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Human and veterinary drug development addresses absorption, distribution,

metabolism, elimination and toxicology (ADMET) of the Active Pharma-

ceutical Ingredient (API) in the target species. Metabolism is an important

factor in controlling circulating plasma and target tissue API concentrations

and in generating metabolites which are more easily eliminated in bile,

faeces and urine. The essential purpose of xenobiotic metabolism is to convert

lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar

molecules that are readily excreted. Xenobiotic metabolism is classified into

Phase I enzymatic reactions (which add or expose reactive functional groups

on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conju-

gation with large water-soluble, polar molecules) and Phase III cellular

efflux transport processes. The human–fish plasma model provides a useful

approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibu-

profen and propranolol) in freshwater fish, where gill and liver metabolism of

APIs have been shown to be of importance. By contrast, wildlife species with

low metabolic competency may exhibit zero-order metabolic (pharmacoki-

netic) profiles and thus high API toxicity, as in the case of diclofenac and the

dramatic decline of vulture populations across the Indian subcontinent.

A similar threat looms for African Cape Griffon vultures exposed to ketopro-

fen and meloxicam, recent studies indicating toxicity relates to zero-order

metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronida-

tion deficiencies). While all aspects of ADMET are important in toxicity

evaluations, these observations demonstrate the importance of methods for

predicting API comparative metabolism as a central part of environmental

risk assessment.
1. Introduction
Investigations of a pharmaceutical’s absorption, distribution, metabolism, elimin-

ation and toxicology (ADMET) play a central role in the pre-clinical and clinical

safety assessment of human medicines [1] and potentially in environmental risk

assessment (see [2]). Likewise, Active Pharmaceutical Ingredients (APIs) used in

veterinary medicine are evaluated for their ADMET profile in the species of inter-

est (e.g. poultry or ruminants) [3,4]. Metabolism of endogenous and exogenous

molecules (e.g. plant toxins, pesticides and pharmaceuticals) is normally classified

into Phase I enzymatic reactions (which add or expose –OH, –SH, –NH2 or

–COOH functional groups on xenobiotics) and Phase II reactions (resulting in

xenobiotic conjugation with large water-soluble, polar molecules). Additionally,

lipophilic xenobiotics, or their metabolites, can be pumped out of cells by specific

transporter proteins and this efflux pump activity is often termed Phase III metab-

olism [5]. For approximately 5–7% of human drugs, Phase I metabolism may be

responsible for conversion of a prodrug into the API [6]. More broadly, many
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Phase I biotransformations of lipophilic xenobiotics are carried

out by microsomal monooxygenases, located in the endoplas-

mic reticulum of the liver and other organs [7]. The haem

protein cytochrome P450 provides the active centre of these

enzymes and has huge diversity, with 37 cytochrome P450

families currently identified across many animal species [8]. It

is hypothesized that the P450 superfamily has undergone

repeated rounds of expansion by genome duplication, whereby

approximately one and a half billion years ago, the first expan-

sion gave rise to the P450 families primarily involved in

metabolizing endogenous fatty acids, cholesterol and its

derivatives (CYP4 and CYP11 families) which likely played a

key role in maintaining the eukaryotic cell membrane integrity.

A later expansion of the P450 family 900 Ma may have led to

several endogenous steroid-synthesizing cytochrome P450

lineages (including CYP19, CYP21 and CYP27 gene families;

whereby the CYP21 family later diverged to give rise to the

CYP1 and CYP2 families). A final major expansion of several

P450 families involved in xenobiotic metabolism (including

CYP2, CYP3, CYP4 and CYP6), began about 400 Ma. This

most recent expansion is thought to have been driven by first

the emergence of aquatic organisms onto land, associated with

eating toxic plant allelochemicals (‘animal–plant warfare’),

together with exposure of terrestrial organisms to hydro-

carbon-based combustion products in the atmosphere [8–12].

Much data exist on the metabolism of pharmaceuticals and

other xenobiotics by the liver microsomes of mammals, birds

and other species, with rates of microsomal oxidative metab-

olism determined across a range of vertebrates [3,13,14]. For

example, Abass et al. [15] studied the metabolism of the insec-

ticide benfuracarb by hepatic microsomes taken from seven

mammalian species to investigate species-specific metabolic

pathways. Benfuracarb is metabolized via sulfur-oxidation

and nitrogen–sulfur bond cleavage (producing carbofuran

which is further metabolized). Clearance rates for the seven

species ranged from 1.4 (monkey) to 3.5 (rat), these differences

being due to variability in CYP enzyme expression [15].

