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passionflowers, bats and the sword-billed
hummingbird
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2Department of Biology, Institute for Systematic Botany and Mycology, University of Munich (LMU),
Menzinger Strasse 67, Munich 80638, Germany

A striking example of plant/pollinator trait matching is found between
Andean species of Passiflora with 6-14-cm-long nectar tubes and the
sword-billed hummingbird, Ensifera ensifera, with up to 11-cm-long bills.
Because of the position of their anthers and stigmas, and self-incompatibility,
these passionflower species depend on E. ensifera for pollination. Field obser-
vations show that the bird and plant distribution match completely and that
scarcity of Ensifera results in reduced passionflower seed set. We here use
nuclear and plastid DNA sequences to investigate how often and when
these mutualisms evolved and under which conditions, if ever, they were
lost. The phylogeny includes 26 (70%) of the 37 extremely long-tubed species,
13 (68%) of the 19 species with tubes too short for Ensifera and four of the
seven bat-pollinated species for a total of 43 (69%) of all species in Passiflora
supersection Tacsonia (plus 11 outgroups). We time-calibrated the phylogeny
to infer the speed of any pollinator switching. Results show that Tacsonia is
monophyletic and that its stem group dates to 10.7 Ma, matching the diver-
gence at 11.6 Ma of E. ensifera from its short-billed sister species. Whether
pollination by short-billed hummingbirds or by Ensifera is the ancestral
condition cannot be securely inferred, but extremely long-tubed flowers
exclusively pollinated by Ensifera evolved early during the radiation of the
Tacsonia clade. There is also evidence of several losses of Ensifera dependence,
involving shifts to bat pollination and shorter billed birds. Besides being
extremely asymmetric—a single bird species coevolving with a speciose
plant clade—the Ensifera/ Passiflora system is a prime example of a specialized
pollinator not driving plant speciation, but instead being the precondition for
the maintenance of isolated populations (through reliable seed set) that then
underwent allopatric speciation.

1. Introduction

Few evolutionary transitions in plant reproductive systems are irreversible, a con-
clusion now widely accepted based on changes in floral syndromes, sexual
systems or self-pollination inferred on molecular phylogenies [1]. Among the
exceptions may be the transition to hummingbird pollination. In a recent review
of the topic of evolutionary reversibility, Barrett suggested that a directional bias
in favour of transitions to, but not away from, pollination by hummingbirds
may be due to the efficiency of these pollinators [2], the nature of genetic mutations
in floral pigments that may make it difficult to return from red to blue or yellow
colours [3] or the acquisition of thin long nectar tubes, difficult to modify [4].
Studies of floral trait change in the best-investigated North American systems,
Aquilegia and Penstemon sensu lato, imply several shifts between moth, bee and
hummingbird pollination, with a unidirectional trend towards long-tubed (hawk-
moth- or hummingbird-pollinated) flowers in Aquilegia but not Penstemon [4,5].
This indicates trait reversibility over a few million years, the time frame for
North American hummingbird/plant interactions [6]. But what about more
extreme floral adaptations, such as those among many-centimetre-long flowers
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pollinated by long-billed Andean hummingbirds? How long
did it take for them to evolve, and is there a unidirectional
trend from short flowers to long flowers as in the North
American Aquilegia system?

To study these questions, we focused on the Passifloraceae,
which are among the most species-rich groups with humming-
bird-pollinated species. The largest genus is Passiflora, with 560
species of which 95% occur in tropical Central and South
America, almost half (250 species) in subgenus Passiflora [7].
Within this subgenus, there is a group of species with floral
tubes ranging from a few to 14 cm long (figure 1). These pas-
sionflowers are grouped into supersection Tacsonia, which
comprises 62—-64 species, all restricted to the high Andes at
1700 to approximately 4000 m ([8—11]; figure 2b). Passiflora
supersection Tacsonia is characterized by several morphologi-
cal traits, suggesting that the group might be monophyletic
[9], although this has not really been tested. The best-sampled
phylogeny so far included only seven Tacsonia species, which
formed a clade [12]. While most species of the supersection
have hummingbird-adapted flowers, the longest tubed-flowers
are restricted to 37 species pollinated by the sword-billed hum-
mingbird, Ensifera ensifera, whereas the 19 species with shorter
tubed red flowers (hypanthium 1-3 cm long) are pollinated by
shorter billed hummingbirds [13]. Bats pollinate another seven
species that have greenish or white flowers [11,14]. Like most
Passiflora, Tacsonia species are self-incompatible and depend
on cross-pollination to set seed [10].

