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Medicinal innovation has led to the discovery and use of thousands of human

and veterinary drugs. With this comes the potential for unintended effects on

non-target organisms exposed to pharmaceuticals inevitably entering the

environment. The impracticality of generating whole-organism chronic toxicity

data representative of all species in the environment has necessitated prioritiza-

tion of drugs for focused empirical testing as well as field monitoring. Current

prioritization strategies typically emphasize likelihood for exposure (i.e.

predicted/measured environmental concentrations), while incorporating only

rather limited consideration of potential effects of the drug to non-target organ-

isms. However, substantial mammalian pharmacokinetic and mechanism/

mode of action (MOA) data are produced during drug development to under-

stand drug target specificity and efficacy for intended consumers. An integrated

prioritization strategy for assessing risks of human and veterinary drugs would

leverage available pharmacokinetic and toxicokinetic data for evaluation of the

potential for adverse effects to non-target organisms. In this reiview, we demon-

strate the utility of read-across approaches to leverage mammalian absorption,

distribution, metabolism and elimination data; analyse cross-species molecular

target conservation and translate therapeutic MOA to an adverse outcome path-

way(s) relevant to aquatic organisms as a means to inform prioritization of

drugs for focused toxicity testing and environmental monitoring.
1. Introduction
Active pharmaceutical ingredients are increasingly detected in the environment

due to several factors, including advances in human and veterinary medic-

inal practices, the ageing human population and improved sensitivity of

analytical instrumentation. Sources such as wastewater treatment plant effluent

and run-off associated with animal feeding operations have been implicated as

important contributors of pharmaceuticals to aquatic environments [1]. Owing

to the continuous introduction of some of these chemicals into waterbodies,

they have been termed pseudo-persistent, a characteristic that increases the

possibility of chronic exposures of non-target organisms. Unintended exposures

of aquatic species to pharmaceuticals are inevitable and have been documented

[2–4]. Unfortunately, only limited publically available ecotoxicity data exist for

most drugs, making informed, transparent, assessments of their possible eco-

logical risks problematic [5,6]. Further, much of the ecotoxicity data that do

exist for pharmaceuticals focus on short-term exposure tests or acute lethality,

which is not always suitable for predicting effects of pseudo-persistent chemi-

cals specifically designed to produce sublethal biological effects [5,6]. That is,

many pharmaceuticals are designed to target specific pathways, often at
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relatively low doses [7,8]. Certain of these pathways are criti-

cal to the long-term maintenance of physiological functions,

and can be highly conserved across taxa, including non-

target aquatic animal species. As such, it is reasonable to

expect that some pharmaceuticals will elicit adverse sublethal

responses in chronic exposures [5,6].

Generation of chronic ecotoxicity data for the large number

of pharmaceuticals that may (or do) enter aquatic environ-

ments would be prohibitively costly, as well as requiring

numerous test animals, which contradicts the growing inter-

national desire to decrease animal use. Given the number of

drugs in use or development (5000þ; [9]), whole-organism

chronic toxicity studies for assessing all possible risks are

impractical, so techniques for the prioritization of those chemi-

cals most likely to be problematic are needed. In recognition of

the challenges associated with testing pharmaceuticals for their

effects to human and ecological health and the need to better

focus research efforts, international experts recently gathered

at a workshop to develop a list of the most critical questions

to guide future studies, including questions pertaining to

best practices for prioritization and effects characterization

[10]. Consistent with these recommendations, development

of several prioritization approaches that effectively and effi-

ciently use available pharmaceutical knowledge is ongoing.

Currently, the prominent focal point for this type of activity

has been based on exposure (e.g. related to production

volume, use patterns, potential for bioconcentration, etc.),

occasionally with some consideration of potential for effects

(e.g. predicted no effect concentration) [11,12].

