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e-mail: geoltoma@savba.sk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2014.1533 or

via http://rspb.royalsocietypublishing.org.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Onshore – offshore gradient in
metacommunity turnover emerges only
over macroevolutionary time-scales
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Invertebrate lineages tend to originate and become extinct at a higher rate in

onshore than in offshore habitats over long temporal durations (more than

10 Myr), but it remains unclear whether this pattern scales down to durations

of stages (less than 5 Myr) or even sequences (less than 0.5 Myr). We assess

whether onshore–offshore gradients in long-term turnover between the tropi-

cal Eocene and the warm-temperate Plio-Pleistocene can be extrapolated from

gradients in short-term turnover, using abundances of molluscan species from

bulk samples in the northeast Atlantic Province. We find that temporal turn-

over of metacommunities does not significantly decline with depth over short

durations (less than 5 Myr), but significantly declines with depth between the

Eocene and Plio-Pleistocene (approx. 50 Myr). This decline is determined by a

higher onshore extinction of Eocene genera and families, by a higher onshore

variability in abundances of genera and families, and by an onshore expan-

sion of genera and families that were frequent offshore in the Eocene.

Onshore–offshore decline in turnover thus emerges only over long temporal

durations. We suggest that this emergence is triggered by abrupt and spatially

extensive climatic or oceanographic perturbations that occurred between the

Eocene and Plio-Pleistocene. Plio-Pleistocene metacommunities show a high

proportion of bathymetric generalists, in contrast to Eocene metacommunities.

Accordingly, the net cooling and weaker thermal gradients may have allowed

offshore specialists to expand into onshore habitats and maintain their

presence in offshore habitats.
1. Introduction
The ecological and evolutionary dynamics of marine metacommunities gener-

ate a variety of outcomes at 10 kyr to 10 Myr scales, ranging from temporally

stable metacommunities that exhibit stasis [1–5], up to temporally variable

species combinations that do not have analogues in present-day ecosystems,

especially in the Pleistocene [6–8]. Although differences in temporal scale can

contribute to different degrees of stasis [9], some variation observed in

marine environments can be also caused by onshore–offshore gradients in

demographic and evolutionary rates (or by other types of environmental gradi-

ents, [10–13]). Extinction rates of Palaeozoic genera [14,15] and origination rates

of Triassic–Jurassic genera [16] tend to be higher onshore (i.e. above storm-

wave base), and superfamilies and orders exhibit a higher number of orig-

inations onshore than offshore at temporal scales that exceed the duration of

geological stages [17,18]. These observations imply that temporal metacommu-

nity turnover declines from onshore to offshore. The turnover along onshore–

offshore gradients can be further modulated by latitude, which represents a

major correlate of evolutionary rates [19,20], because thermal gradients are stee-

per and bathymetric ranges smaller in the tropics [21]. Some studies imply that

the onshore–offshore decline in turnover reflects a decline in the frequency of

major evolutionary innovations but does not necessarily scale down to
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species-level gradients (frequency of species originations

does not peak onshore [22]). Therefore, estimates of temporal

turnover measured over intervals varying in the duration at

multiple taxonomic levels and partitioned according to

depth and latitude are needed to understand temporal

dynamics of metacommunities. It is also necessary to identify

the components of turnover that generate such onshore–

offshore gradients (e.g. variability in population sizes, extinction

rates and origination rates [23]).

It can be expected that onshore metacommunities should be

more volatile than their offshore counterparts because onshore

habitats (i) are environmentally steeper along a latitudinal

gradient [24] and (ii) exhibit higher temporal environmental

variability (e.g. greater annual temperature range at each

latitude [25]). Nonetheless, these two factors can select for

larger niche breadth [26–29] and thus seem to generate an

increase in the proportion of eurytopic species in onshore, envir-

onmentally steeper habitats with higher seasonality and higher

frequency of storm disturbances [30,31]. The simple expectation

about the higher volatility of onshore metacommunities thus

can be reversed by selection for eurytopic strategies that can

increase resistance or resilience to temporal environmental fluc-

tuations in variable (onshore) habitats [32–35] or by fluctuating

selection that protects genetic variance [36].

