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Our current understanding of cell sorting relies on physical difference, either

in the interfacial properties or motile force, between cell types. But is such

asymmetry a prerequisite for cell sorting? We test this using a minimal

model in which the two cell populations are identical with respect to their

physical properties and differences in motility arise solely from how cells

interact with their surroundings. The model resembles the Schelling model

used in social sciences to study segregation phenomena at the scale of

societies. Our results demonstrate that segregation can emerge solely from

cell motility being a dynamic property that changes in response to the

local environment of the cell, but that additional mechanisms are necessary

to reproduce the envelopment behaviour observed in vitro. The time course

of segregation follows a power law, in agreement with the scaling reported

from experiment and in other models of motility-driven segregation.
1. Introduction
When cells of different type, from dissociated embryonic tissue, are thoroughly

intermingled and then allowed to reaggregate, they spontaneously self-

assemble into domains homogeneous with respect to cell type [1–3]. Such

cell sorting has also been observed for dissociated Hydra cells, co-cultures of

cells not in contact during normal development and mixtures of cells extracted

from different species [4–7].

Understanding how such segregation emerges and is maintained offers insight

into the mechanisms governing pattern formation, morphogenesis, tissue homeo-

stasis and cancer invasion. In particular, Foty & Steinberg have demonstrated that

malignant invasion may be regarded as a process of cell sorting in reverse. As

tumours become invasive, cancer cells become miscible with healthy cells and

the ability of the tissue to maintain compartmentalization is lost [8].

In a compact aggregate, or in a tissue, cells interact strongly with one another

and factors including adhesion, cortical tension, the viscoelastic properties of cells

and collective motion all affect the motility of individual cells [9–11]. Current

models of sorting assume some physical difference between cell types—either

in the form of adhesion [12], cortical tension [3,13] or motility [14,15].

The differential adhesion hypothesis posits that the adhesive interactions

between cells give rise to surface tension and that the equilibrium configurations

of the tissue are those that minimize the surface energy [16–19]. The segregation

of cells into homotypic domains is therefore phenomenologically similar to the

phase separation of fluids [2,18]. The differential adhesion hypothesis has been

studied extensively using the Cellular Potts model, pioneered by Graner &

Glazier [20,21], and has been successful in describing a range of cell-sorting

phenomena [22–26]. However, the Cellular Potts model is principally an equili-

brium model; the kinetics are determined by an auxiliary dynamics—typically

a Markov chain Monte Carlo method—used to relax the system to its equili-

brium configuration [27]. Indeed, differences in the choice of Monte Carlo

algorithm may account for the discrepancies in the scaling behaviour reported for

different computational implementations of the differential adhesion hypothesis
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(e.g. [21,22,26]). Careful work by Ouchi et al. [24] has addressed

how to modify the energy function and Monte Carlo algorithm

to reproduce the kinetic behaviour of cells.

It is not known to what extent local variations in cell motility

might also contribute to cell sorting. Rieu et al. [9] studied

the two-dimensional motion of single endodermal Hydra cells

in aggregates comprised either endodermal or ectodermal

cells. In both environments, the trajectories are characteristic

of persistent random motion, with persistence dominating

at small time scales. However, diffusion is more than two

times faster for endodermal cells in an ectodermal environment,

with reported diffusion constants of Dendo2ecto¼ 1.05+
0.4 mm2 min21 and Dendo2endo¼ 0.45+0.2 mm2 min21. Pre-

vious mathematical and computational models [14,15,28–30]

have all focused on intrinsic motility differences. Unlike

implementations of the differential adhesion hypothesis, the

steady-state segregated configurations of motility-driven sorting

are not written in a priori as the minimum of the systems

Hamiltonian, but rather emerge from the kinetics at the level of

individual cells. By formulating a minimal model, in which the

two cell populations are identical with respect to their physical

properties, we test whether such asymmetry is a prerequisite

for cell sorting. In particular, we explore here the behaviour of

cell populations where motility is a dynamic quantity that

changes in response to the local environment of the cell.