The need for a more integrated exposure- and effects-

based approach to pharmaceutical prioritization can be

illustrated when considering the contraceptive ingredient

ethinyl oestradiol (EE2), a synthetic oestrogen known to

cause endocrine-disrupting effects in fish at low ng l21 con-

centrations [13]. Predicted (based on production volume) or

measured concentrations of EE2 in aquatic systems and

demonstrated potential for acute lethality in a number of

species would rank EE2 as a very low priority [5]. However,

empirical data from chronic toxicity studies, as well as an

understanding of cross-species pathway conservation would

most certainly result in a high priority ranking of EE2

when considering potential for effects [12,14,15]. Caffeine,

in contrast, is abundantly and consistently found in aquatic

samples, but poses negligible potential for effects to exposed

species [1], thus indicating a much lower priority ranking.

These relatively simple examples emphasize the need for an

integrated understanding of both the potential for exposure,

and the plausible effects of the drug on non-target organisms

for robust pharmaceutical prioritization.

Unlike most other classes of chemicals of possible ecological

concern, insights as to possible environmental exposure and

effects of both human and veterinary drugs can be gleaned

from a priori knowledge. For example, for many pharma-

ceuticals, efficacy and safety data are available concerning

adsorption, distribution, metabolism and elimination (ADME),

and biological pathways affected in target species (i.e. humans,

livestock). From this, it should be possible to employ systematic

approaches to prioritize pharmaceuticals for monitoring and

testing in two ways: (i) identification of chemicals with the

most potential to elicit adverse effects and (ii) identification of

which species/endpoints should be used for this testing or

monitoring. In this review, we describe specific techniques we

are applying to this challenge.
2. Focus on likelihood for adverse effects
The fact that a drug must be present in the environment for it

to cause adverse effects to non-target organisms is irrefutable.

However, considerations of pharmacokinetic measures, bio-

logical pathway interactions (both with potential for specific

and non-specific interactions) and knowledge of primary

drug-metabolizing enzymes and conservation of molecular

targets, can provide enhanced potential to rank and prioritize

pharmaceuticals for their potential to cause unintended

effects to wildlife (figure 1).

(a) Utility of read-across from mammalian
pharmacokinetic data

Approximately 40–60% of new drug candidates for humans

fail owing to poor ADME profiles [16]. Therefore, accurately

measuring or predicting mammalian pharmacokinetic para-

meters is fundamental to drug discovery and development,

and typically, data for existing drugs are publically available.

A number of online databases house this type of informa-

tion, including Drugbank (6825 drug entries [9]), PK/DB

database for pharmacokinetic properties (ca 1400 chemicals

[17]) and the PharmacoKinetics Knowledge Base (PKKB;

1685 drugs [16]). However, due to the inconsistent nature of

information in these databases relative to, for example,

pharmacokinetic parameters measured (including method

descriptions), reporting units, linkage to primary literature,

etc., we deemed these sources unsuitable for transparent prior-

itization efforts. Therefore, we have developed a database of

the most commonly prescribed drugs, over-the-counter drugs

and veterinary medicines, which is representative of nearly

all therapeutic classes. Our database is populated with infor-

mation from selected review articles [18,19], the Physicians’
Desk Reference [20], manufacturers/government agency mono-

graphs and the primary literature, and provides consistently

referenced material with common units. This curated evalu-

ation of the available literature includes data for 1200 drugs

across 100 drug classes (defined by source description of mode

of action (MOA)), and includes approximately 7000 data

points related to ADME parameters. With this readily accessible

mammalian pharmacokinetic data, read-across approaches can

be employed to inform or hypothesize the potential pharmaco-

dynamics of both specific and representative classes of drugs

in non-target species.

Biological read-across as it relates to ecotoxicology has

been described as the ability for a drug to have an effect on

a non-target organism owing to molecular target conserva-

tion and similar pharmacology as the target species [21].

Pharmacokinetic parameters selected as a means to inform

cross-species read-across include clearance rate, volume of

distribution, therapeutic plasma concentration and half-life

of elimination. Although a thorough understanding of phar-

macokinetic nuances between species is lacking, currently

available data can be used based on qualitative understand-

ings of species similarities, particularly within vertebrates.