Here we assess for the first time to our knowledge,

whether the onshore–offshore gradients in temporal turnover

can be observed at short time-scales and how they scale up to

long time-scales. A key issue is whether an onshore–offshore

gradient in long-term turnover simply follows from incremen-

tal additions of short-term turnovers of small magnitude or

whether it is driven by more abrupt turnovers of higher mag-

nitude. We focus on a time interval that: (i) encompasses

climatic and palaeogeographical changes that may be needed

to cause significant macroevolutionary changes, and (ii) is

sufficiently long so that it naturally separates time-scales of

recurrent, orbitally forced oscillations (10–100 thousand

years, [26]) from environmental perturbations occurring over

million-year time-scales. Environmental conditions generated

by such perturbations are effectively outside of evolutionary

history of individual species (lifetimes of bivalve species typi-

cally exceed 5 Myr [37]) and can have disproportionate

consequences for evolutionary trajectories of onshore and

offshore lineages. We therefore focus on turnover along

onshore–offshore gradients between the tropical Eocene and

warm-temperate Plio-Pleistocene in the northeast Atlantic

and Mediterranean, using a unique field-based dataset with

molluscs, representing a highly diverse clade and a proxy of

the evolution of marine ectotherms [20]. This region under-

went significant climatic and palaeogeographical changes

during the Oligocene, Miocene and Pliocene, resulting in the

loss of coral reefs and mangroves [38]. Although we expect

that such intervening changes must accentuate long-term turn-

over relative to within-stage turnover at any depth along an

onshore–offshore gradient, it remains unclear whether meta-

communities along onshore–offshore gradients respond

differently to such changes.

First, we measure temporal turnover in molluscan marine

metacommunities along onshore–offshore transects: (i) at

short (within-stage) time-scales within the Ypresian (Lower

Eocene), within the Lutetian (Middle Eocene), and within

the Piacenzian–Gelasian (Plio-Pleistocene) (less than 5 Myr),

and (ii) at long (between-epoch) time-scales between the

Lower-Middle Eocene and the Plio-Pleistocene (more than
5 Myr), and assess whether a gradient in turnover is related

to gradients in variability in abundance, extinction and orig-

ination. Second, we evaluate onshore–offshore shifts in the

abundance of genera and families that persisted from the

Eocene to the Plio-Pleistocene and onshore–offshore

gradients in bathymetric breadth.
2. Material and methods
We evaluate onshore–offshore gradients in temporal turnover of

molluscan species, genera and families (bivalves, gastropods,

scaphopods) within the Eocene tropical successions (30–358 N)

and within the Plio-Pleistocene warm-temperate successions

(40–438 N) in the northeast Atlantic Province. We measure the

turnover between these epochs at the genus level because they

do not share any species in common. We also evaluate turnover

in families to ensure that the findings do not depend on genus-

level classification, which remains in flux. The fossil assemblages

are represented by bulk samples collected at bed resolution and

sieved with 1 mm mesh size. We assign the assemblages to four

depths using sedimentological criteria, including two onshore

habitats (peritidal and nearshore) and two offshore habitats

close to and below storm-wave base (inner shelf and outer

shelf, see the electronic supplementary material). The Eocene is

represented by the Ypresian deposits of the Pyrenean Foreland

(93 assemblages, [39]) and the Aquitaine Basin (four assem-

blages), and by new bulk samples collected in the Lutetian

deposits of the Paris Basin (nine assemblages). Ypresian assem-

blages correspond to fully tropical conditions with corals, large

foraminifers and mangrove habitats [39]. Lutetian assemblages

capture slightly lower temperatures [40] but still reflect tropical

conditions with corals and large foraminifers (with mean temp-

eratures not falling below 17–188C). The Plio-Pleistocene is

represented by 35 bulk samples collected in the Piacenzian

siliciclastic deposits of Lower Arno basins and 13 bulk samples

from the Piacenzian–Gelasian of Piedmont-Padan basins, on

two opposite sides of the Northern Apennines. These deposits

bracket the mid Pliocene warm interval and cooling after the

Piacenzian/Gelasian boundary [41]. The Eocene is represented

by the total of 47 410 individuals, 625 species and 149 families.