Among herbivorous and omnivorous mammals, there is a

clear inverse correlation between the microsomal monooxy-

genase activity and body weight [16,17]. When hepatic

monooxygenase activities are expressed in terms of body

weight, much higher values are found in small rodents than

in large mammals. This observation is consistent with the con-

cept of a coevolutionary arms race between plants and

herbivorous animals. In this context, small mammals need to

consume more food per unit body weight than do large ones

in order to maintain body temperature due to their high surface

area to volume ratios. In contrast to the mammalian species

studied by Walker and co-workers, the carnivorous (piscivor-

ous or raptorial) species showed distinctly lower microsomal

monooxygenase activities than did herbivorous or omnivorous

birds (an observation also explicable in terms of ‘animal–plant

arms race’ theory). Predatory mammals (e.g. cats) and birds (e.g.

raptors) eat very little, if any, plant material and therefore do not

incur major pressure to drive the evolution of enzymes to

metabolize plant toxins [17–20]. Interestingly, zebrafish (a

widely used model in pharmaceutical research) show a dra-

matic increase in Phase I and II enzyme activity at the juvenile

life stage in association with being fed plant-based diets [21].

In contrast to terrestrial vertebrates, Phase I enzyme activi-

ties in fish are generally lower and there is only a weak

correlation with body weight (whereas individual avian

species show a correlation between body weight and hepatic
microsomal monooxygenase activity across species) [13]. For

fish, this has been explained on the grounds that they can

excrete as well as take up (see [22]) many xenobiotics by diffu-

sion across gills into the large volume of ambient water and it

has been argued that there has not been a strong pressure for

the evolution of highly active detoxification enzymes as seen

in mammals [14,23]. A similar situation is thought to apply

to aquatic invertebrates [24–26]. Nonetheless, as molecular

and biochemical methods have advanced, there is growing

evidence of both Phase I and II enzyme activity in fish

[21,27,28] and recent studies have addressed how dietary and

trophic variables may affect enzyme activity in fish [29].

There are also a growing number of studies on the metabolism

of pharmaceuticals in fish [30–40] and to a far lesser extent

invertebrates [41]. Veterinary pharmaceuticals have also been

studied from a comparative metabolism perspective [42,43].

Table 1 summarizes Phase I pathways of pharmaceutical and

xenobiotic metabolism in mammals and other vertebrates,

adapted from Parkinson and Ogu & Maxa [44,45] and updated

with examples from the DrugBank online database (http://

www.drugbank.ca/) established by Wishart et al. [46].
2. In vitro and in silico methods to understand
comparative metabolism

In vitro systems are widely used for the investigation of xeno-

biotic metabolism in mammals [1], birds [47] and fish [38,40].

Systems include: (i) whole liver tissue slices which retain

an accurate, structural framework of the liver; (ii) whole iso-

lated hepatocytes where the endoplasmic-reticulum-bound

and cytosolic enzymes are present but the structural integrity

of liver network lost; (iii) after centrifugation at 9000g, the S9

fraction supernatant from liver (or other tissue) homogenate

containing both cytosolic (predominantly Phase II) and micro-

somal (predominantly Phase I) enzymes; and (iv) microsomes

comprising endoplasmic-reticulum-bound enzymes that have

been separated from cytosolic enzymes (P450 enzymes are

concentrated in this subcellular fraction). These methods are

routinely used to determine the rate and extent of metabo-

lism and mass-spectroscopic analysis of specific metabolites.

Results for clearance rates obtained from in vitro metabolism

experiments can then be extrapolated to the in vivo situation

using scaling factors (e.g. number of hepatocytes per liver;

weight of microsomal protein per gram of liver, etc.). Allo-

metric methods can also be used to scale in vitro results

between different species (used in drug development for scal-

ing from pre-clinical species to man). Where such values are

known for wildlife species, this may allow for approximations

between different species [16,17] and form a basis for models to

aid in environmental risk assessment using fish [31,48,49],

invertebrates [41] and plants [50].