Simply put, in the absence of evidence to the contrary, it is

reasonable to assume that if a drug is readily absorbed,

widely distributed, poorly metabolized and/or slowly

eliminated in the mammalian target species, it has greater

potential for hazard in non-target vertebrate species.

With this basic assumption in mind, our database serves

as a component of a dynamic framework for prioritizing
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drugs. Specifically, each data point is ranked within the phar-

macokinetic parameter using a probabilistic distribution [22].

The ranking provides a regression from which data can

be scored, from 1 to 10, according to specific 10th centile

thresholds, and translated into relative potential for hazard.

For example, total body clearance (ml min21 kg21) data are

considered important, with the assumption that the slower

the clearance the greater the potential hazard (i.e. as a drug

would have more time to initiate its biological action). The

database includes 832 data points ranging between 0.0037

and 1070 ml min21 kg21 for total body clearance. Scores

were established using the probabilistic distribution of the

data, and subsequent regression threshold values for each

10th centile (figure 2). Drugs with lower clearance values are

subsequently assigned higher scores based on potential

hazard. When multiple pharmacokinetic parameters are

assessed for each drug in this manner, scores can be summed

to develop an overall prioritization metric for available

ADME data as a component of a comprehensive prioritization

strategy. A critical attribute of this approach is that relative

prioritization rankings can be produced by grouping drugs

by class or chemical structure allowing for predictions of prob-

able ADME priorities for newly developed drugs or older

pharmaceuticals falling within that class, for which significant

pharmacokinetic information is lacking.

(b) Conservation of molecular target for cross-species
extrapolation

Pharmaceuticals are generally designed to act on specific

molecular targets to produce their desired therapeutic

benefits and lessen the potential for undesirable off-target
interactions. The biomolecular targets typically are involved

in key metabolic or signal transduction pathways specific to

a disease or medical condition. Conservation of these molecu-

lar targets at the protein level is likely when considering

species with close phylogeny. However, some targets are

well conserved across more diverse phyla. Another key com-

ponent for focusing testing efforts on organisms with the

greatest likelihood for susceptibility to a given pharma-

ceutical includes considering cross-species similarity of

therapeutic molecular targets. Efforts have been made to

explore the utility of protein sequence comparisons as a

means to estimate sensitivity to pharmaceuticals, demon-

strating cross-species conservation of many drug targets

[11,23]. Recently, we developed a computational tool,

Sequence Alignment to Predict Across Species Susceptibility

(SeqAPASS), that facilitates rapid and strategic examination

of protein sequence similarity at the level of the primary

amino acid sequence (including orthologue candidate identi-

fication), conserved functional domains and (when possible)

individual amino acid residue position(s) across species, as a

means to predict relative intrinsic susceptibility to chemicals

with known MOA [14]. Output derived from the SeqAPASS

analysis can be used to define the relevance (or lack thereof)

of known protein targets across taxa (e.g. figure 3). A growing

list of case studies, including examples with the human

pharmaceutical EE2, the veterinary drug 17b-trenbolone (an

anabolic steroid) and the pesticide permethrin, for which

predictions of susceptibility compared favourably with empiri-

cal toxicity data [14,24], have demonstrated the relevance and

utility of the SeqAPASS tool. Others have explored molecu-

lar docking of pharmaceuticals to drug targets in common

ecotoxicological model species, further demonstrating the
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utility of protein structural information, when it exists or can be

modelled, for predicting potential for effects [25,26]. These

types of strategies for species extrapolation use existing (and

rapidly expanding) protein sequence/structural information

to explore species similarities and differences meaningful

to the molecular initiating event (MIE; e.g. receptor/ligand

interaction, enzyme inhibition, etc.) responsible for producing

adverse effects [27,28]. Exploring commonalities among

species with regard to structure of key protein targets such as

receptors (or primary xenobiotic-metabolizing enzymes) is a
key piece of information that can guide predictions of potential

cross-species susceptibility to pharmaceuticals, particularly

when quantitative data regarding receptor/ligand interaction,

binding affinity and potency for most non-mammalian species

are lacking. This approach, in conjunction with leveraging

mammalian ADME data, can serve as the basis for prioritizing

testing and monitoring of pharmaceuticals.
(c) Translating therapeutic mode of action into adverse
outcome(s) relevant for risk assessment