The Plio-Pleistocene is represented by the total of 109 771

individuals, 445 species and 108 families.

We use Bray–Curtis dissimilarity to quantify temporal turn-

over in species, genus and family abundance [42], using square-

root transformed proportional abundance data, and plot dissim-

ilarities on a logit scale because they effectively represent

proportions [43]. We measure dissimilarity at each of the four

depths: (i) at local scale of individual assemblages, and (ii) at

regional scale by pooling a constant number of assemblages

per sequence, per stage and per epoch at each depth.

Short-term turnover at each depth is measured as: (i) turnover

between composite depositional sequences (approx. 0.15–0.5 Myr

sequences in the Eocene and approx. 0.25 Myr sequences in the

Plio-Pleistocene, table 1), and (ii) within-stage turnover within

the Ypresian, Lutetian and Piacenzian–Gelasian (less than

5 Myr). Long-term turnover is measured as turnover between

the two epochs (between Lower-Middle Eocene and Plio-Pleisto-

cene). The first measure of short-term turnover allows testing of

whether turnover increases with temporal separation between

sequences. The second measure of short-term turnover allows

comparison with onshore–offshore gradients in long-term turn-

over, and this comparison is visualized by non-metric multi-

dimensional scaling (NMDS) of assemblages coded by habitat,

stage and epoch.

Local-scale short-term turnover within each depth is based on

an average of all pairwise dissimilarities between assemblages:

(i) from two sequences (each with four assemblages standardized



Table 1. Time-environment table showing the number of assemblage samples at each depth for each depositional sequence, stage and epoch. (The numbers in
parentheses show the number of samples with more than 50 specimens (sequences) and with more than 100 specimens (stages) that were used in size-
standardized analyses. Four outer shelf samples in the Eocene did not allow the analysis of short-term turnover between sequences. Two samples from Eocene
were not assigned to sequences and were thus used in analyses of stages only.)

epoch (stage) sequences
age midpoint
(Myr) duration (yr) peritidal nearshore

inner
shelf

outer
shelf

Pleistocene (Gelasian) San Miniato S6 2.55 �220 000 3 (3) 2 (0) 5 (5) 0

Pliocene (Piacenzian) Ponte e Elsae S5 2.8 �220 000 0 3 (3) 6 (6) 0

Pliocene (Piacenzian) Pietrafita S4 3.25 �150 000 4 (4) 5 (5) 3 (3) 4 (4)

Pliocene (Piacenzian) Certaldo S3 3.45 �200 000 0 0 1 (0) 12 (4)

epoch (stage) sequences
age midpoint
(Myr) duration (yr) peritidal nearshore

inner
shelf

outer
shelf

Eocene (Lutetian) Paris Basin A8 – A10 �45 �100 000 0 0 4 (4) 0

Eocene (Lutetian) Paris Basin A6 – A7 �45 �100 000 0 0 4 (4) 0

Eocene (Ypresian) Castigaleu H – I 49.45 �280 000 4 (4) 1 (1) 1 (0) 0

Eocene (Ypresian) Castigaleu F – G 49.75 �280 000 4 (4) 5 (5) 1 (1) 0

Eocene (Ypresian) Castigaleu C – D 50.15 �280 000 0 17 (11) 2 (0) 0

Eocene (Ypresian) Castigaleu A – B 50.45 �280 000 0 15 (10) 1 (1) 0

Eocene (Ypresian) Figols—C 50.9 �500 000 17 (16) 2 (2) 0 0

Eocene (Ypresian) Figols—B 51.5 �500 000 9 (9) 3 (3) 0 0

Eocene (Ypresian) Figols—A 52.1 �500 000 9 (8) 1 (0) 0 0

epoch stage
age midpoint
(Myr) duration (yr) peritidal nearshore

inner
shelf

outer
shelf

Plio-Pleistocene Piacenzian – Gelasian 3.05 �1 100 000 7 (7) 10 (10) 15 (14) 16 (11)