The model presented is related to the Schelling model

[31–33], which, in the field of social sciences, is the paradigm

for studying segregation phenomena at the scale of societies

[34–36]. Developed by Schelling in the 1960s [31–33], it

describes a system in which agents of two types move on a

checkerboard according to a utility function defined by their

current environment and the environment they have the

option of moving to. For each agent, the utility of a site on

the board is given by the proportion of neighbouring agents

that are of the same type. As the system evolves, homotypic

domains emerge, eventually leading to complete segregation.

Schelling thereby demonstrated that even weak individual

preferences for homophily can give rise to strong segregation.

This type of model has since been studied on networks, in con-

tinuous-space models, and analytically [37–40]. Previous

versions of the Schelling model have been non-local in that

agents have information about, and are able to move to, sites

not immediately adjacent to them. This is a reasonable assump-

tion for human societies but not for populations of cells. To

apply the Schelling idea in a biological context, the dynamics

need to be made entirely local.
2. The model
The aim of the model is to investigate whether intrinsic differ-

ences in the physical properties of the two cell types are a

prerequisite for sorting. The system consists of a binary mixture

of cells that are symmetric with respect to their intrinsic motility

properties. Differences in motility arise from the interaction of

cells with their local environment. Specifically, the effective

speed of diffusion of each cell is determined by the proportion

of neighbouring cells of the same type. We demonstrate that

segregation does not require asymmetry but can emerge

solely from cell motility being a dynamic property that changes

in response to the local environment each cell finds itself in.

The cells diffuse on a square continuous-space plane, with

sides of length L and periodic boundary conditions. Each cell
has a position xi and moves according to

xi (tþ Dt) ¼ xi (t)þ viDt, (2:1)

where we, without loss of generality, set Dt ¼ 1.

The total number of cells is N ¼ L2. To account for volume

exclusion, we introduce a radial contact force fij that acts if the

distance rij between two cells i and j is smaller than the range

r0 ¼ 1.3 at which cells can sense their neighbours. For hexago-

nal packing, the equilibrium distance between neighbouring

cells is Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
3
pq
� 1:07. The contact force is repelling if

the distance between two cells is smaller than equilibrium

distance re, and attractive if it is larger:

fij ¼
1�

rij

Re
for rij , r0

0 for rij � r0:

8<
: (2:2)

The volume exclusion effects are not necessary for the

segregation behaviour observed and we could equally well

have chosen other functional forms that enforce an even

spacing of cells (see the electronic supplementary material).

Cell motion is random with respect to orientation and, for

each cell, the speed of diffusion depends on the fraction, gi, of

neighbouring cells of the opposite type within a range r0:

gi ¼
n=

n¼ þ n=

: (2:3)

Here n¼ is the number of cells of the same type as i and n=

is the number of cells of opposite type within a distance r0

from the cell. The average of gi over all cells is the interface

index g, which is a common measure for the degree of segre-

gation in the system [7,14,15,26]. When g � 0 the two types

of cells are completely segregated. The velocity of a cell i is

given by

vi ¼
affiffiffi
k
p ui þ b

X
j

fijuij, (2:4)

where ui is a unit vector of random orientation, uij is a unit

vector pointing from cell j to cell i, b is the intensity of the

contact force and a is the diffusion speed of a cell that is

surrounded only by cells of opposite type (gi ¼ 1), and k
determines how much faster cells diffuse when surrounded

by cells of opposite type than of the same type.

Cells will continue with the same speed and direction for

a number of time steps Ti, after which they will change speed

and direction according to (2.4). The model is summarized in

figure 1. The persistence time is given by

Ti ¼ 1þ gi(k � 1): (2:5)

Thus, when a cell has neighbours only of its own type

(gi ¼ 0) we get Ti ¼ 1, while a cell surrounded by cells of

opposite type (gi ¼ 1) has Ti ¼ k. A longer persistence time,

corresponding to less frequent changes in direction, results

in a higher speed of diffusion.

