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Abstract

Proton translocation coupled to redox chemistry is ubiquitous for membrane enzymes involved in 

energy generation in cells. In such enzymes, proton transport occurs in special proton conducting 

channels, which consist of a series of protonatable groups of the protein connected by chains of 

mobile water molecules. Here we discuss two possible mechanisms of proton transport along such 

structures: diffusion of a localized charge and delocalized soliton transitions, in which several 

protons are collectively shifted along a chain of hydrogen bonds.

I. INTRODUCTION

Proton translocation coupled to redox chemistry is ubiquitous for membrane enzymes 

involved in energy transduction [1,2]. Examples of such enzymes include cytochrome 

oxidase [3], bc1 complex [4], photosynthetic reaction centers (PRC) [5], and others. In such 

systems, proton transport occurs in special proton conducting channels, which typically 

consist of a series of protonatable groups of the protein connected by chains of mobile water 

molecules. Here we discuss two possible mechanisms of proton transport along such 

structures: diffusion of a localized charge and delocalized soliton transitions, in which 

several protons are coherently shifted along a chain of hydrogen bonds.

Proton transfer (PT) over long distances is a complicated process which involves dynamics 

of water molecules, along which protons move, and protons themselves [6–16]. Moreover, 

protein and membrane surfaces can significantly modify proton diffusion mechanisms [17–

19]. Proton transfer in redox enzymes requires special “wiring” of donor and acceptor sites 

by chains of hydrogen bonds. A typical conducting channel in such systems consists of a 

chain of water molecules and a few intermediate protonatable residues. The intermediate 

protonatable sites are connected by a few, typically one to five, water molecules. Three to 

five water molecules can provide coupling over a distance of 10 Å (Fig. 1). A prototypical 

example of such a system has been recently described in computational studies of 

cytochrome oxidase [20–28].

The described structures are different from those occurring in the membrane pores or ion 

channel, such as gramicidin and others [13,14,16,29,30]. Computer simulations of transport 

in proton conducting ion channels [9,11–14,31–37] have revealed a dramatic difference that 

a constrained environment of the channel can make, compared with the bulk transport. 

Earlier, a number of general qualitative ideas of how proton transport across biological 

membranes may occur have been developed [38–41]. The early concept of molecular wire 
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[38] was challenged by Warshel [40], who developed the empirical valence bond (EVB) 

method, see e.g., [16], that provided the first computational approach to explore the issue 

quantitatively and arrived at the picture of localized charge diffusion. Later, the 

computational approaches have been significantly advanced, in particular by Voth and co-

workers [12]. The mechanism of transport in specific proton conducting channels is still 

debated, however, see, e.g., [30], and is likely to be specific to a given biological system. If 

the state of hydrogen bonding network in a channel were the same as in liquid water, protons 

could randomly jump between water molecules at a rate of one jump per 1 ps, which would 

make the diffusion coefficient as high as 10−4 cm2/s. In protein channels, dynamics of water 

molecules is different from that in liquid state, and the corresponding rates of proton 

transport can be much slower than in the bulk [12].

Depending on the strength of hydrogen bonds along the conducting wire (which is defined, 

along with other factors, by the number of water molecules in the channel), proton transfer 

can occur either as a delocalized soliton [42–44] or as a localized (to a single hydrogen 

bond) charge. In the latter case, the transfer occurs as a random walk, or diffusion, of a 

localized charge along the wire, a process which involves many activated steps 

[15,16,23,24,26,36]. In the former case, the transition can be viewed as an activated single-

step process, in which several protons shift coherently along the wire. In both types of 

proton transfer, the wire needs to be formed first, which is itself an activated process 

[32,45]. There is a finite lifetime associated with the wire. Proton transfer along the channel 

can therefore be described as a “gated” sequential reaction. The rate of such reaction can be 

written as

(1.1)

where  is the rate of formation of the wire, τw is its life-time, and kPT is the rate of proton 

transfer along the assembled wire.

If PT transition occurs via delocalized soliton, then the transition itself is a fast process of 

the order of one period of nuclear vibration, in which all protons along the wire shift in a 

concerted way, while most of the reaction time the system “waits” until a necessary 

reorganization of the medium and the wire itself will occur. The rate of such a process is 

given by the generic expression

(1.2)

where τ0 ~ 10−12–10−13 s and Ea a is the activation energy for proton transfer.