Novel in silico tools may also be useful to predict metabolism,

this approach tending to focus on the semi-quantitative predic-

tion of potential metabolites and identification of the specific

enzymes responsible for the metabolism. Prediction of metabolic

rates of drug metabolism remains a key challenge, especially

with regard to identification of potential metabolites (which

may be associated with specific toxicities) and identification of

the enzymes responsible (combined with knowledge of different

enzyme expression in different species). Kirchmair et al. [51]

provide an overview of in silico tools for predicting key factors

associated with metabolism (including sites of metabolism

http://www.drugbank.ca/
http://www.drugbank.ca/
http://www.drugbank.ca/


Table 1. Summary of vertebrate metabolic pathways with examples of pharmaceutical and xenobiotic substrates and inhibitors.

enzyme localization substrate inhibitor

Phase I—hydrolysis reactions

esterase microsomes and cytosol trandolapril tamoxifen

peptidase lysosomes — alogliptin

epoxide hydrolase microsomes and cytosol diazepam valproate

Phase I—reduction reactions

azo- and nitro-reduction microsomes and cytosol prontosil clofibrate

carbonyl reduction microsomes and cytosol loxoprofen befunolol

disulfide reduction cytosol captopril —

sulfoxide reduction cytosol — dimethylsulfoxide

quinone reduction microsomes and cytosol trenimon warfarin

reductive dehalogenation microsomes chloramphenicol —

Phase I—oxidation reactions

alcohol dehydrogenase cytosol ethanol fomepizole

aldehyde dehydrogenase mitochondria and cytosol acetaldehyde disulfiram

aldehyde oxidase cytosol aldehyde raloxifene

xanthine oxidase cytosol xanthine allopurinol

monoamine oxidase mitochondria monoamine moclobemide

diamine oxidase cytosol diamine phenformin

prostaglandin H synthase microsomes arachidonic acid ibuprofen

flavin-monooxygenases microsomes riboflavin nitric oxide

cytochrome P450: microsomes — —

CYP1A1 microsomes 7-ethoyxyresorufin galangin

CYP1A2 microsomes clozapine propranolol cimetidine citalopram

CYP2C19 microsomes citalopram diazepam fluoxetine ketoconazole

CYP2C9 microsomes diclofenac ibuprofen fluconazole fluoxetine

CYP2D6 microsomes metoprolol tramadol fluoxetine sertraline

CYP2E1 microsomes acetaminophen ethanol disulfiram water cress

CYP3A4 microsomes carbamazepine simvastatin flavonoids ketoconazole

Phase II—enzyme reactions

glucuronide conjugation microsomes Phase I metabolites valproic acid

sulfate conjugation cytostol Phase I metabolites harmol

glutathione conjugation microsomes and cytosol Phase I metabolites tannic acid

amino acid conjugation microsome Phase I metabolites kinetin

acetylation mitochondria and cytosol Phase I metabolites garcinol

methylation microsomes and cytosol Phase I metabolites 5-A-20deoxycytidine
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within a molecule; potential metabolites; cytochrome P450

(CYP) binding affinity/inhibition and prediction of CYP induc-

tion). Table 2 shows a representative software tool for each of

these categories, however, many other tools are available [51].

In silico tools have a number of potential advantages and

provide complementary techniques to in vitro methods. One

area where information from both fields can be combined to

build improved predictions is in physiologically based phar-

macokinetic (PBPK) modelling. In this method, an organism

is divided into a sequence of physiological compartments

(e.g. brain, liver, lungs, etc.). The models integrate com-

pound-specific data (e.g. physico-chemical properties, such

as log P, pKa or solubility; these values may be measured or

predicted using in silico techniques) and species- (or even
subject-) specific data (e.g. physiological factors such as body

or organ weights, volumes or blood flow rates). Subject to vali-

dation, these models are potentially of high value in predicting

concentration-time profiles for pharmaceuticals in wildlife

species [31,36,48]. Understanding inter-species differences in

metabolism is essential for reliable PBPK models, especially

in non-mammalian species. For example, Ohyama et al.
[47] studied methoxychlor (MXC) metabolism in rat, mouse,

Japanese quail and rainbow trout using liver slices. Each

species showed differences in metabolism, considered due to

the substrate specificity of CYP450s involved. MXC was metab-

olized to bis-OH-MXC which was then glucuronidated (with

only rats producing the bis-OH-MXC 4 O-sulfate 4-O-

glucuronide). In mice and Japanese quail, mono-OH-MXC



Table 2. Representative examples of computational tools for predicting factors associated with mammalian metabolism ( programs may have additional
capabilities).