Effectively, a cell can be described as performing a

random walk where each step is of length viTi and takes a

duration Ti (figure 1). From this and (2.4) we can derive the

diffusion coefficient of a cell as a function of gi, when contact

forces are ignored:

D(gi) ¼
(Dx)2

Dt
¼ (viTi)

2

Ti
¼ v2

i Ti ¼
a2

k
(1þ gi(k � 1)): (2:6)



Figure 1. Illustration of the model. In the model, each cell performs a
random walk. The step length does not vary, but the time between changes
in direction is determined by the local environment. The persistence time is
given by (2.5). In addition to diffusive motion with random orientation, cells
interact with a radial contact force given by (2.2) which ensures that cells are
evenly spaced. (Online version in colour.)
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In particular, we can find the ratio between diffusion con-

stants of cells that are surrounded by opposite cell types or

like cell types, respectively

D(gi ¼ 1)

D(gi ¼ 0)
¼ a2

a2=k
¼ k: (2:7)

This is our parameter of interest as it may be related

directly to the cell-sorting experiments of Rieu et al. [9].

The model could have been formulated such that the local

environment determined the velocity, rather than the persist-

ence of motion, of each cell. In the electronic supplementary

material, this version of the model is described in detail and

shown to yield the same diffusion constants and segrega-

tion behaviour as the persistence of motion model (see the

electronic supplementary material).

The computational work was done using Matlab and

Cþþ, and the code is available upon request.
3. Results
As shown in figure 2, the system evolves, via the formation of

homotypic domains, to a steady state where the two phases

are segregated. This demonstrates that, even with complete

symmetry in the intrinsic motility properties of the two cell

types, segregation can emerge just from cell motility being

a dynamic property that changes in response to the local

environment of individual cells.

The specific form of the contact force does not affect

whether segregation occurs in the system. Indeed, b ¼ 0 still

results in segregation, but with the cells unevenly dispersed

(see the electronic supplementary material). Consequently,

we keep the parameters associated with the contact force

fixed. Similarly, the parameter a relates to the balance between

the contact force and the differential diffusion term and is also

kept fixed.

The biologically relevant parameter in the system is

the ratio, k, of the diffusion constant for a cell surrounded

by cells of the opposite type (D(gi ¼ 1)) and that of a cell

surrounded by cells of the same type (D(gi ¼ 0)).
Figure 3 shows how the degree of segregation in the

system, as measured by the interface index g, develops over

time. As may be seen from the log–log plot, for the range

of time investigated, the interface index decreases according

to a power law, before saturating. The scaling exponent quan-

tifies the speed of segregation and, hence, increases with k.

When the domain size (cluster correlation length) is much

smaller than the system, finite-size effects are negligible. As

shown in the electronic supplementary material, figure S6,

the initial scaling behaviour does not depend on system

size except for systems significantly smaller than N ¼ 2500,

used to generate figures 2–4. As sorting proceeds towards

maximum segregation, finite-size effects start to play a role

and the value of g at which the system saturates depends

on N.

The steady state is a dynamic equilibrium where the macro-

scopic configuration changes continually even though the value

of g remains stable. The steady-state value of g is the same

whether the system is initialized from a random or a segregated

configuration (see the electronic supplementary material).

The figures shown are for k ¼ 8 and 64. For k ¼ 1, the diffu-

sion constant of cells is the same regardless of the composition

of the local environment and the degree of segregation, as

quantified by the steady-state value of the interface index g,

is therefore 0.5. Segregation emerges gradually with increasing

k and for low values of k almost no segregation occurs. Figure 4

shows the steady-state value of g as a function of k. This may be

compared to a vertical cross section of fig. 10 in [37], which

shows the phase diagram of the Schelling model.
4. Discussion
Other models have investigated how motility affects segre-

gation behaviour, but have tended to focus on intrinsic
motility differences. Beatrici et al. [15] consider a system

of two types of cells with speeds of constant modulus y0

and y1. In each time step, the direction of a cell is taken to

be the average direction of its neighbours, plus a noise

term. They demonstrate that differences in the intrinsic moti-

lity properties of cells, in concert with a tendency for cells to

align their motion, gives rise to segregation behaviour. The

model is similar to that of Belmonte et al. [14], which com-

bines locally coherent motion with differential adhesion.

The authors report that segregation in this system is charac-

terized by power-law scaling of the interface index g with

time, and they argue that even moderate amounts of coherent

motion considerably speeds up the segregation process.

