmusk and
Wagner, 1999;Mayak et al., 2004b; Figueiredo et al., 2008;
Yang et al., 2009). Achromobacter piechaudii and B. subtilis
are also involved in salinity tolerance in plants (Mayak
et al., 2004a;Zhanget al., 2008;Yanget al., 2009).All these
functions are important to improve crop productivity,
and in a time of escalated climate change, the need to
reduce mineral fertilizers and produce plants toler-
ant to abiotic stresses is becoming an international
priority.

Much discussion has centered on the use of rhizo-
bacteria as commercial biofertilizers. In a recent re-
view, Shen et al. (2013) pointed out that in order to
have the highest crop productivity, plants need an
optimal nutrient input and resilience under stress. This
allows plants to efficiently use soil nutrients through
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maximizing root/rhizosphere efficiency in nutrient
mobilization and acquisition. Such mobilization is
done at a high rate by rhizosphere bacteria (Koller
et al., 2013; Parmar and Sindhu, 2013). Plant agricul-
ture needs PGPRs to increase plant growth, facilitate
nutrient availability, enhance seed emergence, and
favor plant health (Suslow et al., 1979; Zehnder et al.,
2001; Lugtenberg and Kamilova, 2009; Mia et al.,
2010), and the way plants recruit these beneficial bac-
teria is through chemical root secretion. For instance,
legumes release specific flavonoids to attract and ini-
tiate symbiotic relationships with rhizobia (Zhang et al.,
2009). Other plants, such as maize (Zea mays), secrete a
benzoxazinoid called 2,4-dihydroxy-7-methoxy-2H-1,4-
benzoxazin-3(4H)-one to attract the rhizobacterium
Pseudomonas putida KT2440, which helps to repel other
pathogenic microbes in the maize rhizosphere (Neal
et al., 2012).
The way that PGPRs favor plant health is by calling

for beneficial bacteria when a pathogen is attacking.
For instance, the infection of Arabidopsis by Pseudomonas
syringae pv tomato DC3000 is able to induce the expres-
sion of the L-malic acid (MA) transporter ALUMINUM-
ACTIVATED MALATE TRANSPORTER1, increasing the
secretion of MA by roots (Rudrappa et al., 2008;
Lakshmanan et al., 2012). Once the MA is in the rhi-
zosphere, it recruits the beneficial rhizobacterium B.
subtilis FB17 in a dose-dependent manner and pro-
motes the biofilm formation of B. subtilis FB17 on
Arabidopsis roots (Rudrappa et al., 2008; Lakshmanan
et al., 2013), producing a systemic resistance response
against the pathogen. Besides MA, some bacteria se-
crete antimicrobial metabolites (e.g. cyclic lipopeptide
surfactin and iturin A) that serve as a protective shield
in roots against pathogenic fungi like Rhizoctonia
spp. or pathogenic gram-negative bacteria such as
P. syringae (Asaka and Shoda, 1996; Bais et al., 2004a).
Although P. syringae is one of the most studied path-
ogenic bacteria, which has been accorded first place on
a list of the top 10 plant pathogenic bacteria (Mansfield
et al., 2012), this bacterium also has been useful in
controlling crop diseases (Ligon et al., 2000). For instance,
diverse species of the genus Pseudomonas, including
Pseudomonas cepacia, P. fluorescens, Pseudomonas aeru-
ginosa, and Pseudomonas aureofaciens, produce hydro-
gen cyanide, 2,4-diacetylphloroglucinol, pyrrolnitrin,
phenazine, oomocyn A, and other compounds that in
some way help protect the plant against diseases
(Burkhead et al., 1994; Raaijmakers and Weller, 1998;
Haas and Keel, 2003). The production of these com-
pounds depends on different factors; for instance,
oomycin A and 2,4-diacetylphloroglucinol are stimu-
lated by Glc (Gutterson, 1990; Duffy and Défago,
1999), hydrogen cyanide is affected by light and tem-
perature (Vickery et al., 1987), and an acid pH seems to
enhance the production of pyrrolnitrin (Hwang et al.,
2002). Therefore, it is tempting to speculate that
changes in the soil environment due to climate changes
(Davidson and Janssens, 2006; Frey et al., 2013) also
could affect antibiotic production from beneficial

bacteria, making plants more susceptible to pathogen
attack and damaging plant productivity.

Other important compounds secreted by gram-
negative bacteria, such as P. aeruginosa, Erwinia chrys-
anthemi, and many others, include N-acyl-homoserine
lactones (AHLs), which are the principal signal com-
ponents for quorum sensing (QS), the cell-to-cell
communication system in bacteria (Dong and Zhang,
2005). Because the AHL signal is a key factor for vir-
ulence gene expression in pathogenic bacteria, this
signal provides a way to manipulate the QS systems
and interrupt communication between bacteria. There
are several chemicals and enzymes that target different
components of the bacterial QS system to disrupt QS
signaling, a process known as quorum quenching (QQ;
Hong et al., 2012). The first QQ enzyme, an AHL-
lactonase, was isolated from Bacillus sp. 240B1 (Dong
et al., 2000, 2001). These QQ molecules could be de-
veloped for agricultural applications through targeting
the QS signals by inhibiting AHL biosynthesis or by
degrading AHL as a strategy to avoid bacteria patho-
genicity; both are likely to be ecologically benign. One
of the most efficient quencher strains characterized is
Bacillus cereus U92, which has been used as a biocon-
trol agent in the rhizospheres of tomato and potato
(Zamani et al., 2013).