Adverse outcome pathways (AOPs) have been proposed as a

conceptual framework through which to link chemical–

biological interactions at the molecular level (termed MIEs)

with key events at multiple biological levels of organization, cul-

minating in an adverse outcome of regulatory significance at the

individual or population level [27]. The Organisation for Econ-

omic Cooperation and Development (OECD) is coordinating an

internationally harmonized effort to develop a knowledgebase

of AOPs relevant to both human health and ecological effects

[29]. Examples of well-defined AOPs relevant to established

molecular targets of pharmaceuticals include aromatase inhi-

bition, androgen receptor (AR) activation, oestrogen receptor

activation or antagonism, and steroidogenesis inhibition lead-

ing to impaired reproduction in fish [27]. Several existing

AOPs, and/or studies from which putative AOPs relevant to

the function(s) of fish orthologues to human drug targets are

summarized in table 1. Based on ongoing efforts in the inter-

national scientific community to delineate and disseminate

AOPs suitable for regulatory application (http://www.oecd.

org/env/ehs/testing/adverse-outcome-pathways-molecular-

screening-and-toxicogenomics.htm and www.aopwiki.org), it

is expected that growing numbers of well-described AOPs

associated with orthologues to human drug targets will

become available. Notably, further development of AOPs rel-

evant to ecological risk assessment can be accelerated through

strategic application of the SeqAPASS tool to help define

http://www.oecd.org/env/ehs/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
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Table 2. Prioritization of androgen receptor modulating drugs based on potential for adverse effects. Dashes represent drugs with limited pharmacokinetic data
available for scoring individually. Tick indicates empirical evidence exists, represented by a select publication in the reference column.

active ingredient
primary
CAS no.

average
ADME scorea

empirical evidence of
adverse effect in fish reference

bicalutamide 90357-06-5 6.8
p

[78]

boldenone 846-48-0 10.0

calusterone 17021-26-0 —

cyproterone 2098-66-0 —
p

[32]

danazol 17230-88-5 7.0

dihydrotestosterone 521-18-6 —
p

[79]

drospirenone 67392-87-4 —
p

[80]

drostanolone 58-19-5 —

enzalutamide 915087-33-1 7.0

fludrocortisone 127-31-1 —

fluoxymesterone 76-43-7 —

flutamide 13311-84-7 5.0
p

[33]

levonorgestrel 17489-40-6 7.3
p

[81]

methylnortestosterone, 7a-, 19- 3764-87-2 2.7

methyltestosterone 58-18-4 —
p

[82]

methyltrienolone 965-93-5 —

nandrolone 434-22-0 5.0

nilutamide 63612-50-0 —

norgestimate 35189-28-7 —

oxandrolone 53-39-4 7.3

spironolactone 52-01-7 5.3
p

[24]

testolactone 968-93-4 —

testosterone 57-85-2 —
p

[83]

trenbolone 10161-34-9 —
p

[30]
aAverage ADME score: calculated by averaging hazard score across pharmacokinetic parameters (clearance rate, volume of distribution, therapeutic plasma
concentration and half-life of elimination).
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which pharmaceutical-relevant MIEs are applicable to different

phyla of aquatic organisms.
3. Prioritization based on potential for effects
reveals uncommonly identified drugs

To demonstrate the utility of our ADME database and SeqA-

PASS tool (in conjunction with AOP knowledge) for

prioritizing pharmaceuticals for toxicity testing and environ-

mental monitoring, we provide an example that focuses on

drugs that interact with the AR in target species (humans, live-

stock). Owing to the critical role of the AR in endocrine

function, it is an important drug target in humans for treating

certain cancers, testosterone deficiencies, hypogonadism, der-

matological conditions, hirsutism and delayed puberty in

males, and in livestock, particularly beef cattle, for increasing

muscle mass [24]. Using our ADME database, DrugBank

and the Veterinary Substance Database [77], we first identified

human and veterinary pharmaceuticals whose therapeutic

MOA involved an interaction with the AR (table 2). The
majority of these chemicals, which all have hormone-type

structures, have neither been tested for toxicity to non-target

species nor routinely monitored in the environment.