factor predicted software summary of method website or key citation

(i) site of metabolism METAPRINT2D predicts sites of Phase I metabolism in dog, human and

rat through data-mining and statistical analysis of

published metabolic transformations

http://www-metaprint2d.ch.cam.ac.uk/

metaprint2d

(ii) potential

metabolites

METEOR NEXUS uses expert knowledge rules for metabolism to predict

metabolites which are presented in metabolic trees

http://www.lhasalimited.org/products/

meteor-nexus.htm

(iii) CYP binding

affinity/inhibition

ISOCYP predicts the predominant human cytochrome P450

isoform by which a compound is metabolized

http://www.molecular-networks.com/

products/isocyp

(iv) CYP induction VIRTUALTOXLAB predicts binding affinities to Aryl hydrocarbon receptor

(and other targets) using flexible docking and

quantitative structure – activity relationships

http://www.biograf.ch/index.php?id=

projects&subid=virtualtoxlab
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(and glucuronide conjugate) were the main metabolites and

little bis-OH-MXC glucuronide was formed (dechlorinated

mono-OH-MXC glucuronide was found only in mice). Rainbow

trout liver slices formed similar amounts of both metabolites. In

conclusion, rat and trout liver slices were able to metabolize

both MXC and mono-OH MXC, whereas only MXC could be

metabolized in mouse and Japanese quail [47].
3. In vivo approaches in studying comparative
metabolism

The overall effect a xenobiotic has on any organism is ultimately

the result of its intrinsic activity and its concentration at the target

site. Concentration at a given target site is determined by the

ADMET properties of the compound. The history of studying

the time course and concentration of xenobiotics at different

sites within the body has been developed predominantly

within the pharmaceutical industry, with respect to drug

effects on humans. However, the techniques are applicable to

diverse chemical space and across diverse species. In vivo
measurements determining the pharmacokinetic profiles of

xenobiotics in environmental species are largely unavailable,

hence extrapolation and predictive models (combining in silico
and in vitro methods) become essential tools in determining

organ-level concentrations [52]. Metabolism is one of the key fac-

tors to consider when modelling the time course of a xenobiotic

within an organism, not only as it can determine the overall

period of exposure, but also because the metabolite(s), rather

than the parent drug, may be responsible for the toxic effect

[1,53]. In the non-mammalian area, where much less is known

about metabolic profiles of drugs in animals, in vivo experiments

still have a major role to play to derive reliable environmental

risk assessments (for case studies with freshwater fish, see

[35,36,54]) and also in wildlife forensic studies (see following

case study on birds).
4. Case study: vulture toxicity to non-steroidal
anti-inflammatory drug (a process of zero-
order metabolism)

The dramatic impact of diclofenac (a non-steroidal anti-

inflammatory drug or ‘NSAID’) on Asian vulture populations
represents one of the most serious ecological catastrophes

of recent times. In just over a decade, diclofenac has been

responsible for the deaths of millions of vultures of the Asian

white-backed (Gyps bengalensis), long-billed (Gyps indicus),

slender-billed (Gyps tenuirostris), Egyptian (Neophron percnop-
terus) and red-headed (Sarcogyps calvus) species across the

Indian subcontinent [55,56] (also see [57]). In addition to

the scale of the toxicity, the exposure route to the product

was probably highly unconventional as these birds were

inadvertently being poisoned by the oral route even though

diclofenac was only available as an injectable cattle formu-

lation. Whereas previous veterinary medicines and pesticides

had caused their negative effects by ending up in the water,

soil or general environment of the species affected, these vul-

tures were being exposed to this product as residues in the

meat of the dead cattle carcasses upon which they fed. This

unique mode of exposure was linked to cultural and religious

practices in the region, whereby sick and old cattle were routi-

nely treated in a palliative manner with diclofenac, a cheap and

effective NSAID. The net effect of this practice was an unfortu-

nate high occurrence of diclofenac residues in the tissues of

recently dead cattle.

