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There has been a significant investment in research to define exposures and

potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems.

A substantial number of integrated environmental risk assessments have been

developed in Europe, North America and many other regions for these

situations. In contrast, comparatively few empirical studies have been con-

ducted for human and veterinary pharmaceuticals that are likely to enter

coastal and marine ecosystems. This is a critical knowledge gap given the

significant increase in coastal human populations around the globe and

the growth of coastal megacities, together with the increasing importance

of coastal aquaculture around the world. There is increasing evidence that

pharmaceuticals are present and are impacting on marine and coastal envi-

ronments. This paper reviews the sources, impacts and concentrations of

pharmaceuticals in marine and coastal environments to identify knowledge

gaps and suggests focused case studies as a priority for future research.
1. Introduction
Over the last 15 years increasing attention has been paid to understanding the pres-

ence and impacts of pharmaceuticals entering or detected in freshwater

ecosystems [1]. By contrast, significantly less attention has been paid to under-

standing releases of pharmaceuticals from sewage and other routes into coastal

environments and their potential marine impacts. There is now widespread

recognition of the need for a cradle-to-grave stewardship of medicines for minimiz-

ing environmental exposure while promoting human and animal health [2]. Large

centres of human population are often found in coastal areas and pharmaceutical

releases via municipal effluent discharges are probable. For example, Martı́nez

et al. [3] reported that based on 2003 data, over 2.3 billion people live within coastal

limits (representing 41% of world global population) and more than 50% of coastal

countries have 80–100% of their total population within 100 km of the coastline.

Twenty-one of the world’s 33 megacities (cities with more than 8 million inhabi-

tants) are on the coast and face a range of environmental management issues

[4]. Global demographic trends towards coastal conurbations suggest increasing

numbers of people living along coastlines, while waste management from coastal

megacities is increasingly recognized as a major challenge [3,5,6]. These trends

suggest the potential for increasing inputs of human pharmaceuticals into coastal

environments and therefore the need to address potential exposure scenarios and

implications for marine risk assessments of drug residues and their transformation

products [7–9]. Marine risk assessments for pharmaceuticals are also relevant to

veterinary medicines used in aquaculture [10–12].

More broadly, if releases of pharmaceuticals into coastal ecosystems are high

enough to induce biological impacts, they may act as additional stressors on

marine ecosystems already impacted by climate change, eutrophication and

over-fishing [13]. It is estimated that 49% of marine ecosystems worldwide are

strongly impacted by anthropogenic stressors with significant economic impli-

cations [3,14]. If unmanaged, multiple anthropogenic impacts on marine
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ecosystems may also affect coastal fisheries and aquaculture. For

example, human health concerns linked to aquaculture include

exposure to pharmaceuticals through consumption of seafood

and the induction and spread of antibiotic resistance [15,16].

This paper reviews the sources, concentrations and potential

impacts of human and veterinary pharmaceuticals in coastal

environments to support risk assessments and to identify key

knowledge gaps as priorities for future research. The scope

of the review has been limited to human pharmaceuticals and

antibiotics used as veterinary medicines.
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2. Sources of pharmaceuticals in marine
environments

(a) Sewage
Sewage effluent is recognized as a major source of multiple

pharmaceuticals, including their metabolites, entering aquatic

environments. Removal rates for pharmaceuticals in waste-

water treatment plants (WWTPs) range from less than 10 to

almost 100% and depend on the physico-chemical character-

istics of the pharmaceutical and type of treatment technology

[17]. Sources of human pharmaceuticals in sewage include

patient use in the community, discharges from hospitals and,

in some cases, wastewater from pharmaceutical manufacturing

[18]. Sewage can be discharged into marine environments

through coastal and ocean outfalls for WWTPs combined

sewer overflows and via rivers receiving WWTP effluents

[19,20]. For example, the Yangtze River in China transports

sewage from 400 million people out to sea and releases an esti-

mated 152 tonnes of pharmaceuticals annually [21]. Sewage

may also be discharged into the marine environment from

boats. Ships, including cruise liners, may discharge (under

Annex IV of MARPOL 73/78 ships) treated sewage into the

sea 4 nautical miles from the nearest land and 12 nautical

miles for untreated sewage [22]. The volumes of sewage dis-

charged can be significant as cruise liners can have passenger

numbers equivalent to populations found in small towns.

