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Summary

A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment 

strategies by incorporating patient level predictor information such as environmental exposure, 

biological, and genetic marker measurements. Many useful statistical methods for deriving 

individualized treatment rules (ITR) have become available in recent years. Prior to adopting any 

ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing 

methods for quantifying such values mainly consider either a single marker or semi-parametric 

methods that are subject to bias under model misspecification. In this paper, we consider a general 

setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate 

their values. We also propose procedures for comparing different ITRs, which can be used to 

quantify the incremental value of new markers in improving treatment selection. While working 

models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard 

against model misspecification and further assess the value of the ITR non-parametrically, which 

ensures the validity of the inference. To account for the sampling variability of the estimated rules 

and their corresponding values, we propose a resampling procedure to provide valid confidence 

intervals for the value functions as well as for the incremental value of new markers for treatment 

selection. Our proposals are examined through extensive simulation studies and illustrated with 

the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected 

patients.
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1. Introduction

The standard analyses of randomized clinical trial evaluate the treatment effect based on the 

overall treatment difference on the entire study population. However, such overall the 

treatment effect assessment may not be adequate when a new treatment benefits patients 

differentially depending on each patient’s characteristics. A treatment deemed effective on 

average does not guarantee that it will be beneficial to all future patients. Conversely, a 

negative finding on the average the treatment effect does not imply that the new treatment is 

entirely futile since the effectiveness of a treatment on a small subgroup of patients may be 

hidden by its inactivity on a large (heterogeneous) patient population (Rothwell, 1995; 

Rothwell et al., 2005; Kent and Hayward, 2007). When the treatment effect varies across 

subpopulations, it would be desirable to develop individualized treatment rules (ITR) 

according to individual patients’ baseline characteristics. Assigning treatments to achieve 

optimal patient outcomes may substantially improve healthcare efficiency (Baker et al., 

2012).

Statistical methods for developing optimal ITRs have received much attention in recent 

years. Traditional methods based on ad hoc subgroup analyses or searching for 

markertreatment interactions, while useful, may not be efficient or valid due to the curse of 

dimensionality and multiple comparisons. More systematic approaches to deriving ITR have 

been recently proposed. With a single baseline marker, semi- and non-parametric procedures 

have been proposed to identify a subgroup of patients who would benefit from the new 

treatment (e.g., Song and Pepe, 2004; Bonetti and Gelber, 2000, 2004). With multiple 

baseline markers, a wide range of procedures have been proposed to derive ITRs that 

combines information across all markers (e.g., Qian and Murphy, 2011; Imai and Strauss, 

2011; Foster et al., 2011; Cai et al., 2011; Zhao et al., 2012; Zhang et al., 2012a; Zhao et al., 

2013).

As strategies for deriving ITRs become increasingly available, it is important to examine the 

net benefit of assigning treatment according to an ITR prior to recommending its wide 

spread use. Most current research focuses on developing ITRs with relative little attention 

given to making robust inference about such estimated ITRs and their value in improving 

population outcomes. Although a few methods have been proposed to quantify such values, 

these methods consider either a single marker or semi-parametric methods that are subject to 

bias under model misspecification (Song and Pepe, 2004; Song and Zhou, 2009; Janes et al., 

2011; Huang et al., 2012, e.g). Zhang et al. (2012a) propose a robust approach to overcome 

model misspecification by restricting the ITR in a parametric class and estimate the ITR 

parameters by maximizing an empirical value function associated with the ITR. The direct 

maximization of the non-smooth empirical value function could suffer substantial variability 

in the estimated ITR parameters. As we show Section 3.2 and Web Appendix B, even for a 

univariate X with ITR given by I(X ≥ c), direct maximization gives an estimate of c with a 

cubic convergence rate. When there are multiple markers, direct maximization of an 

empirical value function with respect to all unknown parameters involved in the ITR, such 

as those proposed in Zhang et al. (2012b), could be computationally prohibitive and 

unstable. Here, we consider a general setting with multiple markers and adopt a two-step 

method to derive a class of ITRs and make inference about the value of such ITRs. We also 
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propose procedures for comparing different ITRs, which can be used to quantify the 

incremental value (IncV) of new markers in improving treatment selection. Such IncV 

assessment is particularly important if a marker used in the ITR is expensive and/or 

invasive.

The remainder of this paper is organized as follows. We describe in Section 2, the general 

framework for quantifying the value of ITRs and deriving ITRs that attain maximal values. 