Using the Cellular Potts model, Kabla [28] studied a system

of motile and non-motile cells in equal proportion. In this

system, sorting leads to the formation of large clusters

of non-motile cells surrounded by streams of motile cells.

Spontaneous segregation has also been demonstrated for

dense mixtures of self-propelled and passive particles using

Brownian dynamics simulations [29].

In the model presented here, the two cell populations

have the same physical properties and differences in motility

arise solely from how cells interact with their local environ-

ment. The results demonstrate that segregation does not

require asymmetry. However, comparing our results to

experimental data suggests that, even though locally varying

cell motility is sufficient for segregation to occur, other



t = 0; g = 0.500 t = 20 000; g = 0.186 t = 2 000 000; g = 0.0901

Figure 2. Time course of the segregation process for 2500 cells. As the cells gradually gather in larger clusters, the interface index g decreases. The ratio of the
diffusion constants is k ¼ 64. (Online version in colour.)

time time

0.42

0.45

g

0.48

0.51

g

k = 8 k = 64

0.1

0.2

0.3

0.5

20 00010 0000 200 000100 0000

10–0.32

10–0.34

10–0.36

10–0.38

102 103 104 105 102 104 106

0.4

0.1

0.2

0.3

0.05

0.5

Figure 3. Development of the interface index g as a function of time for k ¼ 8 and 64. The results are the average of 10 simulations and are shown on linear and
log – log scales. For high k, a more pronounced segregation is observed. The interface index is seen to decrease according to a power law until it saturates at an
equilibrium value. The exponent increases with increasing k, and takes the values 0.025 for k ¼ 8 and 0.17 for k ¼ 64. (Online version in colour.)
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mechanisms are necessary to reproduce the behaviour

observed in vitro.

Firstly, in vitro, cell sorting generally proceeds until the

two cell types are completely segregated, with one phase

enveloping the other. Computational implementations of

the differential adhesion hypothesis successfully reproduce

this envelopment and provide an explanation for the

inside/outside order of the phases in terms of their relative

surface tensions [5,41]. As the model presented here has no

inbuilt asymmetry, it would not be expected to reproduce

the enveloping behaviour.

Secondly, Rieu et al. [9] measured the diffusion of endoder-

mal cells, in endodermal and ectodermal environments, and

found the ratio k to be approximately 2. In our model,
segregation emerges gradually with increasing k and at k ¼ 2

the system shows almost no segregation. Other functional

forms for how the diffusion coefficient depends on the interface

index g, such as a threshold instead of a linear dependence, do

not significantly improve the segregation for low k values

(results not shown). Endodermal and ectodermal cells studied

do, however, differ in their intrinsic motility properties [42]

and, based on the computational studies in [14,15], we expect

that implementing this in the model would lower the value

of k at which segregation occurs.

Along with asymmetry, an important aspect of cell

dynamics, likely to promote segregation for lower values

of k, is collective motion. As investigated computationally

by Belmonte et al. [14], collective motion can emerge from
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Figure 4. Value of the interface index g, at which the system saturates, as a
function of k. The parameter k is the ratio of the diffusion constant of cells
surrounded by opposite or like cell types, respectively. For large k, the system
reaches a more segregated configuration. The equilibrium interface indices are
calculated as averages over 105 time steps after the equilibrium is reached,
and averaged over 10 simulations. (Online version in colour.)
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differential adhesion; cells adhering more strongly to each other

tend to align their motion and this speeds up segregation.

In our model, the time course of segregation follows a

power law. This is qualitatively in agreement with the scaling

reported from experiments. Méhes et al. [7,43] studied the

kinetics of cell sorting in mixtures of keratocytes from various

species. For mixtures of primary fish keratocytes and EPC

keratocytes, the interface index g and the growth of homo-

typic clusters were approximately linear on a log–log scale

(over one decade of data). The scaling exponent quantifies

the speed of segregation and therefore, in our model,

increases with k. For k ¼ 64, the exponent is similar to the
values reported in [14,15], but lower than those reported

by Méhes et al. [7].

We have not specified the molecular mechanism(s) that

govern how the local environment determines the speed of

diffusion of each cell. The motility of a cell can be a response

to external cues, such as morphogens or chemotactic sub-

stances, or result from cell–cell interactions, including the

adhesive properties of cells. As shown experimentally, in

some systems cell motility anti-correlates with cell–cell

adhesion, as strong adhesive interactions increase the effec-

tive viscosity of the local environment of the cell [9,11].