To determine the potential for effects in non-target species

via interaction with the AR, we first assessed cross-species

conservation of the human and bovine (target species) AR

using SeqAPASS. Data from both analyses indicate a high

degree of AR conservation across vertebrates, including fish

species (figure 3; note that results are similar using either

the bovine or human AR as queries, so only bovine is

shown). The drugs in table 2 may target the AR as either ago-

nists or antagonists. Importantly, both AR agonists and

antagonists are linked to established or putative AOPs result-

ing in adverse reproductive effects in fish (table 1). Therefore,

as either AR agonists or antagonists, these drugs would be

considered high priority owing to conservation of their mol-

ecular target across vertebrate species, and the demonstration

(through linkages established via AOPs) of the potential for

adverse population-relevant effects.

To help assess AR modulators with incomplete mamma-

lian pharmacokinetic information, we initially evaluated
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drugs classified as hormones in our ADME database (53 com-

pounds) to derive a class-level priority ranking. Accordingly,

probabilistic distributions were derived for each pharmacoki-

netic parameter individually to assess hormone-like drugs

only. Within each parameter, we identified the value repre-

senting the 90th or 10th percentile (depending on hazard

assumption) and used those values to represent hormones as

a class. Subsequently, probabilistic distributions for all drugs

in our database were derived for each pharmacokinetic par-

ameter (e.g. figure 2). The hormone class assigned values

were then scored based on the centiles from the distributions of

all drugs. The final hazard score of 9.3 of 10 was then calculated

by averaging hormone class scores across all parameters, rank-

ing this drug class as high priority compared with other classes

(e.g. narcotics score: 8.3; non-steroidal anti-inflammatory

drugs score: 7; and antibiotics score: 6.8).

Relevant mammalian pharmacokinetic information (i.e.

volume of distribution, clearance rate and/or half-life of elimin-

ation) was available in our ADME database for 10 of the 24 AR-

active drugs identified. Based on this, individual AR-active

drugs can be evaluated using distributions derived from all

drugs for each pharmacokinetic parameter, scores assigned,

and then averaged across each parameter (table 2). The resultant

average ADME score allows for ranking an individual drug

against all others evaluated, thus further helping assign priority

based on the potential for hazard. For example, based on

ADME properties, boldenone (an anabolic steroid illegally

used to enhance athletic performance in canine, equine and

human athletes, and improve food conversion in cattle [84])

would rank as a higher priority than 7a, 19-methylnortestoster-

one (under study in humans to treat hypogonadism in males

and as a male contraceptive [85]) for testing or monitoring.

For some AR-active chemicals, empirical chronic toxicity

data in non-target species (predominantly fish) are available,

providing additional input for priority ranking and also illus-

trating where test data are needed (table 2). Significantly, a

majority of the drugs listed in table 2 have not been identified

by other prioritization strategies focused primarily on the

potential for exposure in the environment. Analogous priori-

tizations have been and are being employed in our laboratory

to guide our toxicity testing and field monitoring, which, as

an example, recently led to the identification of spirono-

lactone as a pharmaceutical of potential environmental

concern to fish species [24]. In this case, the knowledge of a

well-defined AOP for AR activation leading to reproductive

impairment in small fish helped to focus toxicity testing

with spironolactone on endpoints previously recognized as

being impacted by perturbation of the AR. Additionally,

SeqAPASS data directed the selection of test organisms

likely to be susceptible to spironolactone, with predictions

indicating fish would be more susceptible than invertebra-

tes such as daphnids, which we subsequently confirmed

experimentally [24]. In this manner, AOP knowledge in

combination with SeqAPASS evaluation of cross-species sus-

ceptibility offers a powerful means to guide toxicity testing,

with the potential to reduce the investment of time, resources

and animal testing.
4. Summary and vision for prioritization
The read-across components of our effects-based prioritization