We also provide some simple results demonstrating that a two-step procedure could 

potentially lead to an ITR that is optimal (i) among all ITRs based on a set of predictors X 

when the fitted models in the first step are nearly correct; and (ii) within a smaller class of 

ITRs when the models are misspecified. In Section 3, we provide the estimation and 

procedures for making inference about the proposed two-step ITR as well as its value 

function. In Section 4, we evaluate the finite sample performance of our proposed methods 

through a series of simulation studies. We apply the proposed method, in Section 5, to a data 

set from a clinical trial (ACTG 320) conducted by the AIDS Clinical Trial Group as a 

further illustration. In Section 6, we provide some concluding remarks and further 

discussion.

2. Quantifying the Value of ITR and Optimizing ITR

2.1 Notations and Settings

Let Y be the response variable and Y(j) denote the potential outcome (Rubin, 1974; Rubin et 

al., 1978; Holland, 1986; Robins, 1986) of a patient if assigned to treatment G = j, where j = 

1 refers to the experimental treatment and j = 0 to the standard treatment. The potential 

outcome (also referred to as counterfactual outcome) Y(j) is defined as the value of the 

outcome had the treatment been set to G = j by external intervention. Both Y and Y(j) are 

related via the consistency assumption Y = GY(1) + (1 – G)Y(0). We assume the standard 

stable unit treatment value assumption i.e. each subject’s potential response to a treatment 

does not depend on the treatment assignment mechanism, the treatments received by other 

patients or their potential responses to treatments (Rubin, 1980, 1986).Without loss of 

generality, we assume that a larger value of Y is more beneficial.

Let  denote a binary ITR as a function of a baseline covariate vector X with 

indicating assignment to treatment j. Our goal is to identify an optimal  that maximizes 

patients’ outcomes. When the treatment selection is optimized for all patients, the resulting 

population average outcome is also optimized. Thus, an optimal ITR is also expected to 

maximize a population average value function. A sensible choice of the value function is the 

cost-adjusted population average outcome associated with :

where ξ is a pre-specified incremental financial and/or medical cost associated with taking 

the new treatment as compared to the standard treatment. It is not difficult to see that the 

optimal  maximizing  is the Bayes rule
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(2.1)

where I(.) is the indicator function and D(X) = E(Y(1)∣X – E(Y(0)∣X). With a given dataset, 

the optimal ITR  can be approximated by estimating the conditional treatment 

effect function D(X) or by direct optimization of  within a class of .

Throughout, we use notation D(β,X) to denote a model based approximation to the true 

conditional mean difference D(X) with a model parameter value β; let  denote its estimate 

from the data and  denote its limiting value. In addition, we let

 denote a calibrated estimate of treatment difference 

given . We next describe the pros and cons of various approaches.

2.2 Various Approaches to Approximating 

When X = X is univariate, we can approximate  by estimating D(X) via kernel 

smoothing. Note that if D(X) is an increasing function in X, the optimal rule (X) must 

take the form I(X ≥ c°), where c° = argmaxc  and 

. Evaluating the utility of a single marker 

based on  has been previously considered in Song and Pepe (2004) and Song and Zhou 

(2009). However, when D(X) is not monotone in X, the optimal ITR may not take the form 

of I(X ≥ c) and  for any c if there exists x1 > x2 such that D(x1) = D(x2) = ξ 

and P(x1 > X > x2) > 0.

With multivariate X, using fully non-parametric methods and incorporating non-linear 

functional spaces for approximating  (Foster et al., 2011; Zhao et al., 2012) could 

be extremely valuable, especially when D(X) takes a complex form. However, these 

methods are subject to curse of dimensionality and pose challenges in making inference 

about the resulting ITR and its associated value function. On the other hand, if D(X) is 

estimated by imposing parametric or semi-parametric models on E(Y(j)∣X), the plug-in 

estimate of  may lead to a much lower population average outcome compared to 

that of the true  (Qian and Murphy, 2011). One may reduce model 

misspecification by including non-linear bases and selecting important variables via 

regularized estimation (Qian and Murphy, 2011; Imai and Strauss, 2011). However, it 

remains challenging to efficiently choose non-linear basis functions to achieve an optimal 

bias and variance trade-off.

We seek to overcome model misspecification by following a two-step principal previously 

proposed in Cai et al. (2011) and Zhao et al. (2013): (I) obtain a parametric or 

semiparametric model based estimate of D(X), denoted by , where  is the 

estimated model parameters; and (II) non-parametrically estimate treatment effect 
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parameters to account for possible model misspecification in step I. Both of these existing 

methods, while related to using working models for treatment selection, do not address the 

question of how to derive an optimal ITR or how to make inference about its associated 

value, which is the focus of this paper. Cai et al. (2011) uses  as a univariate score 

to create subgroups,  and provides inference procedures for E{Y(1) – 

Y(0) ∣ X ∈ Ωs}. Zhao et al. (2013) proposes a non-parametric estimator of 

 for a range of c in step II and hence only relate to ITRs of 

the form . Although the methods given in Zhao et al (2013) can be used to 

compare the potential of two scores in guiding treatment selection, their measures do not 

have a clear clinical interpretation and cannot be used to quantify the performance of a 

single score.