Sewage effluents from small boats, on the other hand, may

not receive any treatment prior to being discharged. Typhoon

shelters for small boats were a point source of antibiotics in

Victoria Harbour, Hong Kong [23]. As discussed by Kookana

et al. [24] in this issue, many large cities in Asia still rely on

septic tanks with poorly managed septage which can contami-

nate surface and groundwaters with pharmaceuticals and

ultimately be discharged into coastal areas.

Sewage impacted groundwater can also be a source of phar-

maceuticals entering coastal waters. Pharmaceuticals have been

detected in a coastal aquifer on the Yucatan Peninsula, Mexico

injected with municipal sewage discharges [25]. Reuse of treated

domestic wastewater for irrigation contributed to pharmaceutical

contamination in groundwater on Mallorca [26]. Throughout the

world rural and peri-urban areas including popular coastal holi-

day areas are reliant on septic tanks or small decentralized

systems for sewage treatment disposal [27]. Depending on their

treatment efficiency and the capacity of the local soils, these sys-

tems are a potential source of pharmaceuticals in coastal waters

via leakage to ground and surface waters [28,29].

(b) Aquaculture
Globally the production of seafood through aquaculture is

rapidly increasing with over 90% of aquaculture based in
Asia [30]. A range of veterinary medicines including antibiotics,

also registered for human use, is used prophylactically and to

control disease outbreaks in marine aquaculture. Up to 75%

of the administered dietary dose of a veterinary medicine

can be lost to the surrounding environment. The loss mechan-

isms include dispersal of non-ingested pellets, gill and renal

excretion of the unprocessed drug, and renal and faecal

excretion of drug metabolites [31]. Other marine organisms in

the vicinity including wild fish feed on leftover food and

faecal material from marine aquaculture potentially further

spreading pharmaceuticals and their transformation products.

Pond-based farms located in coastal areas are also a source of

antibiotics entering coastal waters through leaks and discharge

of wastewaters which can contain elevated concentrations of

pharmaceuticals. Extremely high antibiotic concentrations

of up to 2.5 mg l21 were measured in water samples from

shrimp ponds in Vietnamese mangroves [32]. The ancient prac-

tice of wastewater- (human and animal) fed aquaculture,

although declining, still occurs in some parts of Asia [30].

Aquaculture practices including the use of antibiotics vary

greatly between countries [33].

(c) Animal husbandry and horticulture
Animal husbandry and horticulture along rivers and in coastal

areas may also contribute to loadings of pharmaceuticals enter-

ing coastal waterways [17,34]. Antibiotics are added to animal

feeds and in some cases drinking water to treat disease parti-

cularly in feedlots housing large numbers of animals [35].

The use of low doses of antibiotics in feed as growth pro-

moters still occurs in some regions of the world despite

being banned in Europe [36]. Some countries permit the use

of antibiotics including oxytetracycline and streptomycin on

horticultural crops [17]. Application of municipal biosolids to

farmland as fertilizer is a further source of pharmaceuticals

entering agricultural systems [37].

(d) Waste disposal
Waste disposal in coastal areas is a further source of pharmaceu-

ticals entering the marine environment. Leachate from coastal

landfills and seafills may be a pathway for pharmaceuticals dis-

posed of in household and clinical wastes to enter coastal

waters. Landfill leachate on the island of Mallorca contained

up to 27 000 ng l21 total concentration of pharmaceuticals

[26]. Historically, in some regions drug manufacturing waste,

sewage sludge and animal manure were dumped at sea [38,39].

(e) Environmental fate of pharmaceuticals in marine
environments

Once discharged into aquatic environments, pharmaceuticals

and their metabolites can undergo biotic and abiotic transform-

ation (degradation) and sorb to suspended particulate matter

(SPM) and sediments, and in some cases accumulate in the

tissues of aquatic organisms [40]. Existing data for the environ-

mental fate of pharmaceuticals generated for freshwater

environments may not necessarily be transferable to marine

environments. The differences in physico-chemical conditions

including salinity, pH and organic matter between fresh-

water and seawater can impact on the environmental fate of

pharmaceuticals [41]. The environmental fate of ionizable

pharmaceuticals may be altered by the increased pH of sea-

water. Photodegradation may be a less important removal



rstb.royalsocietypublishing

3
mechanism in coastal waters compared with more shallow

freshwater environments due to light attenuation. Indirect

photodegradation mechanisms may differ to those occurring

in freshwater due to differences in water composition [42,43].