On the other hand, if proton transfer along the wire occurs as a random walk of a localized 

charge, then the above formula (1.1) for kp is not applicable when proton diffusion is too 

slow. In this case the proton will never reach the acceptor site during the lifetime of a 

connected wire. Moreover, in this case the formation of a continuous wire along the whole 
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channel is not necessary; here the proton transfer can be described simply as random walk 

along the channel, with some effective diffusion coefficient, and energy profile along the 

channel specific for a given redox state of the enzyme [1,36].

The formation of a continuous wire for a collective proton transfer is a process with high 

activation barrier, mainly due to a low entropy of the wire structure; on the other hand, if a 

continuous wire is not formed, the transport activation barrier is mainly due to energy cost 

of having a localized charge on a single water molecule (H3O+ or OH−) in a low dielectric 

protein medium. An important parameter that determines the type of the transfer mechanism 

is the number of water molecules in the channel. For example, in cytochrome c oxidase the 

mechanism of proton transport along a putative channel that connects Glu242 and 

propionate D of heme a3 (bovine heart notation) depends on whether three [21] or two [22] 

water molecules form the channel.

On the basis of structure of PRC, bc1 complex, and cytochrome oxidase, one cannot identify 

a unique organization of proton conducting channels, and therefore different mechanisms of 

proton transport appear to be possible. Two limiting cases of such mechanisms will be 

discussed below. To make analytical treatment possible, the models employed in the 

discussion involve some drastic simplifications of the real picture of the protein. Yet, such 

models (in addition to being interesting by themselves) are useful in providing a theoretical 

framework for the discussion of two conceptually different possibilities of transfer in real 

systems.

The collective effects in transport of protons along chains of hydrogen bonds have been 

discussed before in the context of solitons [44]. The soliton is a special collective localized 

excitation of the medium, which can propagate without dissipation and which exists due to 

nonlinearity of the system. The phenomenon is remarkably universal and appears in many 

areas of physics in a variety of forms. Solitons in molecular and condensed-matter physics 

were discovered in the mid 1970s by Davydov [46,47] and Krumhansl and Schrieffer [42]. 

Since then, the idea has expanded into many areas such as phase transitions [42], electron 

transport in conducting polymers [48,49], energy transfer in molecular and biological 

systems [43,50,51], proton transfer in hydrogen-bonded systems [44,52,53], and others [54].

The present paper utilizes some of the ideas developed in the soliton area and discusses their 

applications in the context of proton transfer reactions in bioenergetic enzymes. Our goal 

here is, by using tractable mathematical models, to clarify factors that determine the degree 

of delocalization of the transferring charge and to find a criterion for two limiting types of 

charge transfer described above.

II. MODEL HAMILTONIAN

We consider an idealized periodic chain of hydrogen-bonded water molecules shown 

schematically in Fig. 2(a). It will be assumed first that oxygen atoms are fixed in space; later 

this assumption will be relaxed (Sec. V). In a chain without defects, each oxygen atom has 

one proton, and in a minimum-energy configuration all protons are shifted to the left or to 

the right, as shown in the figure.
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The potential-energy function for each of the protons consists of two parts. The first part is 

an effective interaction with two neighboring oxygen atoms, which is described by a 

symmetric double-well potential u(Q) shown in Fig. 3(a). The proton coordinate Q is 

measured from the midpoint between a pair of neighboring oxygen atoms. The u(Q) part is 

defined as energy per proton for a simultaneous shift of all protons in the chain, keeping the 

distances between them equal to those at equilibrium. At equilibrium, the protons are 

equidistant.

The second part of the potential can be described as an effective interaction between the 

protons. If a proton in the chain is shifted from its equilibrium position, the associated 

energy increase consists of the u(Q) part, and an additional part which can be related to 

deviation of the interproton distances from their equilibrium values. This part can be 

described as a sum of pair-wise interactions χ(Qi − Qi+1). By definition, χ has a minimum 

when the distances between the protons are the equilibrium ones; hence a quadratic 

approximation for χ can be used.