The long-tubed Tacsonia flowers exactly match the up to
11-cm-long bill of the sword-billed hummingbird (figure 3a),
a common Andean species that occurs between 1400 and
4000 m.a.s.l. (figure 2b shows its geographical range). This
bird species is the only pollinator capable of depositing
pollen grains on the stigmas of these passionflowers while
drinking nectar [15,16]. Northern Emnsifera males have bills
10.4 cm long, females 11.2 cm long; birds from the southern
part of the range have slightly shorter bills [17]. The morpho-
logical fit between the bird’s bill length and the flower tubes
and stamen and stigma positions, together with the overlap
between Ensifera and the combined geographical ranges of
the long-tubed passionflower species, make this relationship
a clear case of plant/pollinator coevolution. Like many
hummingbirds, E. ensifera is a trap-liner, regularly revisiting
individual plants or flowers, which in the case of Tacsonia
last 4-5 days. A dated hummingbird phylogeny shows
that E. ensifera diverged from its short-billed sister species,
Pterophanes cyanopterus, approximately 11.6 Ma [6].

Given that approximately 37 of the 62-64 species of
Tacsonia are pollinated primarily or exclusively by the
sword-billed hummingbird, while the remaining species are
pollinated by short-billed hummingbirds or bats and assum-
ing that the group is monophyletic, Tacsonia passionflowers
make a suitable study system for addressing the question of
specialization on, or de-specialization away from, a single
pollinator species. Specialization on a single species entails
the risk of interdependence, which may increase local or
global extinction. Indeed, the scarcity of E. ensifera has been
suggested as causing local extinction of Passiflora mixta, a
member of supersection Tacsonia, in open landscapes in
Ecuador [16]. Answering the question of increasing or
decreasing specialization required a densely sampled phylo-
geny in which all pollination syndromes would be
appropriately represented. Since we were interested in the
evolutionary speed of any pollinator shifts, we applied a

molecular clock model to the data to infer absolute n

divergence times for the Tacsonia passionflower clade.

2. Material and methods

(a) Plant material, DNA isolation, amplification and
sequencing

The taxonomic names and authors, geographical origin, voucher
information and place of deposition and GenBank accession num-
bers for all sequences produced for this study are listed in the
electronic supplementary material, table S1. Approximately 0.2 g
(dry weight) of leaf tissue was taken from 53 herbarium specimens
of Tacsonia, representing 43 species from throughout the geo-
graphical and morphological range of the supersection. A total
of 140 new sequences were deposited in GenBank. As outgroups,
we used GenBank-downloaded sequences of 11 species from the
Passiflora subgenera Decaloba, Astrophea and Passiflora (supersec-
tions Coccinea and Passiflora) based on Krosnick et al. [7]. As a
more distant outgroup, we included Paropsia madagascariensis
because its divergence time from other Passifloraceae has been
estimated in another study [18] and could thus serve as a
cross-validation point for our molecular clock dating (§2b).

DNA isolation relied on Nucleospin Plant II kits (Macherey-
Nagel, Duiren, Germany) and the manufacturer’s protocol with
the exception of incubation time, which was increased to
60 min. DNA concentrations were quantified using a NanoDrop
2000 microvolume spectrophotometer (Thermo Fisher Scientific).
The plastid trnL-F spacer region was amplified using the Taberlet
et al. [19] primers c and f and an annealing temperature of 52°C.
For samples that did not amplify with this primer combination,
we additionally used the internal primers d and e. Our second
plastid marker was the ndhF gene amplified with primers 5.5F
and 10.2R of Davis ef al. [20] with the same annealing tempera-
ture. As nuclear markers, we used the internal transcribed
spacer (ITS) region amplified with the primer pair 5 and 4 of
White ef al. [21], and the low-copy glutamine synthetase gene
(ncpGS) with the primer pair 687 and 994 of Emshwiller &
Doyle [22]. PCR products were cleaned and purified, and then
sequenced on an ABI Prism 3130 Genetic Analyzer (Applied
Biosystems) using the BigDye Terminator Cycle Sequencing Kit
(Applied Biosystems, Inc.,, Warrington, UK). Chromatogram
inspection and sequence assembly was done with CodonCode
aligner (CodonCode Corporation), alignment with MAFFT v. 7
(http://mafft.cbrc.jp/alignment/server/), followed by visual
inspection in MesQuite v. 2.75 [23]. All sequences were BLAST-
searched in GenBank. Any ITS sequences with ambiguous base
calls were removed from the final alignments to avoid using
paralogous copies. For the ncpGS gene, which amplified in two
distinct copies, one of a length of 545 and one of 657 aligned
nucleotides, we only used the longer sequences.