In this paper, we propose a two-step approach to construct a calibrated ITR,

and evaluate its value . It follows from (2.1) that  is the optimal ITR based 

on the univariate score . We next detail some pros and cons of using  for 

treatment selection under various conditions.

• When the working models in the first step are nearly correct such that D(X) is an 

increasing function of , then . Hence, the two-

step procedure leads to the optimal ITR with .

• Under more severe model misspecification when 

,  will be sub-optimal 

relative to  with . However, when  and  are 

replaced with their respective estimates  and  obtained in finite 

sample, applying  to a future population may not yield a value function 

higher than that of  if the sampling variability associated with  is much 

larger than that of .

• When the model misspecification is not severe with  being increasing in s, 

 takes the form , where c° = argmaxc  with 

.
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• When  is not monotone and there exists d1 > d2 such that 

and , we have . In other words, 

under certain model misspecifications such as missing a quadratic effect, assigning 

treatment according to  as in Zhao et al. (2013) will be sub-

optimal when compared to .

These findings suggest the benefit in approximating  with  and motivate us to 

provide a robust estimate of the ITR as follows:

1.
posit working models to approximate D(X) using a model based score ;

2. non-parametrically estimate  as  using observed responses along with 

;

3. for a future patient with X = x, the treatment assignment is determined using 

, which is an estimator of  with 

;

4. evaluate the performance of  based on the observed data by estimating 

.

We next detail our proposed estimators for  and its associated value  along with 

their asymptotic properties.

3. Estimation and Inference Procedures for  and 

We assume that data available for analysis are from a randomized clinical trial with study 

participants randomly assigned to either a standard treatment (G = 0) or an experimental 

treatment (G = 1). Our data consist of n random vectors *****

, where we assume that {(Yi,Xi) : Gi = j} are 

 independent and identically distributed random vectors, for j = 0, 1. 

Furthermore, we assume that the ratio n1/n converges to a constant π1 ∈ (0, 1) as n → ∞.

3.1 Estimation of  and 

We first approximate D(X) by imposing parametric or semi-parametric working models as 

E(Yi ∣ Xi = X, Gi = j) = μj(βj;X) with β being the unknown model parameter for group j and 

μj being a known link function. Without loss of generality, we suppose that βj is estimated 

by , the solution to , where

(3.1)
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Uj(β;·,·) is the estimating function relating the observed data to the parameters of interest, 

and  is a tuning parameter chosen to ensure stable fitting when the 

dimension of β is not too small compared to the sample size. For example, one may let 

 under generalized linear models, where ψ(·) is a 

prespecified finite dimensional vector of potentially non-linear transformation functions 

which would allow one to capture non-linear effects. We choose penalty  so 

that  still converges to a zero-mean normal random vector to enable easy 

inference. Then, the model based estimate of D(X) can be obtained as 

, where  is a vector of estimated model 

parameters.

Next, we propose to estimate  and  non-parametrically with 

 and  respectively, where

(3.2)

representing a non-parametric smoothed estimator of  and K(·) is a smooth symmetric 

density function with h → 0 as n → 1.

We show in Web Appendix A that, under mild regularity conditions, 

 and  in probability. Furthermore, we 

show that , which converges in 

distribution to a zero mean normal random variable with variance , where  is 

defined in (A.1) of Web Appendix A and  is the estimated 

treatment assignment rule knowing .

This indicates that  in the non-parametric calibration step does not contribute any 

additional variability for the estimation of  at the first order. Alternative choices of 

 such as a local likelihood estimator can also be valid provided that 

.
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3.2 Estimation of the Threshold Under Monotonicity

Under the assumptions that  is monotone,  has a unique solution at c°, and the 

product . The optimal ITR based 

on  takes the form , where c° = argmaxc  is an 

interior point of the support of . Hence, one may also approximate  via 

direct maximization as , for , where we define 

.

We show, in Web Appendix B, that  is a consistent estimator of c°. However, due to the 

non-smoothness in the empirical value function , we have , 

suggesting that direct maximization results in an estimator with a much slower convergence 

rate and hence large variability in . Furthermore, following from Theorem §1.1 of Kim and 

Pollard (1990),  converges in distribution to argmint , where  is a 

Gaussian process. However, argmint  does not generally have an explicit form.

Since co is also the solution to , we propose to estimate c° as , the solution to 

. As shown in Web Appendix B,  and 

converges in distribution to a normal when h = O(n−v) with v ∈= [1/5, 1/2). In addition, 

 and 

. This 

suggests that, under the monotonicity assumption, the variability of  is ignorable at the first 

order when making inference about  and the estimator  is asymptotically equivalent to 

 obtained by first estimating  via smoothing.