There is some evidence to suggest that the environmental fate

of pharmaceuticals can differ between fresh and saline environ-

ments. The transformation behaviour of ibuprofen differed

between freshwater and seawater [44] and prochlorperazine

was more stable in seawater than freshwater [43].
.org
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3. Current state of knowledge of pharmaceutical
concentrations in marine environments

(a) Seawater
The assessment of the concentrations of pharmaceuticals in

coastal environments has been limited. Forty-nine studies

have reported concentrations for individual pharmaceuticals

and metabolites detected in estuarine and coastal waters.

Only studies published since 2000 are considered. Seventy

per cent of these studies have been published since 2010.

The geographical breakdown for the studies is Europe (20),

Asia (21), North America (6), South America (1) and Oceania

(1). The studies included those investigating the presence of

30 or more pharmaceuticals over a wide spatial area [45]

studies targeting specific classes of compounds, for example,

sulfonamide antibiotics [34] and method validation studies

screening only a limited number of ‘real’ samples [46].

To date, 113 pharmaceuticals and pharmaceutical metab-

olites have been detected in coastal waters at concentrations

ranging from 0.01 to 6800 ng l21 with the maximum concen-

trations for 69 of these compounds exceeding the European

Medicines Agency threshold for predicted environmental con-

centrations for surface waters of 0.01 mg l21 [47] (electronic

supplementary material, tables S1–S3). Data were most fre-

quently reported for antibiotics (41 compounds) followed by

non-steroidal anti-inflammatories (8) and analgesics (8).

Twenty compounds were reported in five or more studies

(table 1) including acetaminophen, atenolol, carbamazepine,

clarithromycin, diclofenac, 17a-ethinyloestradiol, erythromy-

cin-H2O, gemfibrozil, ibuprofen, ketoprofen, naproxen, nor-

floxacin, oxafloxacin, propanolol, roxithromycin, sulfadiazine,

sulfadimidine, sulfamethoxazole, tetracycline and trimetho-

prim. The higher frequency of reporting for concentrations of

antibiotics and painkillers for the marine environment are con-

sistent with Hughes et al. [1] synthesis of pharmaceutical data

for freshwater environments.

Current methodologies targeting the dissolved fraction of

pharmaceuticals may be underestimating the environmental

concentrations and the potential impacts on aquatic ecosystems

[49]. The majority of the studies published to date have

reported pharmaceutical concentrations in seawater for the dis-

solved fraction only with filtering being the first step in sample

extraction methods. Two studies have investigated pharma-

ceutical concentrations in SPM. Mean concentrations of

pharmaceuticals in SPM (more than 0.7 mm) from the Long

Island Sound Estuary ranged from 7 to 44 ng g21. The pharma-

ceuticals detected in the SPM were either hydrophobic, for

example, tamoxifen, or positively charged, for example, clari-

thromycin, and up to 47% of the total concentration was

sorbed to the SPM [19]. Yang et al. [19] compared concen-

trations of pharmaceuticals in the sediment, SPM and the
colloidal and soluble phases in the Yangtze River Estuary

and adjacent coastal areas. SPM concentrations were up to 5

times higher than that in the sediments. The colloidal phase

had sorption affinities of 2–4 orders magnitude greater for

pharmaceuticals than the SPM and contributed up to 45% of

the target pharmaceuticals in the Yangtze system.

Pharmaceutical metabolites and transformation products

can be more persistent and more toxic than the parent

compound [50]. Twenty-one studies reported data for pharma-

ceutical transformation products in coastal waters with

erythromycin-H2O the most commonly reported transformation

product. Transformation products can be present in WWTP

effluents and surface waters at concentrations equivalent to or

exceeding the parent compound. For example, concentrations

of metabolites of carbamazepine (carbamazepine epoxide),

diclofenac (40- and 5-hydroxy diclofenac) and atorvastin

(o- and p-hydroxy atorvastin) in wastewater discharged into

the Oslofjord were present at higher concentrations than the

parent compounds [51]. Similarly the concentrations of sulfona-

mide metabolites measured in Liaodong Bay, China were

comparable to those of the parent compounds [34].