The model Hamiltonian of the system therefore is

(2.1)

In a perfect chain at equilibrium, all protons are shifted to the right, Q0, or to the left 

position, −Q0, where the potential energy by definition is zero. (We should mention here 

that more realistic—and unfortunately more complicated—expressions for the effective 

Hamiltonian can be derived using the EVB approach [12,16]. Here we limit our discussion 

to a simplified analytically tractable model.)

Suppose now that one of the protons is missing or one additional proton is present in the 

chain. The first case corresponds to OH− and the second to H3O+ present in the system. The 

question is what are the equilibrium positions of the protons along the chain? Depending on 

the parameters of the potential-energy surface, the additional charge in the chain can be 

either localized to one water molecule (OH−) or (H3O+) or delocalized over several water 

molecules, as shown in Fig. 2. The second relevant question concerns the potential barrier 

for moving the charge along the chain.

The degree of delocalization is defined by the details of the potential surface of the system. 

To localize the charge on one molecular unit, as shown in Fig. 2(b), the energy cost is 

associated only with the increased distance between the pair of protons on both sides of the 

ion due to the interaction term . The rest of the system occupies one 

of the equilibrium positions ±Q0 and does not contribute to energy increase.

On the other hand, if the charge is delocalized along the chain, Fig. 2(c), the energy of 

proton-proton interactions is decreased because the pair-wise distances are now closer to 

their equilibrium values; however, the protons within the delocalization region are now 

shifted from their equilibrium positions toward the middle point between the neighboring 
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oxygen atoms, and therefore their energy is increased, roughly u(0) per proton, due to 

potential u(Q). The equilibrium will be defined by the tradeoff between the strength of 

interaction constant k and the height of the barrier u(0).

Consider now a shift of the charge along the chain. If the charge is localized, the 

translational barrier is roughly . On the other hand, if the charge is delocalized, 

the translational barrier is decreased. The higher the degree of delocalization, the easier it is 

to move the charge along the chain.

To make the above considerations more quantitative, the continuum approximation is 

considered next. Instead of a discrete index n, a continuous variable x=an is introduced, 

where a is the distance between the molecules. The configuration of the system is described 

by Q(t,x), and the Hamiltonian for the system becomes

(2.2)

where the integration is extended over the whole length of the chain, ρ=m/a, κ=ka, V=u/a, Q̇ 

=dQ/dt, and ∇Q =dQ/dx.

The above Hamiltonian describes a one-dimensional “field” Q(t,x) and our problem 

becomes an elementary exercise in field theory. Below, a qualitative general analysis of the 

above Hamiltonian relevant to our problem will be presented. For some simple cases of 

V(Q) the problem can be solved exactly [44,48,52,53], Appendix A.

III. DELOCALIZATION LENGTH

Consider minimization of the potential energy of the system first. The energy expression is

(3.1)

When a negative charge is present in the system, the boundary conditions are Q=−Q0 for x 

→ − ∞ and Q= +Q0 for x → +∞. The minimization can be done by standard variational 

techniques. We notice, however, that if coordinate x is treated as “time,” the above 

functional is equivalent to the action integral of a system with potential −V(Q) and mass κ. 

Thus, our problem is equivalent to finding a “trajectory” Q(x) in potential −V(Q), which 

satisfies the above boundary conditions, see Fig. 3(b). For these boundary conditions, the 

total mechanical energy of the system is zero,

(3.2)

From this we find
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(3.3)

therefore the typical width of delocalization Ls can be found from the following equation:

(3.4)

Hence,

(3.5)

The trajectory Q(x) will qualitatively look like the one shown in Fig. 4.

It is instructive to obtain the delocalization length Ls in a different way. Namely, we 

approximate the actual trajectory, which satisfies Eq. (3.2) and qualitatively looks like the 

one shown in Fig. 4, by the following form:

(3.6)

where L is an adjustable parameter. Substitution of the above form into the expression for 

energy, Eq. (3.1), gives

(3.7)

The first term here represents the energy associated with proton-proton interactions. The 

smaller the charge delocalization length L, the larger this energy is. This interaction tends to 

align all protons in the chain evenly and make delocalization length as large as possible. The 

second term represents the energy of interaction with oxygen atoms. The larger 

delocalization L, the more protons will be shifted from equilibrium, toward the midpoint 

between neighboring oxygen atoms, where the potential V is largest. Hence this interaction 

tends to decrease L. The optimal length is a tradeoff between the two tendencies. Taking the 

derivative with respect to L, we arrive at the same expression for Ls as in Eq. (3.5).