AMF

AMF belong to the ancient phylum Glomeromycota
and have established biotic interactions with more
than 80% of land plant families, including many agri-
culturally important crop species, such as maize, rice
(Oryza sativa), wheat (Triticum aestivum), and soybean
(Glycine max). As such, they contribute to plant nu-
trition and disease resistance (Gutjahr and Parniske,
2013). The colonization of roots by the AMF is carried
out after an exchange of chemical signals among the
fungi and the plant. The primary signal is produced
and secreted by the roots of the host; it has been
identified as various strigolactones (SLs; Akiyama and
Hayashi, 2006), which induce germination and hyphal
branching in AMF as well as stimulate fungal metab-
olism (Akiyama et al., 2005; Besserer et al., 2006;
Zwanenburg and Pospíšil, 2013). The fungus responds
to that signal, secreting tetrameters and pentamers of
N-acetylglucosamine and lipochitin-oligosaccharides
(Maillet et al., 2011; Czaja et al., 2012; Gutjahr and
Parniske, 2013), which activate a signaling pathway in
the roots of the host. Once the communication net-
work has been established between the fungus and the
plant, the main interface for symbiotic nutrient exchange
begins (Bücking et al., 2012). The interaction between
plants and AMF is bidirectional; AMF receive carbohy-
drates from the plant and compensate it with mineral
nutrients, abiotic stress resistance (Bücking et al., 2012),
and improved water supply (Parniske, 2008). This inter-
action is so important to the plant that it is able to transfer
between 4% and 20% of its photosynthetically fixed
carbon to the AMF (Wright et al., 1998).
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The formation of AFM depends not only on host
root exudates but also on soil phosphorus conditions
(Nagahashi et al., 1996; Tamasloukht et al., 2003),
normally through phosphorus fertilizer management
(Grant et al., 2005). If the phosphorus concentration is
too high (e.g. 10 mM), the growth of the fungal hyphae
is inhibited and the AMF colonization is reduced
(Nagahashi et al., 1996). Among other factors that
could affect AFM colonization are the use of mono-
culture, tillage (Berruti et al., 2014), modern agricul-
tural practices (Toth et al., 1990; Hetrick et al., 1992),
and, still controversial, genetically modified crops (e.g.
maize; Liu, 2010).

Root Secretion of Invasive Species Increases Crop Losses

The plant-plant relationship is also an important
biotic interaction that has significant repercussions on
plant productivity. The allelopathy phenomenon, in
which “one plant negatively affects another through
chemicals exuded or secreted,” may arise during the
interaction between invasive and native species and
may involve the microflora in the rhizosphere (Bains
et al., 2009). Invasive plants, which are responsible for
high negative economic effects (Vilà et al., 2009;
McLaughlan et al., 2014), have different mechanisms to
take possession of the land, frequently through altered
pathways or adapted mechanisms that appear in the
new environment. All plants secrete compounds;
however, some invasive plants have evolved an
adaptive mechanism(s) through which they secrete
new compounds that adversely affect the native plant
populations of their new habitat (enemy-release hy-
pothesis). Allelochemicals can affect metabolite pro-
duction, respiration, photosynthesis, and membrane
transport and can inhibit root and shoot growth in
susceptible plants (Einhellig, 1994; Weir et al., 2004).

Many allelochemicals have been identified as compo-
nents of the root exudation of invasive species (Table I).
One of the most studied has been catechin, a flavonoid
present in the root exudates of the invasive spotted
knapweeds Centaurea maculosa and Centaurea stoebe,
which exhibits a strong inhibitory effect on a number
of plant species (Bais et al., 2003; Weir et al., 2003;
Tharayil and Triebwasser, 2010). It has been found that
the concentration and effect of this compound in-
crease in response to light intensity (Tharayil and
Triebwasser, 2010). This resolves, in part, the question
of why the concentration and the allelopathic effect
of catechin change under different conditions (Perry
et al., 2007). Perry et al. (2007) found that the concen-
tration of catechin was higher during the months of
May to August, when there are more hours of light.
Although the molecular mechanism by which this is
achieved is unknown, it has been proposed that light
regulates flavonoid biosynthesis and, therefore, cate-
chin accumulation (Tharayil and Triebwasser, 2010;
Hong et al., 2014).