Pharmaceuticals have been detected significant distances

from their source(s). Pharmaceuticals were detected at a refer-

ence site approximately 9 km downstream from the WWTP

outfall in Halifax Estuary [52]. Similarly, pharmaceuticals in

the Baltic Sea were detected 17 km downstream of WWTP

outfalls [53]. Zhang et al. [54] detected antibiotics including

erythromycin-H2O, sulfamethoxazole and trimethoprim

(0.1–16.7 ng l21) 400 km offshore of the coast of China.
(i) Seasonal trends
Identifying seasonal trends for pharmaceutical concentrations

in marine and coastal waters is crucial for determining time

periods during which sensitive ecosystems may be at grea-

ter risk from exposure [55,56]. To date only a handful of

studies have investigated seasonal trends for pharmaceutical

concentrations in the marine environment. Pharmaceutical

concentrations in the Yangtze River and Pearl River Estuary

were higher in the dry season than in the wet season [57].

Similarly, heavy rainfall events reduced pharmaceutical con-

centrations in Jamaica Bay, a wastewater impacted estuary

[20]. Conversely, Zheng et al. [58] and Qi et al. [21] reported

increased river water concentrations of antibiotics in China

during the wet season and attributed the increased concen-

trations to increased runoff of veterinary medicines and

decreased efficiency of WWTPs due to increased wastewater

flow. Temporal trends in pharmaceutical concentrations were

not observed in Southern California coastal waters with rela-

tively constant year-round temperatures [59]. By contrast,

Hedgespeth et al. [55] reported higher probability of detecting

acetaminophen in seawater from Charleston Harbor, South

Carolina during winter. Pharmaceuticals were transported

further downstream when the Aura River (Finland) was cov-

ered by snow and ice with the spring snowmelt increasing the

speed of transport [60].

Seasonal trends in WWTP effluent pharmaceutical con-

centrations have also been reported which will in turn

influence seawater concentrations. For example, total concen-

trations of NSAID drugs and bezafibrate were 3–5 times

higher in effluent in winter than in summer [60]. Reduced

removal rates in WWTPs and in surface seawaters can

occur during colder months due to lower temperatures and
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resulting in lower rates of biological activity enhancing the

persistence of pharmaceuticals in marine ecosystems [43].

Reduced sunlight levels during winter can inhibit removal

of pharmaceuticals susceptible to photodegradation [60].

Snowmelt reduced pharmaceutical concentrations in effluent

in Norway [61]. Seasonal trends in pharmaceutical usage

should also be considered [62]. Antibiotic use patterns can

be influenced by a number of factors. High antibiotic use in

winter can be due to the inappropriate use for treating respirat-

ory tract infections including the common cold and viral

infections [63]. Anti-allergenic medicines may also have a

seasonal profile. Wastewater concentrations of over-the-counter

anti-allergenic cetirizine peaked in summer and followed the

pollen season [64]. Certain disease-specific pharmaceuticals,

such as antiviral drugs, will peak during disease outbreaks,

as has been demonstrated for oseltamivir (Tamiflu) during

the recent influenza A(H1N1)pdm09 outbreak in Europe [65].

(b) Sediment data
Sediments are a reservoir for the accumulation of pharmaceu-

ticals in marine ecosystems and can act as a secondary

pollution source from which pharmaceuticals can be released

by changes in environmental conditions such as salinity and

pH [57]. Sediments can be resuspended during tidal changes

and during storm events exposing marine biota to sorbed

pharmaceuticals. Twenty-two studies reporting sediment

concentrations of pharmaceuticals for estuarine and marine

environments have been published since 2000. In total,

62 pharmaceuticals and transformation products have

been detected in marine sediments at concentrations up to

2 615 000 ng g21 wet weight (electronic supplementary

material, tables S4 and S5). Excluding the extremely high con-

centrations of antimicrobials measured in marine shrimp

aquaculture pond sediments [32], 17a-ethinyloestradiol was

the pharmaceutical measured in sediment at the highest con-

centration (129.8 ng g21). 17a-ethinyloestradiol was also the

pharmaceutical most frequently detected with sediment

concentrations reported for nine studies. All other pharma-

ceutical compounds were reported in a maximum of three

studies. Data were most frequently reported for antibiotics

(26 compounds) followed by anti-hypertensive agents (6).