In the vulture, diclofenac is highly toxic with rapid

mortality resulting from a single meal of 1 kg of meat rich in

residue, with an estimated LD50 of 0.1–0.2 mg kg21 [58]. Tox-

icity following exposure is also fairly predictable with birds

showing signs of depression and head drooping as early as

24 h post exposure. Death is the typical endpoint with birds lit-

erally being described as falling dead from their perches. Based

on the results from controlled toxicity studies, it has been

shown that death after a single exposure consistently resulted

within 48 h of exposure, with related massive increases in

plasma uric acid and potassium concentrations and increased

alkaline phosphatase activity. Necropsies are also very typical

with signs of severe nephrosis, dehydration and accompanying

diffuse visceral and articular gout. Histopathology indicated

toxicity was characterized by necrosis of hepatocytes and the

renal tubular epithelial cells (RTE) of the proximal convoluted

tubules with associated uric acid tophi accumulation. While

the mechanism of toxicity of diclofenac remains incompletely

described, toxicity has been linked to RTE cell damage in a

time-related manner, subsequent accumulation of uric acid,

acidosis and terminal hyperkalaemia [59]. Results from various

pharmacokinetics studies of diclofenac in different bird

http://www-metaprint2d.ch.cam.ac.uk/metaprint2d
http://www-metaprint2d.ch.cam.ac.uk/metaprint2d
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Figure 1. Estimated half-life of elimination for various avian species dosed with diclofenac in controlled toxicity studies. The half-lives have be ranked from fastest
to slowest and represent: 1—G. domesticus (0.8 mg kg21 oral); 2—C. albus (10 mg kg21 oral); 3—C. aura (25 mg kg21 oral); 4—C. aura (8 mg kg21 oral);
5—G. coprotheres (0.8 mg kg21 IV); 6—G. domesticus (5 mg kg21 oral); 7—G. africanus (0.8 mg kg21 oral). The red bars (5 to 7) indicate those doses
associated with mortality. (Online version in colour.)
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Figure 2. Plasma versus time profiles for diclofenac at 0.8 mg kg21 IV in G.
coprotheres (rhomboid); ketoprofen at 5 mg kg21 oral for G. coprotheres that
died (square); ketoprofen at 5 mg kg21 oral in G. coprotheres that survived
(triangle); diclofenac in chickens at 0.8 mg kg21 oral (circle) and meloxicam
in G. coprotheres at 2 mg kg21 oral/intramuscular (cross). (Online version
in colour.)
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species, compared to the pharmacokinetic profiles of keto-

profen and meloxicam, which exhibit comparatively lower

toxicity in the vulture, clearly indicate that toxicity is related

to diclofenac’s pharmacokinetics (figure 1).

For the first of these studies, the pharmacokinetics of diclo-

fenac was evaluated in the Cape Griffon vulture (Gyps
coprotheres) [60]. While environmental toxicity has not been

seen in this vulture, the species was specifically validated as

a suitable model for further mechanistic studies on the toxicity

of diclofenac and other NSAIDs. The choice of this species was

twofold, firstly the easier availability to the study site, as well as

being less endangered than the Indian vulture species. From

this controlled acute toxicity study, the Cape Griffon vulture

was shown to be equally susceptible to diclofenac as the orien-

tal white-backed vulture at 0.8 mg kg21 (intravenous (IV) dose)

with exactly the same clinical signs, clinical pathological

and histopathological changes. Non-compartmental analysis

revealed a half-life of elimination (T1/2) of 12.24+0.99 h,

area under curve to the last quantifiable time point (AUClast)

of 80.28+51.26 mg ml h21, and a mean residence time

of 15.11+4.13 h. To evaluate the importance of the pharmaco-

kinetic profile obtained, Naidoo et al. [61] compared it to

those published for other bird species (figure 2). This included

the African white-backed vulture (Gyps africanus), the pied

crow (Corvus albus), the turkey vulture (Cathartes aura)

and the domestic chicken (Gallus domesticus). For these studies,

no mortalities were reported for the pied crow (0.8 and

10 mg kg21 oral), turkey vulture (8 and 25 mg kg21 oral) and

the domestic chicken (0.8 mg kg21 oral), while toxicity was

reported in the Cape Griffon (0.8 mg kg21 IV), the African

white-back (0.8 mg kg21 oral) and one chicken at a higher

dose (5 mg kg21 oral). An important finding from these

comparisons was a tentative link between the T1/2 and the

occurrence of toxicity, with a T1/2 above 12 h being associa-

ted with death. Furthermore, zero-order metabolism was seen

as a feature of toxicity as the T1/2 was increased in the one

chicken that died, from 0.89 h at 0.8 mg kg21 to 14.34 h at

5 mg kg21 oral.