IV. CHARGE DYNAMICS

The time-dependent solutions of the system are obtained from the action integral,

(4.1)

If a charge distribution propagates along the chain without changing the shape, the solutions 

should have the form
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(4.2)

where f is the shape of charge distribution and v is the velocity of propagation. Now Q̇=

−v∇Q. Substituting the above form into the expression for the action, we find

(4.3)

where T is the time interval and  is the speed of sound in the proton sublattice (i.e., 

the maximum velocity at which a perturbation can propagate in the system). Except for a 

constant factor, the above expression coincides with energy functional (3.1) if we substitute

(4.4)

for κ. Finding the extremum of the above action is equivalent to minimizing Eq. (3.1) with 

κ= κ′. The later problem is already solved, and replacing κ with κ′ in Eq. (3.5) for the width 

of the moving charge, we find:

(4.5)

where  is the width for zero velocity, Eq. (3.5). We see that there is a “Lorentzian” 

contraction of the delocalization length Ls.

Under normal conditions, the charge can move along the chain only with velocity v<c. The 

free propagation with speed v>c (“tachyon”) is possible only in unstable media, see 

Appendix A.

Consider now the kinetic energy of the moving charge K,

(4.6)

As expected, K is proportional to v2. We can introduce then an effective mass of the moving 

charge M by writing

(4.7)

Comparing this with the above expression for K and using the obtained expressions for Ls, 

Eqs. (3.5) and (4.5), we find
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(4.8)

where M0 is the mass at zero velocity,

(4.9)

The analogy of the above expressions with the relativistic expressions for mass and length is 

quite remarkable. In Sec. VI we will discuss the microscopic meaning of the effective mass 

and velocity of propagation of charge distribution along the chain.

V. LATTICE RELAXATION

So far we considered oxygen atoms as being fixed in space. We now relax this assumption. 

Each oxygen atom is now considered to be moving in a quadratic potential around an 

equilibrium position in the chain, with a quadratic nearest-neighbor interaction,

(5.1)

where φn is the shift from equilibrium of the nth atom. The coupling with the protons is due 

to a term of the following form:

(5.2)

which describes the change in the oxygen-oxygen potential for protons u(Qn) as the distance 

between the nearest protons (φn+1 − φn) changes. It can also be interpreted as a shift of an 

equilibrium oxygen-oxygen distance as a function of the position of the shared proton. By its 

meaning, W is a positive function of Q, which is nonzero in the region of the barrier of u(Q), 

see Fig. 3(a). The effect of Hint is to decrease or increase the barrier between the two wells 

for a proton when the distance between the neighboring oxygen atoms is decreased or 

increased, respectively.

Going over to the continuum approximation, the Hamiltonian for the coupled system takes 

the form

(5.3)

The Lagrange equations of motion for this Hamiltonian are

(5.4)
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(5.5)

The above equations describe the propagation of the charge and associated deformation of 

the chain. Assuming that the propagation occurs with velocity v, from the second equation 

for oxygen sublattice, we find

(5.6)

where  is the speed of sound in the oxygen sublattice. From this equation, we 

can find φx for an arbitrary W and substitute it into the proton Eq. (5.4). As clear from Eq. 

(5.4) the propagation of charge will occur in the effective potential,

(5.7)

We see that qualitatively the effect of motion of oxygen atoms along the chain is formally 

reduced to a modification of the potential V(Q).

To simplify the formulas, we further assume that κO1 =0 and obtain

(5.8)

After substituting this into Eq. (5.4) the closed equation for proton sublattice takes the form

(5.9)

Taking into account that Q has the form of a propagating wave, f(x−vt), we find

(5.10)

Moreover after integration,

(5.11)

This equation has the same form as the one we considered for fixed oxygen atoms, Eq. (3.2), 

with the effective potential for protons
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(5.12)

We see that the effect of adjustment of oxygen atoms to the charge in the chain is to 

decrease the barrier of V(Q), making Ṽ(0) smaller, and hence increasing the delocalization 

length Ls, see Eq. (3.5). The same qualitative result is obtained when the other limiting 

approximation is made in Eq. (5.6), namely, neglecting φxx and retaining the kO1φ term. 