Marine sediment data for pharmaceutical transformation pro-

ducts and metabolites are currently almost non-existent with

only four studies reporting concentrations of pharmaceutical

metabolites in marine sediments. Langford & Thomas [51]

reported concentrations of a-hydroxy metoprolol (1–3 ng g21)

and simvastatin hydroxy carboxylic acid (2–4 ng g21) in

sediments collected from Oslofjord in Norway. Erythromycin-

H2O was reported in San Francisco Bay (3.4 ng g21 dw)

[66] and in the Pearl River Estuary, China (0.7–14 ng g21 dw)

[57]. Only nine of the 22 studies analysed both seawater and

sediment samples.

(c) Factors influencing pharmaceutical concentrations in
seawater and sediment

Factors reported to increase concentrations of pharmaceuti-

cals in seawater and sediment include proximity to WWTP

outfalls [67,68], higher effluent outflows [69], size of the

urban area and population [11,70,71], the number of rivers

discharging into coastal waters [70], the type of wastewater

treatment [19], low mixing and dilution rates for WWTP
effluents [72], the hydrodynamic flushing and residence

time for confined water bodies [61,73,74], the type, scale

and density of animal husbandry [34,58] and proximity to

aquaculture [74,75]. Higher concentrations of pharmaceuti-

cals have been measured in estuaries during low and

incoming tides [76]. Re-suspension of sediments during

weather events including monsoons and during incoming

tides can increase surface water concentrations of pharmaceu-

ticals. Stratification of pharmaceuticals in the water column

with higher concentrations being measured at the surface has

been reported in the Long Island Sound Estuary [19] and in

Victoria Harbour, Hong Kong [77]. Local conditions may inhi-

bit wastewater treatment resulting in higher surface water

concentrations. For example, Arctic permafrost conditions

reduce the efficiency of WWTPs [78].
(d) Marine biota
Data for accumulation of pharmaceuticals in marine biota are

scant most probably because of the lack of reliable analytical

methods for these challenging analytical matrices [66]. Four-

teen studies were identified reporting data for concentrations

of pharmaceuticals in finfish, crustaceans and shellfish (elec-

tronic supplementary material, table S6). Ten of these studies

reported results for filter-feeding marine shellfish and five for

marine finfish. Tissue concentrations of 60 pharmaceuticals

and seven metabolites have been reported with antibiotics

being the most frequent class reported (38) followed by anti-

hypertensive agents (6). Carbamazepine, ciprofloxacin and

enrofloxacin were the most frequently reported compounds

each being reported in four studies. Only three studies reported

concentrations for pharmaceutical transformation products

including erythromycin-H2O, salicylic acid and metabolites

of venlafaxine [62,66,79]. Higher concentrations of venlafaxine

metabolites than parent compound were detected in mussels

(Mytilus galloprovincialis). As some marine organisms also

metabolize pharmaceuticals [80], a wide range of metabolites

could potentially be present.

Marine organisms can be exposed to pharmaceuticals over

widespread geographical areas. The anti-depressant sertraline

was detected at 43 of 68 mussels sampling stations along the

California Coast [81]. Antibiotics were detected in 142 out of

190 mollusc samples collected from nine cities along the

Bohai Sea in China [82]. Detectable concentrations of pharma-

ceuticals were measured in wild seafood samples purchased

from Czech supermarkets including squid caught in the East-

ern Central Pacific, herring from the Atlantic Northeast and

shark from the Eastern Central Atlantic [83].

Pharmaceuticals have been detected in marine organisms

despite not being detected in water or sediment. Ranitidine, ser-

traline and enlapril were detected in mussels from San Francisco

Bay but not in seawater [66]. Diazepam was detected in all liver

samples of hornyhead turbot but only infrequently detected in

sediments near wastewater outfalls in the Southern Californian

Bight [84]. Fluoroquinolone antibiotics were detected less fre-

quently in water than in fish from six sampling sites in two

marine aquaculture regions of the Pearl River Delta, China [74].