Other important allelopathic plants are black walnut
(Juglans nigra), which produces juglone (5-hydroxy-1,4-
naphthoquinone), and sorghum (Sorghum bicolor),
which produces sorgoleone (2-hydroxy-5-methoxy-3-
[(89Z,119Z)-89,119,149-pentadecatriene]-p-benzaquinone),
an oxidized form of a hydrophobic p-benzoquinone
(Table I). Both compounds inhibit electron transport
reactions of photosynthesis and respiration, killing
both maize and soybean and other susceptible plants
(Rietveld, 1983; Nimbal et al., 1996; Jose and Gillespie,
1998). Another important allelochemical is the pheno-
lic gallic acid produced by the common reed (Phrag-
mites australis), a large perennial grass found in the
United States and Asia. It has been determined that
there exist two populations of this plant, one invasive
and one noninvasive (Saltonstall, 2002). The invasive
one produces more polymeric gallotannin than the
noninvasive one. This polymer is transformed to gallic
acid by a tannase, an enzyme produced by various
native plants and microbial community members of
North America, a process that intensifies the aggres-
siveness of the common reed (Rudrappa et al., 2007;
Bains et al., 2009). However, controversial evidence
questioning the negative effect of gallic acid on non-
native genotypes of this plant has recently been re-
leased (Weidenhamer et al., 2013).

CHEMICAL PLAYERS IN PLANT PRODUCTIVITY

Although we do not pretend to discuss all chemicals
secreted by the roots, we highlight below the role of
those metabolites and proteins that have been found to
be important players in plant productivity, either
positively, such as auxins and glomalin, or negatively,
such as SLs and polygalacturonase (PG; Fig. 1).

Auxins

Auxins are phytohormones generated by plants,
some fungi, and PGPRs (Reineke et al., 2008; Simon
and Petrášek, 2011; Duca et al., 2014). Some rhizo-
bacteria are able to produce auxins, particularly IAA,
in a range from 17 to 719 mmol L21, thus contributing
to plant growth (Ivanova et al., 2001; Ali et al., 2010;
Gumiere et al., 2014), although high concentrations of
IAA can inhibit root growth and, therefore, plant
productivity (Davies, 1995; Xie et al., 1996).

IAA in bacteria is synthesized from L-Trp (Duca
et al., 2014), which can be obtained from compost,
fertilizers, and root exudates (Jaeger et al., 1999;
Kravchenko et al., 2004; Arkhipchenko et al., 2006). It
has been reported that the presence of 5 mM Trp can
cause a 5-fold increase in the IAA secretion in Bacillus
amyloliquefaciens FZB42 (Idris et al., 2007) and up to a
100-fold increase in Azospirillum brasilence (Baca et al.,
1994). Field and pot trials have revealed that by adding
L-Trp to the soil, the growth and yield of several im-
portant crops can be improved, including rice, wheat,
soybean, potato, and tomato (Zahir et al., 2000).
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Therefore, in managed crops, PGPR inoculation can
still contribute to IAA production if L-Trp is applied
alone to the plants (Zahir et al., 2005) or together with
fertilizer (Zahir et al., 2007).
The benefits that auxins from bacteria have had in

plant development and productivity have been docu-
mented. For instance, an increase in soil IAA is able to
enlarge the tree stem diameter and intensify the growth
height of 17-year-old Pinus radiata trees (Smaill et al.,
2010). In yam (Dioscorea rotundata), it was found that
IAA from B. subtilis increases the elongation of shoots
83.3% and the production of roots 63.5% (Swain et al.,
2007), both of which favor nutrient uptake and distri-
bution (Singh Gahoonia et al., 1997; Talboys et al.,
2014). It is known that several rhizobacteria species
increase root biomass by changing the auxin bal-
ance and, in consequence, the signaling process, by
either producing and secreting the auxin themselves
(Dobbelaere et al., 1999; Patten and Glick, 2002; Idris
et al., 2007) or changing its homeostasis inside plant
cells (Spaepen et al., 2007; Kurepin et al., 2014). The
same positive effect of bacterial IAA has been ob-
served in tomato (Pastor et al., 2014), sesame (Sesamum
indicum; Kumar et al., 2009), maize (Fallik et al., 1989),
wheat (Egamberdieva, 2009), and other crops.

SLs

SLs are sesquiterpene lactones, derived from carot-
enoids, found in the rhizosphere and secreted in very
small amounts (pg plant21 d21; Akiyama et al., 2005;
Alder et al., 2012). These compounds are able to es-
tablish symbiotic and parasitic interactions (Soto et al.,
2010; Zwanenburg and Pospíšil, 2013). Although
SLs have been related to the stimulation of hyphal
branching and nodule formation in alfalfa (Medicago
sativa; Akiyama et al., 2005; Besserer et al., 2006; Soto

et al., 2010), more attention has been paid to the neg-
ative effects that these molecules have on plant pro-
ductivity (Bouwmeester et al., 2003).

Many important crops, such as sorghum, maize,
cotton (Gossypium hirsutum), and cowpea (Vigna un-
guiculata), secrete SLs through their roots (Cook et al.,
1966; Hauck et al., 1992; Müller et al., 1992; Siame
et al., 1993). The SLs promote the germination of seeds
of parasitic weeds, such as witchweed (Striga lutea),
broomrapes (Orobanche and Phelipanche spp.), and Alectra
spp. (Cook et al., 1966; Joel et al., 2007; Zwanenburg
and Pospíšil, 2013). It has been reported that millions
of hectares of crop fields and billions of dollars are lost
annually due to Striga and Alectra spp. infestation in
sub-Saharan Africa (Ejeta and Gressel, 2007; Joel et al.,
2007) and to Orobanche spp. in the Mediterranean and
western Asia (Parker, 2009). However, the mechanism
by which the SLs induce seed germination is still
controversial; it appears that the interaction of SLs
with other molecules in the rhizosphere could con-
tribute to their specificity and biological activities (Xie
et al., 2010), although the catabolism of abscisic acid,
allowing the germination of the parasitic seeds, also
has been proposed (Lechat et al., 2012).