Since Eq. (5.12) is obtained with an approximate treatment of Eq. (5.6), which is valid only 

for small velocity of propagation v, the velocity dependence of the effective potential (5.12) 

should be considered only qualitatively, namely, the delocalization length of the soliton 

wave is increased with an increase in the velocity of propagation of the soliton wave. 

[Taking v close to s, in Eq. (5.12), or even above s would be incorrect.]

It is clear, qualitatively, that the propagation of charge without dissipation of energy is only 

possible for velocity v less than the speed of sound in both the proton and oxygen 

sublattices: v<s and v<c. When the speed of propagation is close to the speed of sound in the 

sublattice, the continuum approximation breaks down, and a more detailed microscopic 

picture should be considered using exact solutions of Eqs. (5.4) and (5.5). As will be shown 

in Sec. VI, these limiting cases, although very interesting by themselves, unfortunately have 

very little to do with the proton transfer problem in protein.

VI. DISCUSSION

A. Microscopic parameters

The continuum approximation has been useful for the derivation of the analytical relations. 

We now wish to return to our original discrete representation and interpret the obtained 

results.

We begin from the expression for the delocalization length , Eq. (3.5), which can be 

written as

(6.1)

where a=2Q0 is the distance between the neighboring sites and n0 is the number of sites over 

which a resting charge is delocalized. The latter is written as

(6.2)

where

(6.3)

is the contraction energy due to proton-proton repulsion and
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(6.4)

is the height of the barrier of u(Q).

When the charge moves with velocity v, the number of sites over which it is delocalized is

(6.5)

As the velocity v approaches the speed of sound c, the number of sites of delocalization 

shrinks to a minimum. The charge delocalization occurs when n0 ≫ 1. The contraction of 

the delocalization length with the increase in velocity of propagation should be understood 

as a limit n → 1 when v → c.

Consider the momentum of a moving charge. The number of protons involved in the motion 

is n=Ls/a, each moves between the two neighboring oxygen atoms with velocity vH = a/τ 

where τ=Ls/v is the time that the proton moves in the process. By definition, then

(6.6)

As seen, although the moving delocalized charge involves the motion of several protons, the 

overall momentum of the system is equal to that of a single proton moving with collective 

velocity v.

The kinetic energy of a moving charge is

(6.7)

where

(6.8)

We see that in contrast to the momentum relations, the kinetic energy is not equal to that of a 

single proton moving with velocity v. Instead, the effective mass appears, which is (1/n) th 

of the mass of the single proton. When the velocity approaches the maximum value c, the 

delocalization length reduces to one unit, the effective mass increases to its maximum value 

mH, the mass of a proton, and the kinetic energy becomes equal to that of a single proton.

Consider now the total mechanical energy of the system,
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(6.9)

Recalling that the speed of sound c2= κ/ρ =ka2/mH, we find that the potential energy is

(6.10)

We can see again that the minimization of the above expression with respect to n gives for 

the optimal delocalization length . The potential energy of a delocalized resting 

charge is

(6.11)

Notice that for arbitrary ε1 and ε2,

(6.12)

The above potential energy is the minimum total mechanical energy for charge at rest, v=0. 

Consider now the maximum possible energy for v → c. In this case, in Eq. (6.9) n=1 and 

v=c. Therefore,

(6.13)

Recalling again that c2=ka2/mH =2ε1/mH we find that

(6.14)

Hence, the total energy of the charge varies in the range

(6.15)

From the above relations, we find that for an efficient delocalization, n ≫ 1, energy ε1 

should be at least 1 order of magnitude larger than ε2. The evaluation of these two 

parameters for a specific system is discussed in Appendix B. It is clear that since these two 

energies are of the same origin, they can differ in maximum by 1 order of magnitude or so. 