Eocene Lutetian (Middle) 43.51 �3 680 000 0 0 14 (9) 0

Eocene Ypresian (Late) 50.8 �3 400 000 43 (24) 45 (21) 0 4 (4)
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to n ¼ 50 individuals), and (ii) from one stage (with four

assemblages standardized to n ¼ 100). Local-scale short-term

turnover within each depth is based on an average of all pairwise

dissimilarities between assemblages from two epochs (Lower-

Middle Eocene and Plio-Pleistocene) (each with four assemblages

standardized to n ¼ 100). Regional-scale short-term and long-term

turnover within each depth is based on a single dissimilarity: four

local assemblages are randomly drawn from each sequence, stage

and epoch, resampled (without replacement) to the same sample

size (n) per assemblage and pooled into one regional-scale assem-

blage per sequence (n ¼ 200), per stage (n ¼ 400) and per epoch

(n ¼ 400). We test the significance of onshore–offshore difference

in turnover with pairwise between-habitat tests of homogeneity

in multivariate dispersions (HMD, [44]). Multivariate dispersion

corresponds to mean Bray–Curtis dissimilarity between assem-

blages (from one stage in within-stage turnover and from two

epochs in between-epoch turnover) and their centroid. HMD

tests whether multivariate dispersions are larger onshore than

offshore within stages and between epochs. To assess the contri-

bution of species-level processes to temporal turnover in genus

and family abundance, we further compute turnover where

Bray–Curtis dissimilarity is based: (i) on per-genus and per-

family median species (proportional) abundance, and (ii) on

per-genus and per-family species richness. At regional scales, we

also use Spearman’s rank correlation to test the relation in species,

genus and family rank abundances between sequences and

between epochs, and the Mantel test to test whether Bray–

Curtis dissimilarity increases and Spearman’s rank correlation

decreases with increasing temporal separation between sequences

at regional scales, separately within onshore and offshore habitats.
In analyses of dissimilarities, rank correlations and the

Mantel test, we double-standardize abundance data by random

sampling of the same number of individuals per assemblage

and by random sampling of the same number of assemblages

per depth and per time interval. Standardizations are repeated

1000 times, generating means and 2.5th and 97.5th percentiles

on summary statistics. The subsets of assemblages and individ-

uals drawn in consecutive standardizations are not mutually

exclusive. To assess significance of tests that are computed

with standardized data, we thus compute a combined p-value

with averaging approach rather than using the product of

p-values as in Fisher’s approach [45].

We quantify relative utilization of onshore habitats by genera

and families as the proportion of a taxon’s individuals found

onshore (relative to the taxon’s total abundance) to assess tem-

poral changes in utilization of onshore–offshore gradients by

genera and families that persist from the Eocene to Plio-Pleisto-

cene. We measure a bathymetric breadth of individual species

with Hurlbert’s measure [46], which weights bathymetric range

by abundance and by frequency of samples at each depth.
3. Results
(a) Onshore – offshore gradients in temporal turnover

within stages
Spearman’s rank correlations in proportional abundances

between sequences are moderately high in the Eocene

(�r [species] ¼ 0.36, �r [genera] ¼ 0.4, �r [families] ¼ 0.55) and
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Figure 1. Short-term turnover within stages (within Ypresian, Lutetian and Piacenzian – Gelasian) does not consistently vary with depth (a,b). Long-term turnover
(between the Eocene and Plio-Pleistocene) markedly declines between nearshore and inner shelf at both local and regional scales (c,d ), using all genera and families
(small symbols) and persisting genera and families (large symbols). This decline is related to a decrease in turnover in per-lineage median species abundance
(e,f ) and in per-lineage species richness (g,h). Bray – Curtis dissimilarities are based on square-root transformed proportional abundances. Error bars represent
2.5th and 97.5th percentiles derived from 1000 standardizations. Dissimilarities are plotted on a logit scale.
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rather low in the Plio-Pleistocene (�r [species] ¼ 0.17,�r [genera] ¼