Finally, using similar arguments as those given inWeb Appendix B, one may also show that 

. However, in finite sample, the large 

variability in  leads to  having higher variability than that of . We further illustrate 

these points in the simulation section.

3.3 Bias Correction and Interval Estimation

In practice, for a small or moderate sample size n, the value of the marker-guided ITR could 

be substantially over-estimated due to overfitting (Zhao et al., 2013). To correct for the bias, 

we use the standard cross-validation (CV) technique. Specifically, we first randomly splits 
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the data into  disjoint subsets of about equal size and label them as , where k = 1, … . 

For each k, we use all the observations not in  to obtain  for βj via (3.1), and compute 

the score  as well as . Then, we use observations in  to obtain

Finally, we obtain the CV estimator for  as 

The variance of  involves unknown density-like functions, which makes it difficult to 

estimate directly, especially when the number of covariates in the model is not small. To 

circumvent this issue, we use a perturbation-resampling technique to obtain a good 

approximation to the distribution of our proposed estimators. Specifically, let {Wi, i = 1; … , 

n} be n independent and identically distributed random variables generated from a known 

distribution with mean 1 and variance 1. The perturbed version of  can be obtained as

where 

and  is the solution to .

Using arguments similar to Park and Wei (2003) and Cai et al. (2005), we can show that, the 

distribution of  can be approximated by the conditional distribution of 

 given the data. Therefore, a 100(1 – α)% confidence interval (CI) 

for  is constructed as  or , where  is 

obtained as the standard error (SE) of  and zq is the qth percentile of the standard 

normal distribution. When h = O(n−v) with v ∈ (1/5, 1/2), the resampling method can also be 
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used to obtain CIs for c° based on . However, we acknowledge that it is unclear whether the 

proposed resampling procedures or the standard bootstrap can be used to approximate the 

distribution of  due to its non-regular distribution. Our numerical results seem to suggest 

that the perturbation works reasonably well in finite sample.

3.4 Incremental Value (IncV) of Markers in Improving ITR

When a set of new markers Xnew is available to further improve ITR, it is important to 

assess their IncV, especially if these markers are costly or invasive. Using the population 

average outcome, we may quantify the IncV of the new markers by comparing the ITRs 

constructed with Xold and , denoted respectively by  and 

, with respect to their value functions, i.e. the cost-adjusted population average 

outcomes. Specifically, the IncV of Xnew can be quantified as . Based 

on the inference procedures described above, we obtain a plug-in estimate of IncV as 

.

The CI of IncV can be constructed via the perturbation-resampling approach as well. For 

each set of perturbation random variables {Wi, i = 1, … , n}, we follow the perturbation 

procedures described in Section 3.3 to obtain perturbed counterpart of ( , ) as 

( , ). Then the perturbed counterpart of  can be obtained as 

. The empirical distribution of  conditional 

on the data can be used to approximate the distribution of  and construct 

the CI accordingly.

4. Simulation Studies

To evaluate the performance of the proposed method under practical settings, we conducted 

extensive simulation studies to examine the finite-sample properties of the proposed point 

and interval estimation estimators. In addition, we compared the performance of the 

proposed procedures to that of Qian and Murphy (2011) and Zhang et al. (2012a) with 

respect to the achievable value function. Throughout the simulation studies, we let n0 = n1 = 

250 and set ξ = 0 for simplicity. All the CIs were obtained using 500 perturbed samples with 

Wi ~ exp(1). All the results are summarized based on 1000 simulated datasets.

4.1 Evaluation of the Proposed Method

We first evaluated the proposed point and interval estimation procedures for the value 

functions. We generated covariates from
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Given , two types of outcomes were generated: (1) 

a continuous outcome from a linear model

(4.1)

where ∊i ~ N(0, 1) with β1 = (1, 0.5, 1, 1.5, 1, 1)⊤ and β0 = (6, 2.5, −3, −1, 1.5, –2)⊤; (2) a 

binary outcome from a logistic regression model

(4.2)

where β1 = (0.1, 0., 0.1, 0.15, 0.2, 0.1)⊤ and β0 = (0.6, 0.25, −0.2, −0.1, 0.15, −0.2)⊤.

To derive ITRs, we fitted various working models with either linear (for continuous Y) or 

logistic regression (for binary Y) with the following different sets of covariates:

For the overfitted model (M2), we generated X6 ~ Bernoulli(0.7) and (X7, … ,X20)⊤ N(μ, 8 · 

I14×14 + 8), where μ = (3, 1, 2, −3, 3, 1, 2, 1.5, 2.5, 1, 0.5, 2, 1, 1)⊤; I14×14 denotes a 14 × 

14 identity matrix. To obtain model based estimate of D(X), we fit simple linear regression 

and logistic regression models with penalty parameter λjn set to 0 since the models sizes are 

reasonably small. It can be seen that Δ(·) is an increasing function under those four working 

models and hence  is asymptotically equivalent to  and .