Pharmaceutical uptake in marine organisms is compound,

species and body-tissue specific. Oxytetracycline preferentially

accumulated in the viscera and oxolinic acid in the gills of

Mytilus edulis [85]. Concentrations of fluoroquinolones anti-

biotics in fish from marine aquaculture regions of the Pearl

River Delta were higher in liver tissue than in muscle tissue
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[74]. Fluoxetine tissue concentrations in Mytilus gallioprovincialis
followed the order digestive gland.gills.mantle/gonads [86].

Li et al. [82] reported differences in uptake of antibiotics between

mollusc species harvested from the Bohai Sea, China. In some

situations, gender may also influence uptake of pharmaceuti-

cals by marine organisms. Higher concentrations of diazepam

were measured in male than female Pleuronichthys verticalis
(hornyhead turbot) [84]. These preferential uptakes have impli-

cations for ecotoxicological impacts and human exposure to

pharmaceuticals via consumption of seafood.

Field data for bioaccumulation of pharmaceuticals in marine

organisms is limited. Field-derived bioaccumulation factors

(BAFs) for pharmaceuticals in mussels from San Francisco

Bay included dehydropnifedipine (290–764), carbamezepine

(90–322), diphenhydramine (118–218), triamterene (57–71)

and erythromycin-H2O (11–54). The BAFs varied between sites

by up to a factor of 7 [66]. Bioconcentration factors (BCFs)

ranged from 1300 to 1500 for uptake of 17a-ethinyloestradiol

by mussels (M. galloprovincialis) harvested from Venice Lagoon,

Italy [87]. Field-derived BAFs for antibiotics ranged from 0 to

11 000 in shellfish collected from the coastal environment of

Dalian in China. Based on the average BAFs, the authors

concluded that sulfamethazine, sulfamethiazole, sulfamono-

methoxine and doxycycline are potentially bioaccumulative

and that sulfadiazine, sulfameter, sulfamethoxypyridazine and

chloramphenicol are bioaccumulative in shellfish [88].

The uptake of pharmaceuticals by marine bivalves has

been investigated using laboratory assays. Maximum BCF

values in mussels of 100 were reported for tetrazepam and

51 for diazepam [89] and ranged from 200 to 800 for fluoxe-

tine [86]. BAFs for diclofenac and propanolol in mussels

(Mytilus edulis) ranged between 10 and 180 [90] and from

0.12 to 2 for oxytetracycline and from 0.27 to 0.55 for oxolinic

acid [85]. No studies could be found reporting BCFs or BAFs

for the uptake of pharmaceuticals by marine finfish.

Only one study has reported pharmaceutical concentrations

in higher tropic level marine organisms. Federova et al. [83]

reported a flumequine concentration of 2.9 ng g21 in an Eastern

Central Atlantic shark sample. It is probable that trophic trans-

fer of pharmaceuticals to top level predators including sharks,

dolphins and whales is occurring in coastal ecosystems. Six

anti-depressants and ethinyloestradiol were measured at trace

concentrations (below quantitative limit to 4 ng ml21) in

plasma from bull sharks (Carcharhinus leucas) caught in the

Caloosahatchee River, a wastewater impacted freshwater tribu-

tary of Florida’s Charlotte Harbour [91]. The personal care

product triclosan has been detected in plasma from wild

Atlantic bottlenose dolphins (Tursiops truncatus) [92] and UV fil-

ters have been detected in Franciscana dolphins (Pontoporia
blainvillei) [93]. Coastal avian species that feed on fish and

shellfish may also be chronically exposed to pharmaceuticals.
4. Biological impacts in marine organisms
(a) Marine ecotoxicology studies
While the body of work on the aquatic ecotoxicology of both

human and veterinary pharmaceuticals is steadily growing,

there is currently minimal data on the toxicity of pharmaceu-

ticals to marine organisms. Only one study reporting field

ecotoxicity data for marine organisms could be found.