While diclofenac has received wide attention in published

literature as a result of its environmental toxic effect, it is not,

however, the only NSAID evaluated in vultures in terms of

safety and pharmacokinetics. In an attempt to have diclofenac

removed from the Indian veterinary market, a replacement

for the drug needed to be found for use in cattle, as diclofenac
was of valuable cultural benefit to the sick cattle being trea-

ted. Following an international survey, meloxicam and

ketoprofen were identified as potential replacements: they

were effective in cattle with some evidence of safety in cap-

tive vulture species [62,63]. Subsequently, both these drugs

were evaluated in extensive safety studies including full

characterization of their pharmacokinetics, once again in

Cape Griffon as the model, with vastly contrasting results.

In the first ketoprofen study, Cape Griffon vultures

treated at 1 mg kg21 oral showed no indications of toxicity

on both clinical and clinical pathological evaluations [64].

However, when a second group of vultures were treated at

the increased dose of 5 mg kg21 oral, the study resulted in

mortalities in seven of the 11 birds treated, with the character-

istic signs of toxicity seen in the diclofenac-treated birds. The

most interesting finding for this study was a difference in the

T1/2 between these two dose levels but also between the birds

that died or survived at the 5 mg kg21 dose. At 1 mg kg21,

the half-life was 2.66+0.46 h. In the four birds that survived

at 5 mg kg21, the half-life was marginally higher at 3.24+
1.59 h. For the birds that died at the 5 mg kg21 dose, the

half-life had increased to 7.38+1.72 h. With regards to

AUClast, the four birds that survived had an AUClast fivefold

higher, as expected for the fivefold increase in dose (9.79+
3.23 mg ml h21 versus 50.31+ 17.71 mg ml h21, respectively).
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However, the birds that died at 5 mg kg21 had an increased

AUClast of 156.51+33.14 mg ml h21 and Cmax of 21.0+
1.88 mg ml21 in comparison with 10.77+3.26 mg ml21 for

the birds that survived. This once again supported previous

findings that toxicity is related to zero-order metabolism. In

addition, the increase in the AUClast and Cmax also indicated

that toxicity resulted in saturation of presystemic elimination

pathways [64].

In the last of the described pharmacokinetic studies, melox-

icam was administered to Cape Griffon vultures in a two-way

cross-over study at a dose of 2 mg kg21 by either oral or intra-

muscular route, without any signs of toxicity or changes in

the monitored clinical pathology parameters [62]. Meloxicam

was characterized by a short half-life of elimination of 0.33+
0.167 h and 0.42+0.11 h for the oral and intramuscular

routes, respectively. This study further attempted to characterize

the metabolites produced via liquid chromatography-tandem

mass spectrometry (LC-MSMS) analysis. Two CYP metabolites,

hydroxymethyl meloxicam (87%) and an unknown hydroxyl-

ated metabolite (7%), and one glucuronide (0.56%) metabolite

were identified (figure 3). Based on literature for laboratory ani-

mals, it was suspected that the CYP most likely involved in

metabolism was predominantly CYP2C9.

While the metabolic pathway for diclofenac in the vulture is

yet to be evaluated, the current pharmacokinetic information

available allows for some conclusions to be drawn. The first

of these is that toxicity is clearly linked to zero-order kinetics.

For the NSAIDs, this deficiency could be at the level of the

Phase I enzyme (CYP) system or Phase II glucuronidation,

both of which have been previously described. Decreased

CYP2C9 activity in people has been associated with resultant

longer half-life of metabolized NSAIDs, whereas the absence

of glucuronidation (UGT1A6) has been described as an impor-

tant mechanism in the toxicity of paracetamol in the cat [19].