(b) Phylogenetic analyses and molecular clock dating

Phylogenetic analyses used maximum likelihood (ML) as
implemented in RAXML v. 7.6.3 [24] and Bayesian inference as
implemented in BEAST v. 1.8.0 [25]. For the ML analysis, we
used all four markers (trnL-F, ndhF, ITS and ncpGS), whereas
for the Bayesian analysis, we excluded ncpGS because the long
copy of this nuclear region amplified in only 17 species. Tree
searches were carried out on the CIPRES science gateway
portal [26]. In the absence of topological conflict (defined as
greater than 75% ML bootstrap support) between the plastid
and nuclear trees, data partitions were concatenated. To increase
bootstrap support, we repeated the ML analyses with the full
dataset of 44 species of Tacsonia, 10 outgroups, and 3581 aligned
nucleotides and a reduced set of 37 species of Tacsonia, three
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Figure 1. Representative species of Passiflora supersection Tacsonia. (a) Passiflora tarminiana, Peru, dependent on E. ensifera for pollination; (b) Passiflora ampul-
lacea, Ecuador, dependent on £. ensifera for pollination. (c) Passiflora peduncularis, Peru, pollinated by bats. (d) Passiflora unipetala, Bellavista Cloud Forest Reserve,
Pichincha, Ecuador, being visited by Anoura fistulata. Photo credits: figure (a) by P. M. Joergensen, (b) by G. Onore, (c) by T. Boza and (d) by N. Muchhala.

outgroups and 2867 aligned nucleotides. For the ML analyses, we
used the GTR + G nucleotide substitution model (with four rate
categories), but for the Bayesian runs, the slightly less parameter-
rich HKY + G model (with four rate categories). To calibrate the
genetic distances, we applied an ITS rate of 5.5 x 10~ [27] to the
ITS data matrix, without specifying a rate for the plastid data par-
tition. We ran relaxed clock models using the uncorrelated
lognormal model because the ucld.stdev value was more than
0.5, both with a Yule tree prior with gamma height distribution.
MCMC chains were run for 40 million generations, sampling
every 10000th generation. Stationarity was checked in TRACER
v. 1.5 [28], and output files were inspected in TREEANNOTATOR
v. 1.8.0 (part of the BEAST package). The first 20% of trees were
discarded as bum-in, and a posterior probability limit of 0.98
was set to retrieve a maximum clade credibility tree. All trees
were viewed and annotated in FIGTREE v. 1.4.0 [29].

(c) Scoring of morphological flower traits and
pollination syndromes

Morphological information for each species was taken from floras
(cited in the electronic supplementary material, table S2), focusing
on hypanthium length and flower colour. A character matrix was
created in MEsQUITE, with hypanthium length divided into five cat-
egories (less than 1 cm, 1-2.9 cm, 3-5.9 cm, 6-9.99 cm and more
than 10 cm). For each species, we searched for field observations
on its pollinators, and species lacking direct pollinator obser-
vations were categorized based on flower colour and tube
length, using the following criteria: (i) E. ensifera-dependent if flow-
ers were pink, red or purple and hypanthium tubes more than
6 cm long; (ii) pollinated by other hummingbirds if flowers were
pink, red or purple and tubes 1-5.9 cm long; (iii) pollinated by
bats if flowers were greenish or white and/or there were actual
observations of bat pollination; (iv) bee pollination, based on
actual observations for some of the outgroup species (electronic
supplementary material, table S2). Ancestral state reconstruction
relied on maximum parsimony and likelihood optimization in
Mesqurte v. 2.75 [30], with the BEAST chronogram as the input
tree and using the Mk-1 model of state transitions. As before, the
tree was rooted on representatives of supersections Coccinea and
Passiflora, based on Krosnick et al. [7].