Exposure of benthic microalgal communities in the North

Inlet Estuary (USA) to the antimicrobial tylosin in sediments
resulted in reduction of microalgal biomass and primary pro-

ductivity and retarded diatom growth [94]. Laboratory

ecotoxicity data could be found for 22 compounds and for

the majority of compounds only one or two studies have

been undertaken using marine organisms (electronic supple-

mentary material, table S7). Fluoxetine was the exception,

with marine ecotoxicity data reported in seven studies.

Marine ecotoxicity laboratory data could be found for only

seven of the 20 pharmaceuticals most frequently reported in

seawater highlighting the current gap between researchers

focusing on environmental presence and researchers focusing

on ecotoxicity (table 1). Only one of these studies investigated

the toxicity to sediment dwelling organisms [95]. A limited

range of marine organisms have been tested to date including

primary producers (e.g. microalgae and diatoms), primary

consumers (e.g. bivalve molluscs and copepods) and consu-

mers (e.g. crustaceans and fish). It is of great concern that in

most studies nominal rather than measured pharmaceutical

exposure concentrations were used.

Despite the limited number of studies, a wide variety of

adverse effects have been reported for marine organisms with

the effects being both test species and pharmaceutical specific.

Examples of reported adverse effects for analgesics include

reduced feeding rates [96], impacts on survival [97], reduced

mussel byssus strength [90] and changes in immune response

[96] and biochemical markers [98]. Studies have tended to

focus on endpoints related to the therapeutic mode of action of

the pharmaceutical. For example, reduced survival and develop-

mental effects have been reported for anti-cancer drugs whereas

studies on anti-depressant drugs have focused on neurobeha-

vioural endpoints and spawning [99,100]. The reported no

observable effect concentrations (NOECs) and lowest observable

effect concentrations (LOECs) ranged from several orders

of magnitude above environmental concentrations to compar-

able to reported environmental concentrations. For example,

despite the NOECs for diclofenac for effects on bysuss strength

and oxidative stress in mussels of 1000 mg l21[101], transient

tissue-specific changes were reported after a 7 day exposure to

0.25 mg l21 diclofenac [98], a concentration well within the

range reported in seawater (table 1).

Pharmaceuticals are present in marine ecosystems as mix-

tures complicating risk assessments. These complex mixtures

may contain a wide variety of pharmaceuticals and other con-

taminants as well as a number of compounds from the same

class (e.g. quinolone antibiotics) or with similar modes of action

(e.g. non-steroidal anti-inflammatories) [102]. Additive effects

have been reported for mixtures of pharmaceuticals on marine

organisms. DeLorenzo & Fleming [103] investigated the toxicity

of six pharmaceuticals and personal care products to the marine

phytoplankton species Dunaliella tertiolecta both singly and in

binary mixtures and reported additive toxicity for a mixture con-

taining simvastatin and clofibric acid. As mixture toxicity effects

including synergistic effects have also been reported for fresh-

water organisms and cell lines [104,105], NOECs and LOECs

derived from single substance testing may not be sufficient for

deriving environmental quality standards [106].

There is a need to assess the impacts of pharmaceuticals

on marine food webs. Marine food webs could either be

directly affected through bioaccumulation of pharmaceuticals

in the food chain to toxic levels or indirectly through the loss

of a key species particularly sensitive to pharmaceuticals. The

impacts of pharmaceuticals on primary producers such as

phytoplankton is a key concern for marine ecosystems due
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to the potential follow on effects on nutrient cycling and

availability of food for other organisms [103]. Similarly, endo-

crine disrupting compounds which impact growth and

reproduction in fish have the potential to affect predator

and prey species [107].

(b) Antibiotic resistance
Exposure of microorganisms to sub-lethal concentrations of

antimicrobial compounds including antibiotics can induce

antibiotic resistance. The rapid development of antibiotic

resistance in bacteria is considered to be a global health secur-

ity emergency and attention is being focused on mechanisms

of transfer of antibiotic-resistant bacteria between species and

identifying aquatic environmental reservoirs [108]. As high

rates of horizontal gene transfer have been reported for

marine bacteria [109], the contribution of contaminants in

the marine environment to induction of antibiotic resistance

and pathways for dispersal of clinically relevant antibiotic-

resistant pathogens warrant further investigation. The devel-

opment of antibiotic resistance in marine bacteria has been

linked with wastewater discharges and the use of antibiotics

in aquaculture [33,58]. Widespread antibiotic resistance has

been reported in fish, marine mammals and seabirds living

in coastal waters including in the North Eastern United

States [110]. Higher prevalence of antibiotic-resistant strains

of bacteria has been reported for marine wildlife populations

exposed to sewage [111] and there is evidence to suggest that

the antibiotic-resistant bacteria present in seabirds are of

human origin [112]. The presence of antibiotic resistance
genes in marine ecosystems may be an indicator of ecological