Hence, the model presented here suggests a kinetic mechan-

ism for cell sorting where cell-specific adhesion gives rise to

differences in the speed of diffusion which in turn lead

to the segregation behaviour observed macroscopically.
5. Conclusion
We have presented a minimal model demonstrating that seg-

regation does not require asymmetry in the physical

properties of cells, but can arise solely from cell motility

being a dynamic quantity that changes in response to the

composition of the local environment of a cell. Comparison

with experimental data suggests that other mechanisms are

necessary to reproduce the envelopment behaviour observed

in vitro. Further investigation is needed to understand the

relative contributions of dynamic cell motility, differences

in intrinsic motile properties, and collective motion to the

kinetics of cell sorting.

The model suggests a simple kinetic mechanism for cell

sorting whereby differential adhesion, or other local cell–

cell interactions, give rise to differences in the effective

speed of diffusion, which drive the segregation behaviour

observed macroscopically.
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Chaté H. 2008 Self-propelled particle model for cell-
sorting phenomena. Phys. Rev. Lett. 100, 248702.
(doi:10.1103/PhysRevLett.100.248702)

15. Beatrici CP, Brunnet LG. 2011 Cell sorting based on
motility differences. Phys. Rev. E 84, 031927.
(doi:10.1103/PhysRevE.84.031927)

16. Steinberg MS. 1962 On the mechanism of tissue
reconstruction by dissociated cells. I. Population
kinetics, differential adhesiveness, and the absence
of directed migration. Proc. Natl Acad. Sci. USA 48,
1577 – 1582. (doi:10.1073/pnas.48.9.1577)

17. Steinberg MS. 1962 Mechanism of tissue
reconstruction by dissociated cells. II. Time-course of

http://dx.doi.org/10.1002/jez.1401280105
http://dx.doi.org/10.1002/jez.1401280105
http://dx.doi.org/10.1073/pnas.97.17.9467
http://dx.doi.org/10.1073/pnas.97.17.9467
http://dx.doi.org/10.1038/ncb1705
http://dx.doi.org/10.1103/PhysRevE.57.924
http://dx.doi.org/10.1103/PhysRevE.57.924
http://dx.doi.org/10.1016/j.ydbio.2004.11.012
http://dx.doi.org/10.1016/j.ydbio.2004.11.012
http://dx.doi.org/10.1371/journal.pone.0031711
http://dx.doi.org/10.1387/ijdb.041810rf
http://dx.doi.org/10.1016/S0006-3495(00)76440-X
http://dx.doi.org/10.1016/S0006-3495(00)76440-X
http://dx.doi.org/10.1016/S0378-4371(01)00009-7
http://dx.doi.org/10.1016/S0378-4371(01)00009-7
http://dx.doi.org/10.1016/j.physa.2005.10.006
http://dx.doi.org/10.1016/j.physa.2005.10.006
http://dx.doi.org/10.1016/j.gde.2007.05.002
http://dx.doi.org/10.1115/1.1449491
http://dx.doi.org/10.1103/PhysRevLett.100.248702
http://dx.doi.org/10.1103/PhysRevE.84.031927
http://dx.doi.org/10.1073/pnas.48.9.1577


rsfs.royalsocietypublishing.org
Interface

Focus
4:20140013

6
events. Science 137, 762 – 763. (doi:10.1126/
science.137.3532.762)

18. Steinberg MS. 1962 On the mechanism of tissue
reconstruction by dissociated cells. III. Free energy
relations and the reorganization of fused,
heteronomic tissue fragments. Proc. Natl Acad. Sci.
USA 48, 1769 – 1776. (doi:10.1073/pnas.48.10.1769)

19. Steinberg MS. 1963 Reconstruction of tissues by
dissociated cells. Science 141, 401 – 408. (doi:10.
1126/science.141.3579.401)

20. Graner F, Glazier JA. 1992 Simulation of biological
cell sorting using a two-dimensional extended Potts
model. Phys. Rev. Lett. 69, 2013 – 2016. (doi:10.
1103/PhysRevLett.69.2013)