The results for estimating  via , , and  together with a 2-fold CV 

procedure are shown in Table 1. For all estimators of , the biases are negligible and 

the estimated SEs are close to the empirical SEs. The 95% CIs have empirical coverage 

levels close to the nominal level. As expected, the CV procedure generally provides 

estimators with lower bias compared to the apparent estimates. Since  and  are 

equivalent under monotonicity, the results for  and  are almost identical to each 

other.

Although  and  are also asymptotically equivalent, we note that  tends to have 

slightly larger bias and variation in finite samples. This could be in part due to the larger 
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variability in estimating the corresponding optimal threshold values as shown in Table 2. 

The bias and variance of  are substantially larger than those of . The efficiency of  relative 

to  is only about 66-75% for most of the settings we considered. This confirms the 

disadvantage of estimating c° by directly maximizing the non-smooth empirical objective 

function .

We also evaluated the finite sample performance of the inference procedure for the IncV of 

new markers. In Table 3, we presented results on the estimated IncV of X1 and X3 in 

improving the value function by comparing the ITRs derived from the full model (M1) to 

those from model (M3) with no information on X1 and X3. Our proposed procedures based 

on  and  give minimally biased estimates of the IncV and the resampling 

procedures provide good estimates for the SEs and CIs. Since the model sizes are small, 

both the apparent estimates and the CV estimates lead to reasonable interval estimates with 

proper coverage levels. For comparison, we provided the results based on  as well which 

also leads to consistent estimates of the IncV since Δ(·) is monotone for both models. 

Similar to the results shown earlier, the direct maximization of  resulted in larger 

variability in , which subsequently lead to higher variability in estimating IncV in finite 

sample.

4.2 Comparisons to Existing Methods

Additional simulation studies were conducted to compare our calibration methods with those 

proposed in Qian and Murphy (2011) (QM) and Zhang et al. (2012a) (Zhang). The QM 

method employs model based ITRs but guard against model mis-specification by including 

non-linear basis functions and then obtains stable parameter estimates by imposing L1 

penalization. In our simulations, we included all linear effects and two-way interactions for 

their method. To apply the Zhang method, we let the propensity score be 0.5 and search for 

the optimal ITR using the linear regression followed by a CART procedure. The complexity 

parameter was first set at 0.001 to build a large tree which is then pruned via a 10-fold CV.

To compare the performance of these methods, we generated X20×1 ~ N(0, 2.4I20×20+1.6) 

and a continuous Y that depends non-linearly to the first 5 covariates through

(4.3)

where , , sin(X4))⊤, β0 = (12, 5, −6, −2, 3, −4, 7, 

−2)⊤ and β1 = (2, 1, 2, 3, 2, 2, 3, 3)⊤. To construct the ITRs, we investigated four sets of 

working linear models with covariates being
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For ( ) and ( ), Δ(·) is non-monotone. Since our proposal also allows non-linear 

transformations, we derive  based on  using (i) linear models ( ) and (ii) 

linear + two-way interactions with ridge penalty ( ). For comparison, we also consider 

the model based rule by assigning patients according to  for both linear effects 

(ModelL) and linear + interaction effects (ModelL+I). The ridge penalty parameters for 

ModelL+I and  were chosen via the CV. For all scenarios, we estimated ITRs with 

training sets of sizes n0 = n1 = 250 and evaluated their corresponding value functions on 

independent validation datasets with n0 = n1 = 105. We use large validation sets to ensure 

that the variability observed in the empirical value function reects mainly the variability due 

to estimating the ITRs. Table 4 summarizes the mean and empirical SE (ESE) of the 

empirical value functions for (1) ModelL; (2) ; (3) ModelL+I ; (4) ; (5) QM; and 

(6) Zhang.

Under the true model ( ) with 5 covariates, all methods perform very similarly. Our 

calibrated method performs almost identically to the model based method, suggesting that 

little price is paid for the additional calibration. The QM method also did not pay much price 

for including the non-informative two-way interactions in this case. With the over-fitted 

model ( ), except for ModelL+I, all other methods achieve similar level of value function 

with slight difference in the variability. The QM method performs quite well considering 

that about 200 covariates are included in the fitting with only 5 are informative. This is not 

too surprising since L1 penalization is expected to work well when the signals are strong and 

sparse, as in the present case. Both the QM and our method with  achieved value 

functions almost identical to those obtained under ( ). Our method with  and the 

Zhang method result in slightly higher variability compared to the QM and . ModelL+I 

has a slightly lower value function with larger variability, suggesting instability in ridge 

penalized modeling fitting. However, the calibration appears to have the ability to reduce the 

instability with a much more stable  compared to ModelL+I. In general, the price paid 

for overfitting under correct model specification seems to be relatively low. This is in part 

because all methods are building on top of correctly specified models and hence the 

estimated regression parameters are maximizing the value function asymptotically. As a 

result the variability due to estimating all parameters in the ITR contributes at a second 

order, similar to those argued in Zhao et al. (2012).