There have been scientific advances in under-
standing the biochemistry and production of SLs in
order to avoid crop losses. One example is the use of
carotenoid inhibitors (Jamil et al., 2010). Although
carotenoid inhibitors such as fluridone, amitrole,
clomazone, and norflurazon reduce SL production
(Jamil et al., 2010), it is not known how these inhibitors
could directly or indirectly affect other processes
in the plant, such as abscisic acid biosynthesis
(Gamble and Mullet, 1986), and, in consequence, plant
productivity.

The secretion and activity of SLs are influenced by
several factors, such as temperature, light regime, and
even soil moisture (Weerasuriya et al., 1993; Xie et al.,

Figure 1. Effects of auxins, glomalin, SLs, and
PGs on plant development and health. The pres-
ence (W) or absence (WO) of auxins, glomalin,
SLs, and PGs can produce positive (green) or
negative (red) effects on plants. The presence of a
bacterium that secretes auxins helps the plants to
stimulate roots, increasing nutrient acquisition
from the soil. On the other hand, the absence of
glomalin affects soil structure, facilitating soil
erosion. Sorghum secretes SLs that induce the
germination of the parasite plant Striga lutea, and
PGs can disturb the plant cell wall in tomato,
affecting plant productivity. [See online article for
color version of this figure.]
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2010; Toh et al., 2012). Therefore, it is tempting to
speculate that if we are experiencing severe global
climate change, the secretion of these molecules could
be affected by means that we do not yet know.

Glomalin

Soil structure impacts the flux of water, gases, and
nutrients and is thus an important consideration for
agriculture, particularly under current farming prac-
tices, which demand more fertilizers, water, and pes-
ticides (Angers and Caron, 1998; Tilman et al., 2002).
Soil health is very important not only for crop pro-
ductivity but also for microbial livelihood. One of the
microorganisms responsible for soil physical structure
is the AMF, which have positive effects on plant de-
velopment. These fungi produce an iron-containing
glycoprotein named glomalin (Wright et al., 1996;
Purin and Rillig, 2007), insoluble in water and resistant
to heat degradation (Singh et al., 2013), which moves
into the soil and works as a glue among soil particles,
contributing to a decrease in soil erosion (Haddad and
Sarkar, 2003). It has been found that the glomalin
content in the soil is higher in the summer season and
in places with high moisture content (Emran et al.,
2012; Gispert et al., 2013). This finding could explain
why the concentration of this protein is lower in the
desert (1 mg g21; Bai et al., 2009) than in tropical forest
(100 mg g21; Rillig et al., 2001).

Glomalin has been used as an indicator of the effects
of land-use change (Rillig et al., 2003) and is consid-
ered to contribute to carbon (Rillig et al., 2001) and
nitrogen (Nichols and Wright, 2006) storage, which
can help reduce the release of nitrous oxide, probably
by influencing nitrification and denitrification, into the
atmosphere and, therefore, greenhouse gases (Janzen,
2004; Nichols and Wright, 2006; Singh et al., 2013).
Studies on sandy loam soils treated for 21 years with
continuous fertilization have shown that fertiliza-
tion affected the community composition of AMF
and glomalin-related soil protein content (Dai et al.,
2013). Also, it has been suggested that prolonged cul-
tivation can reduce glomalin content in the soil, facil-
itating the disturbance of the soil and causing a decline
in crop production (Preger et al., 2007). Soil glomalin is
related to net primary productivity (Treseder and Turner,
2007), and a possible link between coffee (Coffea arabica)
productivity and glomalin levels in the soil has been
proposed (Banks et al., 2011). Therefore, glomalin, like
auxins, also can be considered a positive player in plant
productivity.

PGs

PGs are cell wall-degrading enzymes that cleave
glycosidic bonds linking D-galacturonic acid residues,
which are the main components of pectin. These en-
zymes are important pathogenicity factors produced by
fungi (e.g. Fusarium spp., Botrytis cinerea, Colletotrichum

lindemuthianum, and Aspergillus spp.; Lafitte et al., 1984;
Di Pietro and Roncero, 1996; ten Have et al., 1998; Lang
and Dörnenburg, 2000) and bacteria (e.g. P. syringae,
Pseudomonas solanacearum, Erwinia carotovora, and Ral-
stonia solanacearum; Salmond, 1994; Vasse et al., 1995;
Lorenzo et al., 1997; Huang and Allen, 2000).