Therefore, realistically for proton channels the maximum degree of delocalization can be

(6.16)
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Given the structure of the channels, in which typically the same number of water molecules 

(three to five) are connecting the intermediate protonatable sites, we conclude that the 

charge transfer between the sites can occur via the charge delocalization process discussed 

above. The rate of proton transfer between the sites in this case will be given by formulas 

described in Sec. I. The overall transport then is a random walk over the intermediate 

protonation sites in the channel. The complete localization (n0 =1) case is also possible. In 

this case the jumps between the intermediate sites will require several activated transitions 

along the chain of water molecules connecting the sites. The overall transport in this case is 

also a random walk, which however is quite different from the former case. The two types of 

diffusion along the channel can be coupled to redox state of the enzyme, as described in Ref. 

[1].

B. Effects of disorder and temperature

It is already clear from the above discussion that the formal (continuous) theory of solitons 

has rather limited application to proton transfer in real proteins, since in proteins the charge 

is likely to be localized on just a few water molecules. Is it possible for such structures to 

propagate ballistically along a proton conducting channel, as in the formal continuous 

soliton theory discussed in Secs. IV and V? It appears that the effects of thermal and 

structural disorders and energy relaxation make such propagation impossible, further 

limiting the analogy between the solitary wave propagation and the proton transfer in a real 

system.

Indeed, taking the vibrational frequency of the protons to be (1 fs)−1 and the characteristic 

distances of proton transfer between the neighboring oxygen atoms to be roughly 1 Å, an 

estimate of the speed of sound in the protonic subsystem alone is 107 cm/s. On the other 

hand, assuming kinetic energy of the protonic soliton to be of the order of kilotesla, for 

T=300 K, the typical velocities of the solitons are roughly 105 cm/s. Thus, the effects of the 

velocity dependence of the delocalization length are not expected to be of great importance. 

Yet, even for such a high speed of propagation, assuming a typical vibrational energy 

relaxation time of 1 ps (the free propagation time), the mean-free path of a soliton is only of 

the order of 10 Å. Furthermore, if elasticity of the oxygen sublattice is taken into account, 

the effective speed of propagation (for the same kinetic energy of the order of kilotesla) is 

decreased, making the mean-free path even smaller, perhaps reduced to only to one or two 

water molecules. The same effects should be expected from the structural disorder of the 

chain along which the proton occurs. We conclude, therefore, that the ballistic (and 

coherent) soliton-like propagation of the delocalized charge structure in the real proton 

conducting system is impossible.

Given the above estimates, for a real system one is left with the following picture; the 

“solitons” should be understood in the sense of delocalized charge (positive H3O+ or 

negative OH−) over one to five water molecules; thermal disorder and energy relaxation 

makes ballistic propagation of such structures impossible; instead one should think of 

random walk of such structures along the proton conducting channel induced by thermal 

motions of the protein, as, e.g., in Ref. [26].
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VII. CONCLUSIONS

Three qualitatively different cases of proton transfer along a proton conducting channel 

imbedded in the protein environment are possible. (a) The simplest case is when there are 

not enough water molecules in the channel to form a continuous chain. Such a case has been 

recently described in the context of cytochrome oxidase in Ref. [22]. In this case the transfer 

necessarily has to be via a localized charge. The individual water molecules have to carry 

the charge in the form of H3O+ or OH− between donor and acceptor groups via diffusion 

along the channel. The transfer activation barrier here is mainly due to energy costs of 

having a localized charge in a low dielectric medium of the protein.

(b) Water molecules in the channel form a continuous chain, as in an example described in 

Ref. [21]; however, because of geometrical constrains, the coupling along the chain is weak. 

In this case, the transferring charge is still localized on individual water molecules, and the 

transfer occurs via thermally activated hopping random walk of charge along the chain 

[25,26]. Due to partial hydrogen bonding, and a resulting local solvation of the charge, the 

activation barrier is expected to be lower than in the first case. The random walk along the 

channel is governed by the energy profile along the channel, which depends on the redox 

state of the enzyme [1]. The localized charge here can be formally described within a 

phenomenological model considered in this paper as a soliton localized on a single 

molecule, i.e., the soliton width Ls in this case is of the order of size of one water molecule 

[25,26].