With the mis-specified working models ( ) and ( ), our proposed calibration method 

performs better than all other competing methods with respect to the achievable value 

function and/or the variability. For example, for ( ), the average value function was 41.95 

and 41.99 for  and  respectively, 40.61 for the QM method, and 41.75 for the 

Zhang method. Since the true underlying effects are quite non-linear, the model based 

method with linear effects perform poorly in this setting with value function of only 39.65. It 

seems that there is a slight increase in the achievable value function from our calibration 
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method by including the non-linear basis in the working models. Under mis-specified 

models, the calibration method tends to produce more stable ITRs than those from the QM 

and Zhang methods. For example, the ESE was 0.17 and 0.15 for  and 

respectively, 0.43 for the QM method, and 0.72 for the Zhang method.

5. Example: Application to an HIV/AIDS Clinical Trial

In this section, we use a randomized clinical trial from the AIDS Clinical Trials Group 

Protocal 320 (ACTG 320) to illustrate our proposed methods. A total of 1156 zidovudine-

experienced patients with advanced human immunodeficiency virus (HIV) type-I infection 

were enrolled in ACTG 320 and assigned to either a 2-drug combination of zidovudine and 

lamivudine (treatment 0) or a 3-drug combination of zidovudine, lamivudine and indinavir 

(treatment 1). The objective of this study was to assess the added value of a protease 

inhibitor (indivar) to the dual nucleoside reverse-transcriptase inhibitors (xidovudine and 

lamivudine) (Hammer et al., 1997). The overall success of the 3-drug combination on 

various study endpoints was so significant that the study was terminated early by the Data 

Safety Monitoring Board. However, since the benefit of 3-drug combination therapy over 

the 2-drug alternative potentially differs across patients, it would be interesting to identify 

subgroups of patients who can be managed almost as well using the less potent 2-drug 

therapy.

For our analyses, the potential baseline predictors for constructing ITRs consist of age 

(years), CD40, logCD40, and log10RNA0, where CD4k and RNAk denote, respectively, the 

CD4 cell count (cells/mm3) and the RNA measure (copies/ml) at week k. We restricted our 

study to the 856 subjects who had complete information on these variables and on the 

outcome of interest, 427 of which were in the 3-drug combination group. Because it is 

relatively expensive to measure RNA, particularly in resource-limited settings, it would be 

of interest to examine whether Xnew = log10RNA0 is useful for improving the ITRs. Thus, 

we compared the optimal ITRs based on the various working models with the following two 

sets of predictors: (Mold) : Xold=(1, Age, CD40, logCD40)⊤

To quantify the effectiveness of the therapy, we considered the immune response Y defined 

as the change in logCD4 from baseline to week 24. Table 5 summarizes the estimated 

regression coefficients for fitted linear models with (Mupdate) and (Mold). To construct 

optimal ITRs under these two models, we let ξ = 0.277, which is about the within subject 

variability of logCD4 counts (Hughes et al., 1994), indicating that 3-drug therapy is only 

preferred if the gain in immune response exceeds ξ. All estimators of the value functions are 

based on 500 repeated two-fold CVs. The SEs are based on 500 perturbations.

Under (Mupdate), the maximum cost-adjusted value function is  = 0.610 with a 95% 

CI (0.526, 0.692). Its corresponding optimal threshold is equal to 0.236 with a 95% 

CI=(−0.040, 0.512). Under (Mold), i.e. without the RNA information, we have 
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=0.606 with a 95% CI (0.522, 0.690) and  = 0.231 with a 95% CI=(−0.004, 0.466). Finally, 

the estimated difference  is equal to 0.004 with the 95% CI (−0.035, 0.043). This 

implies that despite the highly significant difference between the effect of RNA on the 

outcome between the two treatment groups (as shown in Table 5), including RNA 

information in the ITR does not improve the value function. Therefore, RNA is not 

necessary to better assign future patients to a specific treatment. By including two-way 

interactions of all variables under (Mupdate) and (Mold), our calibrated method yields ITRs 

with estimated values 0.614 for (Mupdate) and 0.609 for (Mold), similar to their linear effect 

counterparts. We also applied the QM and Zhang methods to ACTG 320 data set and 

observed slightly lower value functions compared to those from our methods. The value 

function associated with the models (Mupdate) and (Mold) are, respectively, 0.594 and 0.585 

based on the Zhang method, and 0.578 and 0.569 based on the QM method.