PGs are one of the factors responsible for causing
severe diseases in many plants (Collmer and Keen,
1986; Magro et al., 1994; Shieh et al., 1997; Aysan et al.,
2003). For instance, Aspergillus flavus, a saprophytic
fungus responsible for important losses in maize,
peanut (Arachis hypogaea), and cotton (Lillehoj et al.,
1974; Shieh et al., 1997; Asis et al., 2005), produces a
PG, P2c, which causes intercarpellary membrane
damage due to the loss of pectin integrity, thus helping
the spread and invasion of the fungus (Shieh et al.,
1997). Furthermore, studies in bacteria have shown
that PGs from R. solanacearum and P. solanacearum are
necessary to colonize the tomato root cortex, infect
vascular parenchyma, and invade xylem elements,
causing the devastating disease bacterial wilt (Wallis
and Truter, 1978; Vasse et al., 1995; Huang and Allen,
2000). It has been found that PGs can be secreted by
P. syringae (De-la-Peña et al., 2008) and P. solanacearum
(Schell et al., 1988). Therefore, it could be that PGs
secreted into the rhizosphere can reach and degrade
the pectin of root cell walls, allowing the bacteria to
enter and move throughout the vascular parenchyma.

Although bacteria and fungi have developed a
mechanism to use PGs against plants, plants are
able to defend themselves using polygalacturonase-
inhibiting proteins (PGIPs), which favor the accu-
mulation of oligogalacturonides (elicitors of the defense
response) and limit pathogen infection (De Lorenzo
et al., 2001; De Lorenzo and Ferrari, 2002; D’Ovidio
et al., 2004). Studies in bean and tomato have shown that
PGIP protects the plant cell walls from C. lindemuthianum,
B. cinerea, and Fusarium oxysporum f. sp. lycopersici (Jones
et al., 1972; Lafitte et al., 1984; Powell et al., 2000).
These proteins also have been found in the secretome
of Arabidopsis roots when the plant is infected with
P. syringae (Magro et al., 1994; De-la-Peña et al., 2008),
which indicates that PGIPs participate in defense
response signaling in the rhizosphere during bacte-
rial attack. Therefore, PGIPs could be exploited as
a strategy for protecting crops against PG-producing
pathogens.

OMIC APPROACHES TO STUDY RHIZOSPHERE
DYNAMICS AND CHEMICAL PLAYERS

Most of the information about the rhizosphere and
the principal compounds, genes, functions, and mech-
anisms has been achieved using omic approaches, such
as genomics, transcriptomics, proteomics, metabolomics,
and, very recently, epigenomics (Fig. 2). However, there
are still many secrets to be uncovered.

When interest in root secretion first began, the
available technologies were based on analytical sepa-
ration and biological detection (Knudson and Smith,
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1919; Flores et al., 1999; Akiyama et al., 2005). One of
the pioneering biochemical studies on root secretion
ran from 1919 to 1920 and was headed by Dr. Lewis
Knudson from Cornell University (Knudson and
Smith, 1919; Knudson, 1920). In his articles, he explains
step by step how and why root secretion was ana-
lyzed. Now the technology is much more specialized,
sensitive, and complex (Diggle et al., 2007), and the
resulting information is more precise, accurate, and
quantitative. In the past, it was enough to use the PCR
technique (Mullis and Faloona, 1987; Mullis et al.,
1986) to investigate gene expression. Now the use of
quantitative reverse transcriptase-coupled PCR is al-
most mandatory in order to have better and more ro-
bust information about a specific gene. This technique,
introduced for the first time in 1992 (Higuchi et al.,
1992), allows the quantification of RNA transcription
levels by monitoring the amplification of a target se-
quence in real time using fluorescence detection. Now,
a new layer of complexity has developed, with infor-
mation given on chromatin remodeling in order to
have more information about regulation in gene tran-
scription. Therefore, advances in technology seem to
favor the development of knowledge to improve our
understanding of plant development, plant-pathogen
interaction, root/microbe secretion, and rhizosphere
dynamics (Dennis et al., 2010).

Epigenomics

Epigenomics is one of the newest omics and will
likely increase our understanding of the dynamics of
the rhizosphere and their function in improving plant
productivity. Epigenetics has provided a new layer of
complexity to the understanding of gene regulation for

agricultural applications (Boyko and Kovalchuk, 2013;
Us-Camas et al., 2014). Epigenetics are typically stud-
ied by three different mechanisms: DNA methylation,
histone modification, and small (sRNA; 50–250 nucle-
otides) or micro (19–25 nucleotides) noncoding RNAs.

DNA methylation can be analyzed by different
methods depending on the type of information needed
(Fraga and Esteller, 2002). The most frequently used
techniques to analyze DNA methylation are HPLC
(Kuo et al., 1980; De-la-Peña et al., 2012b; Chen et al.,
2013), methylation-sensitive amplification polymor-
phism (Sha et al., 2005; Park et al., 2009; Hubbard et al.,
2014), and bisulfite sequencing (Frommer et al., 1992;
Cokus et al., 2008; Li and Tollefsbol, 2011). In the case
of histone modifications (e.g. methylation, acetylation,
phosphorylation, etc.), the use of antibodies is neces-
sary to observe global histone modifications or loci-
specific modifications. Western blots are normally
used to study global histone modifications (Nic-Can
and De-la-Peña, 2012; Nallamilli et al., 2014). In the
latter case, chromatin immunoprecipitation is useful
(He et al., 2003; Saleh et al., 2008; Liu et al., 2014). For
sRNA analysis, northern blots or microarrays can be
used (Altuvia, 2007), and the microRNAs can be ana-
lyzed by quantitative reverse transcriptase-coupled
PCR (Monavar Feshani et al., 2012; Verma et al.,
2014) or northern blot (Válóczi et al., 2004; Xie et al.,
2005).