0.23, �r [families]¼ 0.34) (electronic supplementary material,

table S1). Significant correlations between sequences occur in

most Eocene comparisons (20–23 out of 29 comparisons at

Bonferroni-corrected a ¼ 0.0017) and are less frequent in the

Plio-Pleistocene (3–5 out of 16 comparisons at Bonferroni-

corrected a ¼ 0.003). Spearman’s rank correlations do not

decline and Bray–Curtis dissimilarities do not increase with

increasing separation between sequences (electronic

supplementary material, figure S1 and table S2). Among-

sequence dissimilarities are reduced at all depths when

local assemblages at each depth are pooled (figure 1a,b).

Multivariate dispersions of individual habitats along onshore–

offshore gradients in a double-standardized NMDS do not

visibly decline within the Eocene or within the Plio-Pleistocene

(figure 2), and pairwise onshore–offshore differences in

within-stage turnover are close to zero and never significantly

positive (table 2 and figure 1a,b). The short-term turnover in
abundance at genus and family level thus does not decline

with depth within the Eocene or Plio-Pleistocene.

(b) Onshore – offshore gradients in temporal turnover
between epochs

The turnover between the Eocene and Plio-Pleistocene in abun-

dance of genera and families is higher onshore than in offshore.

The differences between peritidal and nearshore, and between

inner shelf and outer shelf, are weak, but other comparisons

show significantly higher long-term turnover in onshore habi-

tats. This demonstrates that the major decline in turnover

occurs in inner shelf close to the storm-wave base (table 3

and figure 1c,d; electronic supplementary material, figures

S2–S4). The decline in turnover applies to abundances of

genera and families that persist from the Eocene to Plio-Pleisto-

cene and is thus not driven solely by decline in extinction and

origination but also by higher offshore conservatism in
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abundance. NMDS visualizes this decline in temporal turnover

in genus and family abundance between the Eocene and Plio-

Pleistocene, showing a marked segregation of onshore commu-

nities from Eocene and Plio-Pleistocene, whereas offshore

communities from these two time intervals are close to each

other (figure 2). The onshore–offshore decline in temporal

turnover in abundance scales down to species-level abundance

patterns, with a smaller offshore turnover: (i) in per-genus and

per-family median species abundance, and (ii) in per-genus

and per-family richness (figure 1e–h). Spearman’s rank corre-

lation between Eocene and Plio-Pleistocene genus and family

abundances within a single habitat is significantly positive in

inner shelf (r [genera]¼ 0.31, p , 0.011, r [families]¼ 0.46,

p , 0.001), and becomes insignificant in peritidal (r [genera]¼

0.18, p¼ 0.4, r [families]¼ 0.14, p¼ 0.38) and nearshore

(r [genera]¼ 0.03, p¼ 0.82, r [families]¼ 0.16, p¼ 0.22), but

also in outer shelf habitats (r [genera]¼ 20.16, p¼ 0.27,

r [families]¼ 20.14, p¼ 0.28).

A total of 82–88% of genera (42–52% of families) inhab-

iting peritidal and nearshore habitats in the Eocene

disappear in the Plio-Pleistocene of the northeast Atlantic Pro-

vince. In comparison, 72–80% of genera (33–36% of families)

disappear from inner shelf and outer shelf. Although the pro-

portions of persisting genera and families are not very high,
these taxa contribute 49% and 90% of individuals, respect-

ively, to the total abundance when both epochs are pooled.