It would also be of interest to compare to the simple rules that assign all patients to the 3-

drug combination group or to the 2-drug group. The value functions are estimated as 0.562 if 

all treated with 3-drug and 0.177 if all treated with 2-drug. Comparing to assigning all 

patients to 3-drug,  leads to an increased value of 0.48 with a 95% CI [0.003, 0.093], 

suggesting an improvement by adopting the ITR.

6. Remarks

In this paper, we have proposed a robust procedure that uses multiple baseline covariates to 

develop and evaluate ITRs. While the procedure builds upon an existing two-step 

framework, this paper provides additional insights into how to develop an optimal ITR 

based on working models and how to evaluate such ITRs. Fitting the data with semi-

parametric models in step I, combined with the non-parametric estimation in step II, 

provides robust estimates of ITRs and valid estimates of their associated cost-adjusted 

population average outcomes. Our proposed ITRs are optimal across all rules based on the 

given set of covariates when the fitted working models are correct or nearly correct as 

discussed in section 2. The ITR is optimal among all rules based on the estimated scores 

when the fitted models are mis-specified. To account for the variability in estimating various 

parameters, we proposed perturbation-resampling procedures that can be used to assess the 

variability in the estimators.

While in traditional statistical methods, model misspecification may hinder predictions and 

lead to inaccurate assignment rules, the methods developed in this paper rely on a layer of 

calibration in step II to guard against model misspecification. We provide justifications for 

when the proposed procedures lead to ITRs that are globally optimal under correct or near 

correct model specification and optimal within a class of ITR rules under model 

misspecification. Under model misspecification, the proposed ITR could be suboptimal 

when compared to the global optimal ITR. Hence, it would be crucial to provide working 

models that can approximate the true model reasonably well. Incorporating non-linear 

effects through basis function specification could be helpful and one may use the proposed 

inference procedure for comparing value functions as a tool for selecting important bases 

functions.
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Through simulation studies and theoretical studies, we also demonstrate that direct 

optimization of the empirical value function  could lead to rather unstable ITRs, with 

high variability and slow convergence rate in estimating the optimal threshold values, even 

when the underlying conditional treatment difference function Δ(c) is monotone in c.

When there are new biomarkers introduced to assist in treatment selection, it is important to 

evaluate their value in improving population average outcomes. It is important to note that a 

variable highly differentially associated with Y(1) and Y(0) may not necessarily be important 

for improving ITRs. This is somewhat similar to the phenomenon observed in the risk 

prediction literature: a variable highly significant in regression modeling may not result in 

large improvement in prediction. However, the IncV with respect to improving ITRs is more 

subtle than the typical prediction setting. Taking an extreme case scenario with a single 

marker X and cost ξ = 0, suppose D(X) is strictly increasing and D(X) >> 0 for all X. Then 

obviously X will be selected as important for predicting treatment response by any variable 

selection procedure. On the other hand, X would be deemed as not important for treatment 

selection since all subjects should be assigned to treatment 1 and having the information on 

X does not change the treatment assignment or the corresponding value function. Thus, if 

one is interested in measuring the importance of markers in guiding treatment selection, it 

would be valuable to directly assess the IncV with respect to the value function as proposed 

in this paper. When the dimension of new markers is not small, it would be crucial to 

employ the cross-validation to correct for the overfitting bias as suggested by Zhao et al. 

(2013). Procedures for efficiently selecting the informative markers warrant further research.
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Table 1

Empirical bias (Bias), empirical standard error (ESE), average of the estimated standard error (ASE) and the 

empirical coverage level of the 95% CIs (95%-CP) for  via  and  under various working 

models.