21. Glazier JA, Graner F. 1993 Simulation of the
differential adhesion driven rearrangement of
biological cells. Phys. Rev. E 47, 2128 – 2154.
(doi:10.1103/PhysRevE.47.2128)

22. Mombach JCM, Glazier JA, Raphael RC, Zajac M.
1995 Quantitative comparison between differential
adhesion models and cell sorting in the presence
and absence of fluctuations. Phys. Rev. Lett. 75,
2244 – 2247. (doi:10.1103/PhysRevLett.75.2244)

23. Marée AF, Hogeweg P. 2001 How amoeboids self-
organize into a fruiting body: multicellular
coordination in Dictyostelium discoideum. Proc. Natl
Acad. Sci. USA 98, 3879 – 3883. (doi:10.1073/pnas.
061535198)

24. Ouchi NB, Glazier JA, Rieu J-P, Upadhyaya A,
Sawada Y. 2003 Improving the realism of the
cellular Potts model in simulations of biological
cells. Physica A 329, 451 – 458. (doi:10.1016/S0378-
4371(03)00574-0)
25. Zhang Y, Thomas GL, Swat M, Shirinifard A, Glazier
JA. 2011 Computer simulations of cell sorting due
to differential adhesion. PLoS ONE 6, e24999.
(doi:10.1371/journal.pone.0024999)

26. Nakajima A, Ishihara S. 2011 Kinetics of the cellular
Potts model revisited. New J. Phys. 13, 033035.
(doi:10.1088/1367-2630/13/3/033035)
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43. Méhes E, Vicsek T. 2013 Segregation mechanisms of
tissue cells: from experimental data to models.
Comp. Adap. Syst. Model. 1, 4. (doi:10.1186/2194-
3206-1-4)

http://dx.doi.org/10.1126/science.137.3532.762
http://dx.doi.org/10.1126/science.137.3532.762
http://dx.doi.org/10.1073/pnas.48.10.1769
http://dx.doi.org/10.1126/science.141.3579.401
http://dx.doi.org/10.1126/science.141.3579.401
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1103/PhysRevE.47.2128
http://dx.doi.org/10.1103/PhysRevLett.75.2244
http://dx.doi.org/10.1073/pnas.061535198
http://dx.doi.org/10.1073/pnas.061535198
http://dx.doi.org/10.1016/S0378-4371(03)00574-0
http://dx.doi.org/10.1016/S0378-4371(03)00574-0
http://dx.doi.org/10.1371/journal.pone.0024999
http://dx.doi.org/10.1088/1367-2630/13/3/033035
http://dx.doi.org/10.1371/journal.pone.0042852
http://dx.doi.org/10.1371/journal.pone.0042852
http://dx.doi.org/10.1098/rsif.2012.0448
http://dx.doi.org/10.1098/rsif.2012.0448
http://dx.doi.org/10.1039/c2sm06960a
http://dx.doi.org/10.1103/PhysRevLett.112.188102
http://dx.doi.org/10.1080/0022250X.1971.9989794
http://dx.doi.org/10.1080/0022250X.1971.9989794
http://dx.doi.org/10.2307/2061333
http://dx.doi.org/10.4054/DemRes.2009.21.12
http://dx.doi.org/10.4054/DemRes.2009.21.12
http://dx.doi.org/10.1140/epjb/e2009-00234-0
http://dx.doi.org/10.1073/pnas.0609371103
http://dx.doi.org/10.1088/1742-5468/2011/07/P07006
http://dx.doi.org/10.1088/1742-5468/2011/07/P07006
http://dx.doi.org/10.1073/pnas.0906263106
http://dx.doi.org/10.1016/S0012-1606(02)00016-7
http://dx.doi.org/10.1016/S0012-1606(02)00016-7
http://dx.doi.org/10.1140/epjb/e20020142
http://dx.doi.org/10.1186/2194-3206-1-4
http://dx.doi.org/10.1186/2194-3206-1-4

	A kinetic mechanism for cell sorting based on local variations in cell motility
	Introduction
	The model
	Results
	Discussion
	Conclusion
	References