The percentages appearing in the Plio-Pleistocene are similar

between onshore (67–68% of genera and 16–25% of families)

and offshore (64–70% and 19–26%, respectively).

Ampullinidae and Batillariidae primarily contribute to

high onshore turnover. They are dominant in onshore habitats

during the Eocene but are absent in the Plio-Pleistocene of the

northeast Atlantic and Mediterranean. Ampullinidae are pre-

sently represented by a single species occurring in the

Philippines [47], and Batillariidae disappeared from the north-

east Atlantic Province at the end of the Miocene [48]. In

onshore habitats, Potamididae are strongly reduced, whereas

Rissoidae, Pyramidellidae, Arcidae, Semelidae, Tellinidae, Car-

diidae and Veneridae increase in abundance. Rissoidae radiate

during the Miocene and are presently the most species-rich in

the warm-temperate Mediterranean and eastern Atlantic [49].

Although some Eocene families with tropical affinities

declined in abundance (Turridae, Conidae, Costellariidae,

Cylichnidae) or went regionally extinct in offshore habitats

(e.g. Marginellidae, which presently extend to the southern-

most parts of the Mediterranean and to the Ibero-Moroccan

Gulf, [50]), most families achieved similar abundance in the

Eocene and Plio-Pleistocene in offshore habitats.
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(c) Onshore – offshore shifts in abundance and
bathymetric breadth between epochs

Although species richness increases towards inner shelf at

both time intervals, the onshore–offshore gradient in

bathymetric breadth changes markedly between the Eocene

and Plio-Pleistocene (figure 3). The Eocene species show

a significantly smaller Hurlbert’s index (mean ¼ 0.12, 95%

CI ¼ 0.11–0.13) than Plio-Pleistocene species (mean ¼ 0.23,

95% CI ¼ 0.21–0.24). This change is associated with a

higher proportion of species occurring onshore and offshore

(generalists) in the Plio-Pleistocene: 27 species (4%) belong

to generalists in the Eocene, whereas 163 species (37%)

belong to generalists in the Plio-Pleistocene. In contrast to

the Eocene, Hurlbert’s index does not decline with depth in

the Plio-Pleistocene because Plio-Pleistocene offshore species

show a significantly higher index than Eocene offshore

species (figure 3). The differences in onshore utilization by

genera and families between Plio-Pleistocene and Eocene

are significantly positive: persisting genera and families are

more frequent onshore in the Plio-Pleistocene than onshore

in the Eocene (figure 4). These relative onshore expansions

of genera and families are caused by an increase in abun-

dance of their constituent species as well as by an increase

in their species richness (figure 4).
4. Discussion
(a) Onshore – offshore gradients at short time-scales
The moderately high between-sequence rank correlations in the

Eocene and the lack of relation with time imply that the

short-term turnover is coupled with some degree of recurrence

in abundance patterns at individual depths, as observed in

many other time series with benthic assemblages in the fossil

record [51,52]. The smaller dissimilarity at regional scales at

each depth implies that this recurrence is related to processes

operating at larger spatial scales that can reduce extinction

risk and slow down temporal change in metacommunity com-

position. Such processes include those that allow broad

geographical range size via high dispersal or high effective habi-

tat area [53–56]. Geographical range size is a key predictor of
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extinction [57], and its role in reducing extinction risk is gener-

ally much stronger than the role of eurytopy [58]. The onshore–

offshore decline in the steepness of latitudinal temperature

gradients may contribute to the lack of onshore–offshore gradi-

ents in geographical range size (and thus in extinction rate at

short time-scales) because the latitudinal range of shallow habi-

tats (0–50 m) along the eastern ocean margins [59] remains on

average within a 58C range for approximately 1500 km, whereas

the latitudinal range of deeper habitats (100–200 m) remains on

average within a 58C range for approximately 2500–3000 km

(electronic supplementary material, figure S7), and spatial

variation in seawater temperature drives the large-scale distri-

bution of ectotherms [60,61]. Therefore, marine ectotherms

inhabiting onshore, temporally variable habitats can achieve

broad geographical ranges because they are eurytopic [30],

whereas offshore, temperature-specialized species can attain

broad geographical ranges because they face milder latitudinal

climatic gradients [62].
(b) Onshore extinction at long time-scales
The emergence of an onshore–offshore decline in temporal