(a) Continuous outcome

Apparent 2-fold CV

Model Method True ASE Bias ESE 95%-CP Bias ESE 95%-CP

V̂ Î ¢
^ 0.629 0.109 0.609 0.952 0.073 0.602 0.955

M 1 V̂ Î ĉ 9.510 0.621 0.047 0.605 0.946 0.026 0.602 0.947

V̂Îcalib 0.621 0.047 0.605 0.946 0.026 0.602 0.947

V̂ Î ¢
^ 0.628 0.108 0.610 0.949 0.076 0.605 0.954

M 2 V̂ Î ĉ 9.510 0.621 0.048 0.603 0.946 0.022 0.600 0.946

V̂Îcalib 0.621 0.048 0.603 0.946 0.022 0.600 0.946

V̂ Î ¢
^ 0.632 0.124 0.629 0.948 0.089 0.623 0.944

M 3 V̂ Î ĉ 8.842 0.621 0.044 0.620 0.945 −0.020 0.616 0.945

V̂Îcalib 0.621 0.044 0.620 0.945 −0.020 0.616 0.945

V̂ Î ¢
^ 0.639 0.212 0.633 0.962 0.146 0.630 0.956

M 4 V̂ Î ĉ 8.834 0.637 0.137 0.627 0.955 0.107 0.623 0.944

V̂Îcalib 0.630 0.074 0.621 0.951 0.057 0.613 0.944

(b) Binary outcome

Apparent 2-fold CV

Model Method True ASE Bias ESE 95%-CP Bias ESE 95%-CP

V̂ Î ĉ 0.042 0.028 0.037 0.927 0.016 0.037 0.935

M 1 V̂ Î ĉ 0.766 0.039 0.018 0.036 0.948 0.008 0.036 0.963

V̂Îcalib 0.039 0.019 0.035 0.946 0.007 0.036 0.960

V̂ Î ¢
^ 0.043 0.042 0.037 0.905 0.010 0.037 0.972

M 2 V̂ Î ĉ 0.766 0.041 0.033 0.035 0.920 −0.005 0.036 0.974

V̂Îcalib 0.040 0.034 0.035 0.921 −0.004 0.036 0.976
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(b) Binary outcome

Apparent 2-fold CV

Model Method True ASE Bias ESE 95%-CP Bias ESE 95%-CP

V̂ Î ¢
^ 0.041 0.045 0.036 0.902 0.029 0.037 0.933

M 3 V̂ Î ĉ 0.754 0.039 0.029 0.035 0.946 0.019 0.035 0.949

V̂Îcalib 0.038 0.030 0.035 0.940 0.020 0.035 0.943

V̂ Î ¢
^ 0.048 0.039 0.042 0.900 0.031 0.041 0.915

M 4 V̂ Î ĉ 0.749 0.042 0.032 0.041 0.915 0.024 0.040 0.924

V̂Îcalib 0.041 0.019 0.040 0.924 0.015 0.039 0.940
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Table 3

Empirical bias (Bias), empirical standard errors (ESE), average of the estimated standard errors (ASE) and 

empirical coverage levels of the 95% CIs for the IncV comparing the optimal ITR under the full model versus 

the reduced model, where the optimal ITRs are estimated based on , and .

Apparent 2-fold CV

Response Method True ASE Bias ESE 95%-CP Bias ESE 95%-CP

Continuous

Î ¢
^

0.663
0.215 0.025 0.217 0.946 −0.019 0.218 0.948

Îcalib 0.187 0.013 0.183 0.948 −0.007 0.184 0.952

Binary

Î ¢
^

0.011
0.026 0.005 0.024 0.973 0.002 0.024 0.966

Îcalib 0.021 0.004 0.020 0.966 0.001 0.019 0.957
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Table 4

Empirical mean (Mean) and the corresponding empirical standard error (ESE) for  via different methods 

under various working models.

ModelL Îcalib
L ModelL+I Îcalib

L +I QM Zhang

M1
′ Mean 42.39 42.39 42.39 42.39 42.38 42.06

ESE 0.13 0.13 0.13 0.13 0.13 0.15

M2
′ Mean 42.39 42.39 40.90 42.01 42.35 42.04

ESE 0.13 0.13 0.51 0.16 0.14 0.16

M3
′ Mean 39.65 41.95 40.47 41.99 40.61 41.75

ESE 0.95 0.17 0.39 0.15 0.43 0.72

M4
′ Mean 39.61 41.89 40.42 41.92 40.58 41.72

ESE 1.01 0.17 0.52 0.15 0.57 0.70
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Table 5

Estimated regression coefficients for the immune response (change in CD4 counts from baseline to week 24) 

based on the ACTG 320 Data.

Model Treatment Intercept Age CD40 log(CD40) log10(RNA0)

2-drug

Estimate 1.065 0.002 0.004 −0.338 0.011

Std. Error 0.350 0.004 0.001 0.057 0.049

p-value 0.002 0.568 < 0.001 < 0.001 0.829

Mupdate

3-drug

Estimate 1.317 0.009 −0.001 −0.328 0.128

Std. Error 0.348 0.004 0.001 0.062 0.051

p-value < 0.001 0.023 0.199 < 0.001 0.013

2-drug

Estimate 1.124 0.002 0.004 −0.338

Std. Error 0.218 0.004 0.001 0.057

p-value < 0.001 0.584 < 0.001 < 0.001

Mold

3-drug

Estimate 1.984 0.008 −0.002 −0.318

Std. Error 0.225 0.004 0.001 0.062

p-value < 0.001 0.035 0.066 < 0.001
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