Limited glucuronide activity has also been described in

people in association with aspirin toxicity. Based on the pres-

ence of a glucuronide metabolite for meloxicam, it is likely

that toxicity in humans is not due to a complete absence of

Phase II processes as in the cat. In addition, it is also doubtful

that limited glucuronidation plays a role in human toxicity

[65]. As a result, the rate-limiting step in avian metabolism is

most likely at the level of the cytochrome P450 enzyme

system. From medical literature, meloxicam is metabolized
predominantly by CYP2C9 and, to a much lower extent,

CYP3A4; diclofenac predominantly by CYP2C9, with some

metabolism by CYP3A4 and CYP2C8 [66,67]; and ketoprofen

by CYP2C9 [68]. When the half-life of elimination of diclofenac,

ketoprofen and meloxicam in people is compared with the

vulture, an important difference is noticed. In humans,

the half-life of elimination of diclofenac, ketoprofen and melox-

icam is typically 1–2, 2 and 15–20 h, respectively [69], while

(as reported above) this is +14, +3 and 0.33 h, respectively

for the vulture, with the metabolism of ketoprofen in vultures

also being zero order. With CYP2C9 being the one common

enzyme in metabolism, this is most probably the rate-limiting

enzyme. With the rapid metabolism of meloxicam in vultures

in contrast to humans, it may even be possible that the vulture

is reliant on a Phase I system other than CYP2C9 for metab-

olism (in vultures, CYP3A4 seems a possibility). If this is

the case, then the extreme sensitivity of the vulture to NSAID

toxicity may be associated with the hepatotoxicity of diclo-

fenac in humans, which is tentatively linked to CYP3A4

metabolism [70].
5. Conclusion
Pharmaceuticals provide many important health and econ-

omic benefits in the context of their capacity to generate

desired and specific therapeutic effects in the target species

(namely humans or in some cases, domestic animals and com-

panion animals). In some cases, however, environmental

exposures of wildlife to pharmaceutical residues can have dra-

matic consequences on non-mammalian species, as seen in the

case of diclofenac and vultures [56–58] or fish populations in

ecosystems exposed to synthetic oestrogens [71] (also see

[72]). These notable examples, together with evidence of the

widespread presence of pharmaceuticals in the environment,

have been widely recognized to support the need for predictive

environmental risk assessments [73–76] and consideration of

the API residues in cattle and other livestock species [77].

A fundamental aspect of this challenge relates to the need

to consider comparative metabolism for a range of non-

mammalian species. Specifically, it is clear that there remain

major knowledge gaps regarding the comparative metabolism

of human and veterinary pharmaceuticals in non-mammalian

species and this situation needs to be addressed in order to

develop reliable environmental risk assessments for these

important groups of medicines. It is proposed that this knowl-

edge gap could be addressed in an efficient and ethical manner

through the use of in vitro methods to define metabolism of

reference APIs (selected from table 1) in hepatocytes from carni-

vorous birds compared with omnivorous bird species, for

example, cormorants (Phalacrocorax auritus) and chickens (G.
domesticus), respectively [78,79]. For fish, the same approach is

feasible using in vitro hepatocyte assays for mainly carnivorous

salmonid species such as rainbow trout (Oncorhynchus mykiss)
versus the mainly herbivorous cyprinid species such as

zebrafish (Danio rerio) or carp (Cyprinus carpio) [21,27]. For

invertebrates, an in vivo approach would seem the best option

and should be extended to both freshwater and marine species

as part of an Adverse Outcome Pathways approach [41,80–82].

Subsequently, the in vitro avian and fish metabolic data and the

in vivo invertebrate data for reference APIs could be used to

develop and validate in silico tools to better predict which

enzymes are responsible for API metabolism. If the measured
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or predicted metabolism of a human or veterinary drug

in mammalian or non-mammalian wildlife species raised

concerns, further work could be done to evaluate the in vitro
metabolites data through computational toxicology or metabolic

pathway analysis [52,83,84].

In the wider context, where predicted regional increases in

drug use occur or measurements of APIs in the environment

raise concerns, the availability of validated in silico and in
vitro methods to predict comparative metabolism will be of

immense use in conducting environmental risk assessments.
Specifically, together with prioritization through the predic-

ted exposure concentration approach, an understanding of

ADMET can play an important role in defining and predicting

no-observed effect concentrations for freshwater, terrestrial

and other environmental compartments, including predators

[74,75,85]. In addition to this predictive aspect of pharma-

ceutical risk assessment, an understanding of ADMET can

provide an important role for targeted monitoring of wildlife

species of concern (e.g. vultures and other ultra-carnivorous

species [76,81]; also see [86]).
 g
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