turnover over longer time-scales, together with the lack of

relationship between the short-term turnover and temporal

separation between sequences over Myr scales, implies that

the onshore increase in turnover between the Eocene and

the Plio-Pleistocene is not a simple extrapolation of small,

incremental changes that can be observed from sequence to

sequence. Rather, the decline in turnover depends on climatic

or oceanographic perturbations that occurred between the

Eocene and Plio-Pleistocene and affected onshore lineages

more strongly than offshore lineages, as revealed: (i) by a

smaller offshore proportion of extinct genera and families,

(ii) by a smaller variability in offshore abundance of persist-

ing genera and families, and (iii) by a smaller variability in

offshore abundance of their constituent species. Therefore,

this decline is not merely a function of declining extinction

rates but also a function of declining variability in population
abundances, leading to a higher ecological conservatism

of offshore lineages. Climatic changes may contribute to

higher long-term onshore volatility because: (i) Cenozoic

environments show larger temperature fluctuations in the

superficial waters than in the deep-shelf not only at short

but also at long time-scales [24], and (ii) the Cenozoic

record shows a higher long-term persistence of milder latitu-

dinal gradients in mean temperature at 200 m than at the

surface during the Cenozoic [63]. Multiple climatic reversals

between Ypresian–Lutetian and Plio-Pleistocene, including

Lutetian cooling, Mid-Eocene climatic optimum, glaciation

at the Eocene/Oligocene boundary and mid-Miocene cli-

matic optimum [64], could thus contribute to the higher

extinction and population variability in the onshore habitats.

Temporal fluctuations in the location and extent of oxygen

minimum zones can generate instability that is larger offshore

than onshore [65], but the Eocene and Plio-Pleistocene assem-

blages of the northeast Atlantic and Mediterranean do not

occur in dysoxic habitats. The Pliocene molluscan commu-

nities in the Mediterranean were assembled primarily from

the tropical eastern Atlantic province along western Africa

(that was formed after the closure of the Indo-Pacific

seaway during the Early-Middle Miocene), but offshore and

onshore lineages should be not affected differently by such

oceanographic changes. Regardless of the actual climatic or

oceanographic causes, we suggest that onshore lineages face

abrupt and high-amplitude regional-scale perturbations

over longer durations that are not experienced over shorter

durations [66]. Present-day offshore and bathyal habitats

apparently support deep-water lineages since the Mesozoic,

also suggesting that offshore lineages can be less affected

by such perturbations and thus can conserve their niches

more strongly than onshore lineages [67,68].
(c) Onshore expansion at long time-scales
Plio-Pleistocene genera and families that were frequent off-

shore during the Eocene expanded onshore during the Plio-
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Pleistocene and also maintained their presence offshore. An

increase in the proportion of bathymetric generalists and the

flattening of the onshore–offshore gradient in bathymetric

breadth imply that this long-term onshore expansion observed

in our study can be modulated by climatic changes that led to

the net shift from tropical Eocene to warm-temperate Plio-

Pleistocene conditions. Poleward latitudinal shifts are typically

associated with the emergence of colder deep-shelf waters and

with declining steepness of thermal bathymetric gradients at

higher latitudes. Such changes in temperature and in the struc-

ture of the thermal bathymetric gradient produce a latitudinal
increase in the bathymetric range size of marine ectotherms

and their shallow-water emergence at higher latitudes [69,70].

Data accessibility. Source data are available at dx.doi.org/10.5061/dryad.
943j7.
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