shifts occurring due to the presence of pharmaceuticals [113].
5. Data gaps and priorities for future research
This review has highlighted that human and veterinary phar-

maceuticals and their transformation products (including

metabolites) are present in coastal ecosystems. Occurrence

data for the marine environment are only available for a

tiny fraction of the large number of pharmaceuticals currently

in global use. There are extremely limited laboratory ecotox-

icology data for the impacts of pharmaceuticals on marine

organisms and a marked lack of field data. As for other eco-

systems, a forward-looking prioritization approach is needed

for the marine risk assessment of both generic and novel pre-

scription pharmaceuticals. For example, such an approach

has been successfully used for Tamiflu that involved defining

both the predicted exposure concentration (PECmarine) and

predicted no-effect concentrations (PNECmarine) to provide a

prospective risk assessment [8]. For the PNECmarine to be

reliable, it is important to consider the mode of action of

the pharmaceutical, for instance, through the evaluation of

Adverse Outcome Pathways in freshwater organisms and to

extrapolate this to marine species [114] (figure 1). An Adverse

Outcome Pathway is a conceptual framework for the link

between exposure, the interaction of a contaminant at the

molecular level within a cell and an adverse outcome or

toxicological endpoint at the individual or community level.
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Mechanisms for the increased sharing of data also need to

be developed and a number of schemes have been developed

in Europe (see the Swedish scheme www.fass.se and http://

www.lif.se/default.aspx?id=29916 and the Norman network’s

EMPODAT Database www.norman-network.net/empodat)

and by individual companies through their Material Safety

Data Sheets for specific pharmaceuticals. More widely,

Daughton [56] recently proposed the development of a data-

base on pharmaceutical occurrence in the environment,

contributed to and curated by the wider science community.

The monitoring of prioritized pharmaceuticals and relevant

metabolites in coastal environments should be considered as

complementary to prospective risk assessments and include

both dissolved and particulate fractions. In Europe, the

Water Framework Directive (WFD; Directive 2000/60/EC)

covers both freshwaters and transitional waters (the estuarine

and coastal area up to one nautical mile, or 1.85 km, from

the shore). Two hormones (17a-ethinyloestradiol and 17b-

oestradiol) and diclofenac have been placed on a watch list for

emerging pollutants under the WFD. In a global context, it

would be prudent to develop a monitoring suite of priority

pharmaceuticals and transformation products that can be used

in conjunction with biological assays to identify marine environ-

ments at risk from major centres of pharmaceutical inputs

(e.g. WWTPs from megacities, intensive areas of aquaculture

and pharmaceutical manufacturing industries).
As highlighted in reviews for pharmaceutical concen-

trations in freshwater [1] there is a marked absence of data

for pharmaceuticals in marine environments in many regions

(notably Africa, South America and small island nations in

Oceania). These data gaps could easily be overcome by col-

laboration between well-resourced groups, with access to

appropriate technology and validated analytical methods in

developed countries, and local scientists in developing

countries, at the same time providing valuable scientific

and technical training.

The majority of data reported to date for pharmaceutical

concentrations in marine organisms are for antibiotics used in

aquaculture. In contrast, there are limited data for the accumu-

lation of other classes of pharmaceuticals, their metabolites and

transformation products in marine organisms. Further research

is required to identify appropriate analytical methods for

risk assessments for fish and shellfish to ensure that poten-

tially reversible pharmaceutical metabolite conjugates are

accounted for.

There are insufficient data on the potential for impacts on

higher trophic levels, either through trophic transfer of pharma-

ceuticals or indirect effects, such as limited availability of food,

due to impacts on lower trophic levels including algae. For high

priority pharmaceuticals, it would be desirable to extend the

environmental assessment to include fish-eating birds and

mammals as recently illustrated by Murray Smith et al. [115].
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