(c) Water molecules form a continuous chain of hydrogen bonds with strong coupling. If 

such a chain existed as a stable entity of infinite length, one could apply directly the soliton 

model discussed in this paper. The soliton width Ls and charge delocalization in this case is 

much greater than one water molecule. [For the width estimate, one should take a soliton of 

the lowest thermal energy, i.e., the soliton with velocity v ≪ c, Eq. (6.5).] Realistically, in 

proteins, as discussed in Sec. VI, the water chain length between proton donor and acceptor 

groups is in the range of only three to five water molecules. In such a case we expect that 

under conditions of strong coupling and large soliton width, when an appropriate fluctuation 

in the chain and the environment occurs, the charge simply gets delocalized between donor 

and acceptor groups, along the whole length of the chain. The rate of charge transfer is 

described by formulas discussed in Sec. I. This type of transfer is qualitatively different 

from a random walk of a localized charge along the chain. The activation energy of charge 

transfer, Eq. (1.2), is expected to be lower than in the previous two cases.

Which of these three cases realizes in practice depends on the system? In cytochrome 

oxidase, for example, recent computer simulations in Ref. [22] predicted a situation of the A 

type; while simulations in Ref. [21] predicted a situation that is either B or C. The definitive 

answer as to which type of the transfer occurs in reality requires a detailed evaluation of the 

energetics of the charge transfer along the water channel [25,26,55]. The phenomenological 

model discussed in this paper can serve as a theoretical framework for rationalization of the 

numerical simulation results.
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APPENDIX A

(1) The exact solutions for the model can be generated from the following equation for 

energy:

(A1)

All solutions with boundary conditions discussed in text will have the form shown in Fig. 4. 

To find an analytically solvable potential, one can take any analytical form of the solution 

Q(x)and use the above equation to find V(Q). For example, for solution Q(x)=Q0 tanh(x/L) 

the potential is V(Q) =λ(1−(Q/Q0)2)2 where λ is a constant. For a given potential, multiple 

kink trajectories are also possible. They describe multiple charges in the chain.

(2) For velocity v>c the equation of motion has the form

(A2)

where

(A3)

Recall that x here is the evolution time. Thus, for v>c the potential in the equation of motion 

is V(Q) instead of −V(Q) for v<c. In this case, the “bounce” trajectory Q(x) can only 

originate at the top of the barrier Q=0, see Fig. 3(a). The trajectory will look as follows: it 

starts at the top of the barrier Q=0, then bounces left or right, and then returns back to the 

top of the barrier. In the x space the corresponding distribution of protons is as follows: all 

protons are located in the middle between two neighboring oxygen atoms, except for several 

protons within some delocalization interval Ls, in which protons are shifted to the left or to 
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the right, according to Q(x). This structure can propagate with velocity v>c. This is clearly 

an artificial situation; in the chain, all protons initially are in the unstable position (top of the 

potential barrier) and the dynamics is such that they return to this position after a passage of 

the charge along the chain. Any perturbation can obviously destroy such an unstable state; 

therefore the v>c case is not realistic, although not impossible.

APPENDIX B

For a specific system, the parameters of the model can be evaluated as follows. By 

definition, the potential u(Q) is the energy per proton required to shift all protons in the 

chain, keeping their distances the same as in equilibrium, over distance Q. For a given 

periodic structure, this potential is obviously a symmetric double well. After the 

equilibration of protons, u(Q) then can be directly evaluated using methods of quantum 

chemistry.

The additional proton-proton interactions χ(Qi+1 − Qi) can be evaluated as the difference 

between the total potential energy U(Q) and u(Q) when a single proton (i) is shifted from its 

equilibrium position. By definition, in quadratic approximation, we have

(B1)

Keeping all protons at their equilibrium positions and varying the position of a single proton 

Qi, the interaction potential can be evaluated using the above relationship.
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FIG. 1. 
Schematics of a segment of proton conducting channel.
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FIG. 2. 
Distribution of protons (filled circles) in a hydrogen-bonded chain of water molecules; open 

circles are oxygen atoms and the curves are potential wells for protons. (a) No net charge in 

the chain. (b) Charge (−1) is localized to one molecule. (c) Charge is delocalized over 

several water molecules.
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FIG. 3. 
(a) Double-well potential for protons, u(Q). (b) Inverse potential −u(Q) and its stationary 

points.
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FIG. 4. 
(a) Distribution of proton displacements in a continuum model, u(Q). (b) Distribution of net 

charge corresponding to u(Q). Ls is the charge localization length.
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