3. Results

(a) Phylogeny and chronogram of Passiflora
supersection Tacsonia

Because of variable success in PCR amplification for the
nuclear and plastid regions, the individual alignments vary
in the number of plant accessions (electronic supplementary
material, table S1, shows all used sequences); especially the
ncpGS alignments were highly incomplete, including only 17
sequences. The concatenated alignment comprised 44 Tacsonia
species, 10 outgroups and 3581 nucleotides (electronic sup-
plementary material, figure S1), but included many almost
identical sequences. We therefore reduced the dataset to 37 Tac-
sonia, and just three outgrups (figure 2). The monophyly of
Tacsonia is maximally supported (node 2 in figure 2), and
there is statistical support for several nodes relevant to our
study question, namely switches between Ensifera and short-
billed hummingbirds. Switches between Ensifera and bats as
pollinators occurred in the cloud forests of Bolivia, Peru and
Ecuador, and one switch from short-billed hummingbirds to
bats occurred in the group including Passiflora trisecta.

The molecular-clock chronogram is shown in figure 3,
and a chronogram with 95% confidence intervals around
the time estimates is shown as the electronic supplementary
material, figure S2. The time tree contains slightly more out-
group species than figure 2 for the purpose of cross validation
with results from a fossil-calibrated angiosperm-wide study
[18]. In that study, the divergence between P. madagascariensis
and Passiflora was dated to 28 (18—-38) Ma, which is close to
the 30.6 (20.2-40.4) Ma obtained in our study (electronic sup-
plementary material, figure S2). The divergence of the
Tacsonia clade from the most closely related Passiflora group
occurred 10.7 (7.6-14.5)Ma, while the Tacsonia crown
group dates to 8.4 (6.2—-11.2) Ma.

In figure 3, 37 species of Passiflora supersection Tacsonia are
coded as to their pollinators, with the basis for each coding
shown in the electronic supplementary material, table S2
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(Material and methods). Ancestral state reconstruction under par-
simony (electronic supplementary material, figure S3) or ML
(electronic supplementary material, figure S4) suggests that the
ancestral state in Tacsonia may have been pollination by short-
billed hummingbirds (node 2 in figure 3), followed by pollina-
tion by Ensifera at the next node; that node, however, lacks
statistical support (see figure 2). A problem is that our species
sampling in supersections Coccinea and Passiflora, the outgroups,
is too poor to reliably infer their ancestral pollination by either
bees or short-billed hummingbirds, which in turn prevents
reliably inference at the root of section Tacsonia. It is nevertheless
clear from our data that the adaptation to Ensifera evolved during
the early radiation of the Tacsonia clade. Moves away from Ensi-
fera to pollination by short-billed hummingbirds and bats
occurred several times (figure 3), even when considering only
statistically supported nodes (figure 2).

4. Discussion

Our data show that Passiflora supersection Tacsonia is
monophyletic, diverged from the remaining Passiflora approxi-
mately 10.7 Ma, and underwent radiation at 9-8 Ma, matching
a major uplift phase of the Northern Andes [31]. Our species
sampling in the most closely related groups, supersections
Coccinea and Passiflora, is too poor to reliably infer whether
the ancestral pollination mode in Tacsonia was bee pollination
or pollination by short-billed hummingbirds, but there is
unambiguous support for an early coevolution between
species of Tacsonia and E. ensifera, today the exclusive pollinator
of over half the species (37 of 62—-64). The interaction could
have begun approximately 11 Ma, when Ensifera diverged
from its relatively short-billed sister species, P. cyanopterus
(bill length: 2.9 cm; [32]), an event dated to 11.6 Ma [6].

All species of Tacsonia are restricted to cloud forests between
1700 and approximately 4000 m altitude, the habitat of the
sword-billed hummingbird, and the geographical distributions
of the plant and animal partners in this mutualism overlap
completely. The radiation of crown group Tacsonia, however,
was mainly linked to the colonization of the newly arising
Andean cloud forest habitat, not pollinator shifts because
there are large clades that are entirely Emnsifera-pollinated
(figure 3; electronic supplementary material, figures S3 and
S4). The Tacsonia mutualism with Ensifera, a reliable pollinator
because of its trap-lining behaviour and strong flight ability,
probably enabled populations to persist, that is, be pollinated
and set seed, even in isolated patches, but was not per se the
driving selective factor in species divergence (because there
are too few switches to/from Ensifera-pollination).

Studying the effects of deforestation on the P. mixta/
E. ensifera system at two sites in the Ecuadorean Andes,
Lindberg & Olesen [16] found that few plants in the defor-
ested, open land were visited by E. ensifera resulting in a low
fruit set. This indicates the dependence of long-tubed passion-
flowers on their sole effective pollinator [16] and demonstrates
the risks that dependence on a single pollinator species must
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