Plant epigenetics can be modified in response to
environmental conditions (Lira-Medeiros et al., 2010;
Boyko and Kovalchuk, 2013; Bräutigam et al., 2013),
and the progeny can inherit regulatory mechanisms to
cope with such stresses. For instance, while in recent
decades increasing temperatures have caused major
losses in food crops (Peng et al., 2004), it has been

Figure 2. Omic approaches to the study of rhi-
zosphere dynamics in order to improve plant
productivity. Many organisms visit plants; how-
ever, some can be used to increase crop pro-
ductivity, and others just kill the plant. In the case
of the rhizosphere, the interactions between
bacteria (white and cream), fungi (blue), and roots
have been studied extensively from different omic
approaches, such as genomics, transcriptomics,
proteomics, and metabolomics. Epigenomics, the
newest omics in the rhizosphere, is starting to be
a focus of attention (De-la-Peña and Loyola-Vargas,
2012), which could have a great impact on what
we already know about plant productivity and
environmental stress. [See online article for color
version of this figure.]
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found that plants exposed to heat stress can inherit
epigenetic changes that result in offspring better
adapted to extreme heat, a finding that could improve
plant productivity (Lang-Mladek et al., 2010; Pecinka
et al., 2010; Tittel-Elmer et al., 2010; Mirouze and
Paszkowski, 2011).

In bacteria, epigenetics are also important. For in-
stance, sRNAs have been involved in carbon metabo-
lism and transport, amino acid metabolism, metal
sensing, QS, biofilm formation, microbial virulence,
and infection (Michaux et al., 2014). It has been found
that two sRNAs, RsmY and RsmZ, are regulated by
the global activator GacA, which is required for the
production of exoenzymes, virulent factors, and sec-
ondary metabolites in P. aeruginosa (Reimmann et al.,
1997; Kay et al., 2006). These sRNAs sequester the
rsmA (for regulator of secondary metabolism) gene,
inhibiting secondary metabolism and biofilm forma-
tion and activating motility and type III secretion
(Sonnleitner and Haas, 2011). In fact, it has been found
that when the sRNA rsmZ is overexpressed, biofilm
development, which is associated with pathogenicity
in P. aeruginosa, is reduced (Petrova and Sauer, 2010).

Although the epigenetics of rhizosphere interactions
have not been studied, De-la-Peña and Loyola-Vargas
(2012) have suggested that the secretion of certain
chemicals into the rhizosphere could be due to epige-
netic changes during plant-pathogen interaction. There
are data that strongly suggest that changes in protein
secretion could be due to epigenetic changes. For in-
stance, De-la-Peña et al. (2008, 2010), working with
Arabidopsis defense-impaired mutants nonexpressor of
PATHOGENESIS-RELATED GENES1 (npr1-1; a mu-
tant that does not express NPR1), constitutive expres-
sor of PATHOGENESIS-RELATED GENES5 (cpr5-2; a
mutant that accumulates large amounts of salicylic
acid), and salicylate hydrolase (NahG; a mutant that is
unable to accumulate salicylic acid), found that these
mutants had a different protein root secretion pattern.
Moreover, it was found that the defense-responsive
genes in Arabidopsis, like CPR5 and NPR1, could be
mediated by epigenetic factors (De-la-Peña et al., 2012c),
suggesting that protein root secretion also could be
modified due to epigenetic changes.

However, much work remains to be done in this
area in order to apply this knowledge to improving
plant productivity, as the examples are all complex
and highly case specific. Some very new techniques,
such as bisulfite sequencing or chromatin immuno-
precipitation, hold promise as means to understand
the intricate gene regulation during the cross talk of
plants with their neighbors.

Genomics

In parallel to the biochemical and classical molecular
approaches, genomic contributions, especially meta-
genomics in relation to rhizosphere interactions, have
been enormous (Kakirde et al., 2010; Mendes et al.,

2011). Many microbes have been identified using the
metagenomic approach, but few have been character-
ized (Mendes et al., 2011). The microbial biodiversity
in the soil seems to have specific biological functions in
plants. For instance, recent genomic research on five
different Sinorhizobium spp. (Sinorhizobium meliloti,
Sinorhizobium medicae, Sinorhizobium freddi, Sinorhizobium
terangae, and Sinorhizobium saheli) has found that each
bacterium has adopted a slightly different strategy to
interact with diverse Medicago spp. host plants and
soil environments. This work also shows that the
genes involved in the biosynthesis of the Nod factor
(lipochitooligosaccharides secreted by rhizobia that
are important in the interplay of recognition between
roots and microbes) and polysaccharides, denitrifi-
cation, and secretion systems vary within and be-
tween species (Sugawara et al., 2013).

The identification of genes not only in one genus but
also across the plant kingdom to improve crop traits is
a common goal that scientists need to pursue. More-
over, the techniques of insertion mutagenesis and po-
sitional cloning have helped to illuminate the nodulation
process (Webb et al., 2000; Stougaard, 2001), which also
can give some clues about the species-specific relation-
ship between rhizobacteria and legumes. Takahara
et al. (2013), using deleted regions in hypernodulating
mutants (tml-1, tml-2, and tml-3), map-based cloning,
and next-generation sequencing analysis in Lotus japonicus,
characterized and identified a root factor named TOO
MUCH LOVE (TML) that acts during the autoregula-
tion of nodulation in this legume. Although these mu-
tants have not been used to study root secretion, it
would be interesting to investigate whether the pro-
teins and molecules secreted are affected by these
mutations. Probably, the mutations impair or en-
hance the secretion of an important chemical player,
maximizing its potential in plant productivity.