strategy for human and veterinary drugs, combined with
application of the AOP framework and approaches for defining

taxonomic relevance of key events (e.g. MIE), and evaluation of

available empirical toxicity data, provide insights that comp-

lement analyses based on exposure. Although potential for

exposure is undeniably important, biological considerations

are critical to a comprehensive approach for drug prioritization

in terms of assessing potential for adverse effects in non-target

organisms. Central to this strategy is evaluation of biological

pathways and processes, and their conservation across taxa, a

central theme to the broader issue of cross-species extrapolation

of chemical effects in the discipline of toxicology [86].

A number of recent publications have presented various

methods for drug prioritization. Briefly, these papers included

consideration of conserved receptors and enzymes important as

drug targets across species [11,14,23,24,87]; calculated effects

ratios using human and fish plasma concentration data [87];

acute to therapeutic ratios [22,88]; identification of high

production volume drugs, identification of those that are per-

sistent, bioaccumulative and toxic [89]; maximum observed

(environmental) concentrations, predicted effect concentrations

and predicted no-effect concentrations [11,87]; prescription

volume and sales data, evaluation of days of water consump-

tion required to ingest equivalent of a single minimum daily

therapeutic dose for a given pharmaceutical MOA [11]; and con-

sideration of AOPs [24,88]. From these prioritization methods, it

is clear that an integrated approach is on the horizon when the

tools become available for rapidly and strategically disseminat-

ing available pharmaceutical data. Our strategy builds on some

of the concepts described previously and specifically introduces

a novel tool (i.e. SeqAPASS) and database (ADME database)

being developed for use by the scientific community which

will be publically released in the near future for others to use

for drug prioritization.

Importantly, the prioritization strategy and tools described

herein are intended to guide toxicological research and inform

lists of chemicals to monitor in the environment. We recognize

that the quality of the assumptions used for the read-across

approaches described are based on current knowledge of the

science and therefore must be applied with an understand-

ing that uncertainties exist. Although research is ongoing,

empirical studies are limited relative to the assumption that

mammalian ADME data translates well to fish. For example,

a recent study assessing metabolism of common human phar-

maceuticals in fish provided evidence that, in rainbow trout

liver S9 fractions, little substantial biotransformation occurred

for several known substrates of human cytochrome P450

(CYP) 2D6, CYP2C9 or CYP3A4 [90]. These results suggest

that further research is necessary to understand the challen-

ges associated with the ADME read-across approach [91].

However, in the absence of fish-specific data, mammalian

pharmacokinetic knowledge currently presents the most logi-

cal starting point for read-across approaches owing to its

abundance and availability. Further, uncertainties related to

cross-species extrapolation using protein sequence/structure

comparisons have been identified and reviewed elsewhere

[14,23]; for example, it is recognized that other factors play a

role in determining susceptibility to a chemical beyond the

presence of a molecular target (e.g. metabolism, life stage, life

history) [92]. Off-target molecular effects can also impact pre-

dictions of susceptibility. Finally, fully developed AOPs, and

even putative AOPs, for pharmaceuticals are sparse and

though the AOP framework has strong support from the inter-

national scientific community, it will take time for new AOP
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constructs to be developed, accepted as having adequate

supporting evidence, and be available for use in a prioritiza-

tion strategy for the majority of pharmaceutical therapeutic

classes. Nonetheless, important advances in hazard predic-

tion relevant to drug prioritization for toxicity testing and

monitoring can be obtained from making use of available

pharmaceutical information with strategic and thoughtful

approaches, such as those presented here. Specifically, the pres-

ence of a drug on a prioritized list indicates that sufficient

predictive and/or empirical support ranks it as having an
 g
increased potential for adverse effects in non-target species,

and therefore evidence to proceed with further exploration.
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