Transcriptomics

The use of transcriptomics has become an important
tool to identify genes involved in plant-microbe in-
teractions (Ramachandran et al., 2011; Schenk et al.,
2012; Lakshmanan et al., 2013). For instance, tran-
scriptomics has been used to compare R. leguminosa-
rum adaptation in the rhizosphere of a host legume
(pea [Pisum sativum]), a nonhost legume (alfalfa), and a
nonlegume (sugar beet [Beta vulgaris]; Ramachandran
et al., 2011). Although a common core of bacterial
genes was identified, 66% were of unknown function
and several were plant specific. In the rhizosphere of
pea, R. leguminosarum expressed genes related to bac-
terial metabolism and Nod factor synthesis, while in
the presence of the alfalfa rhizosphere, the genes in-
volved in lignin breakdown and metabolite trans-
porters were up-regulated (Ramachandran et al.,
2011). Studies on the gram-positive rhizobacterium
B. amyloliquefaciens in response to root exudates from
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maize revealed that 8.2% of the bacterial transcriptome
was altered in the presence of these exudates (Fan
et al., 2012). The majority of the altered genes were up-
regulated, and most of them are involved in nutrient
utilization, bacterial chemotaxis and motility, and an-
timicrobial peptides. However, there were some genes
found with unknown functions, opening new ques-
tions about the role of root exudates in rhizobacteria
behavior.
Transcriptomics is a powerful tool that produces a

massive amount of data, which need to be focused in
order to find candidate genes useful for plant pro-
ductivity. Mitra et al. (2004) focused the results of
the transcriptome data on one candidate, Ca2+-
calmodulin-dependent protein kinase. They show that
transcript-based cloning is a valid approach for clon-
ing genes and that this method does not require the
construction of a genetic map. This approach also
could be used to study plant productivity and rhizo-
sphere dynamics, as was done in some recent reports
(Fan et al., 2012; Alavi et al., 2013; Carvalhais et al.,
2013). Other important genes discovered with tran-
scriptomics are the nodule Cys-rich antimicrobial
peptides (NCR) genes. It has been found that NCRs
control the terminal differentiation of intracellular
S. meliloti bacteroids by manipulating the bacterial cell
cycle (Van de Velde et al., 2010; Penterman et al., 2014).
Penterman et al. (2014) provided strong evidence
about the molecular mechanism by which NCR pep-
tides control the S. meliloti cell cycle during symbiosis.
Working with NCR247, the authors found that these
peptides specifically block cell division without af-
fecting DNA replication. Thus, NCR perturbs the ex-
pression of genes involved in motility, cell division,
and cell cycle regulation.

Proteomics

Proteomics has been frequently used to find proteins
secreted into the rhizosphere and involved in plant-
microbe interaction (De-la-Peña et al., 2008; De-la-Peña
and Vivanco, 2010; Yang et al., 2012; Wang et al., 2013),
and it has been considered an important biotechnolog-
ical tool for crop improvement (Eldakak et al., 2013).
The proteomic field has taken advantage of new tech-
nologies, and many of them are applicable for studying
plant-microbe interaction, such as matrix-assisted laser-
desorption ionization-time-of-flight-mass spectrometry
(Watt et al., 2005;Noir et al., 2009), liquid chromatography-
mass spectrometry (Larrainzar et al., 2007; Koch et al.,
2010), isobaric tags for relative andabsolute quantification-
mass spectrometry (Taylor et al., 2008; Kaffarnik et al.,
2009; Li et al., 2014) and multidimensional protein identi-
fication technology-tandemmass spectrometry (Wenet al.,
2007; Kaschani et al., 2009). Medicago truncatula has been
themodel legume fromaproteomicpoint of view (Sumner
et al., 2007; Colditz andBraun, 2010; Lee et al., 2013), and it
has opened an avenue to studying the proteomics ofmajor

crops such as wheat, maize, soybean, and rice (Song et al.,
2007; Eldakak et al., 2013).

Proteomics also has been useful in the study of
bacterial and fungal secretomes. In the case of the
bacterial secretome, B. subtilis has been widely used
(Hirose et al., 2000; Tjalsma et al., 2000, 2004; Antelmann
et al., 2006). It was found that this bacterium secretes
around 300 different proteins into the soil. Fungi also
secrete many proteins that have been related to virulence
factors (Song et al., 2009), adhesion to the plant surface
(Newey et al., 2007), host tissue penetration and invasion
(van Esse et al., 2008; Panstruga and Dodds, 2009; Dong
et al., 2011), and symbiotic formation (Plett et al., 2011).
Like transcriptomics, proteomics has a big problem with
unknown proteins. In fungi, 208,883 putative secretory
proteins have been identified (Choi et al., 2010), but only
a small fraction of them have been studied, and so far,
nobody knows the biological/ecological role of most of
them. On the other hand, there are many reports de-
scribing the use of plant mutants, pathogenic bacteria,
and symbiotic microbes that highlight the vast diversity
of proteins or even the function of a group of proteins
during plant-microbe interaction (De-la-Peña et al., 2008;
Afroz et al., 2013; Alberton et al., 2013; Dam et al., 2014).
These and other proteomic reports can be used to study
proteins important to plant productivity. Also, in vitro
and controlled systems could be used with other omic
analyses to help assign function and/or identification
through reducing environmental noise.

Metabolomics

Metabolomics of the rhizosphere is another big
omic topic highly studied. The principal technologies
used to detect metabolites are NMR spectroscopy,
HPLC, liquid chromatography-mass spectrometry, gas
chromatography-mass spectrometry, and capillary
electrophoresis-time-of-flight-mass spectrometry. Im-
portant compounds such as SLs have been identified
using liquid chromatography-tandem mass spectrom-
etry (Xie et al., 2007; López-Ráez et al., 2008), and
hundreds of metabolites have been found to high-
light the importance that chemical cross talk between
roots and microbes has in the initial recognition and
species-dependent response.

Vauclare et al. (2013), using NMR spectroscopy,
analyzed the metabolite profiles of Bradyrhizobium
japonicum cells and the bacteroids from soybean nod-
ules. Fan et al. (2001) used this same spectroscopy
technology to examine the importance of root exudates
from barley (Hordeum vulgare) and wheat in the ac-
quisition of cadmium. Furthermore, Tawaraya et al.
(2013) identified by capillary electrophoresis-time-of-
flight-mass spectrometry 65 metabolites from root
exudates of rice under phosphorous deficiency, and
more than 30% of these showed a higher concentration
at low phosphorous levels. This novel technique also
can be used to determine the metabolites secreted
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during plant-microbe interaction. Like proteins (De-la-
Peña et al., 2010), metabolites secreted from roots
change depending on the developmental stage of the
plant and have different effects on root microbes
(Chaparro et al., 2013; Ziegler et al., 2013). Among
the major bioactive metabolites found in the rhizo-
sphere are flavonoids, phenolic compounds, exopoly-
saccharides, antibiotics, and QS signals. Badri et al.
(2013), working with phytochemicals characterized by
gas chromatography-mass spectrometry from root
exudates, found that some phenolic-related com-
pounds are able to modulate soil microbes. Moreover,
the authors propose that the use of natural compounds
to establish a positive interaction between plants and
soil microbes could improve crop yield and sustain-
ability. Therefore, understanding how microbes are
selected in the rhizosphere and how plants affect mi-
crobial activity will provide new opportunities to
increase crop production (Berendsen et al., 2012).
Moreover, this will lead to a better understanding of
the ecological relevance of the interaction among all
the components of agricultural ecosystems as well as
support the development of sustainable management
technologies.

CONCLUSION

Although much of what we know about exudates
has been done in Arabidopsis, it is necessary expand
the research to important crop and nonmodel plants in
order to understand more about the dynamics of the
rhizosphere. It is known that different types of plants
(Haichar et al., 2008) or even different ages of a plant
(Chaparro et al., 2013; İnceo�glu et al., 2013) can harbor
totally different microbial communities. A recent work
argues that Arabidopsis is a limited model for inves-
tigating the impact of stress on rhizosphere commu-
nity composition and function (Blee et al., 2013).
Furthermore, expanding rhizosphere investigations to
other species will speed the discovery of new mole-
cules or compounds in the rhizosphere, which may
enable the expansion of some plants’ abilities in sym-
biosis, defense, and development to other crops to
improve plant fitness, increase tolerance of biotic and
abiotic stress, and enhance plant productivity.

It is also important to study the microbiome of dif-
ferent cultivars, under different environmental condi-
tions and in the presence of different neighbors, to
analyze the compounds secreted in specific circum-
stances. Such work will uncover the numerous soil
microorganisms, functions, and genes that remain un-
known and demonstrate their usefulness for diverse
applications. It will also provide the information nec-
essary to engineer plants better adapted to extreme and
changing environments, leading to improved agricul-
ture. These improvements might include a better ca-
pacity of plants to resist invasive species, efficiently
acquire nutrients, detoxify contaminated soils, and at-
tract beneficial PGPRs, improving plant productivity.

Plants as well as microbes have the ability to change
in response to other organisms at different omic levels.
For instance, mycorrhizal fungi can change not only
the transcriptome of a plant by inducing the regulation
of many genes (Liu et al., 2003) but also modify the
plant metabolome in order to establish a symbiotic
contact with roots (Duhamel et al., 2013; Zhao et al.,
2013). On the other hand, proteomics and epigenomics
studied in Arabidopsis have shown that if the plant is
in contact with a pathogen, the secretion of proteins
(De-la-Peña et al., 2008) as well as different histone
modifications in the plant (De-la-Peña et al., 2012c) are
altered. Therefore, all these approaches could be used
to improve plant productivity under stressful condi-
tions and enhance the diversity of beneficial microbes
in the rhizosphere.
Received April 22, 2014; accepted August 10, 2014; published August 12, 2014.
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