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Abstract

Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. 

It can be used to build a reference anatomy for investigating structural variation or tracking 

changes in white matter. Unlike traditional scalar image registration where spatial alignment is the 

only focus, registration of DWI data requires both spatial alignment of structures and reorientation 

of local signal profiles. As such, DWI registration is much more complex and challenging than 

scalar image registration. Although a variety of algorithms has been proposed to tackle the 

problem, most of them are restricted by the zdiffusion model used for registration, making it 

difficult to fit to the registered data a different model. In this paper we describe a method that 

allows any diffusion model to be fitted after registration for subsequent multifaceted analysis. This 

is achieved by directly aligning DWI data using a large deformation diffeomorphic registration 

framework. Our algorithm seeks the optimal coordinate mapping by simultaneously considering 

structural alignment, local signal profile reorientation, and deformation regularization. Our 

algorithm also incorporates a multi-kernel strategy to concurrently register anatomical structures at 

different scales. We demonstrate the efficacy of our approach using in vivo data and report 

detailed qualitative and quantitative results in comparison with several different registration 

strategies.

Keywords

Diffeomorphism; Diffusion-weighted imaging; Image registration; Signal profile reorientation; 
Explicit orientation optimization

© 2014 Elsevier B.V. All rights reserved.
*Corresponding author. Address: Department of Radiology and Biomedical Research Imaging Center, The University of North 
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ptyap@med.unc.edu (P.-T. Yap). 

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2014 December 01.

Published in final edited form as:
Med Image Anal. 2014 December ; 18(8): 1290–1298. doi:10.1016/j.media.2014.06.012.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

Diffusion-weighted imaging (DWI) is widely used to non-invasively study white matter 

microstructure and fiber tracts in the human brain. The information provided by DWI is 

helpful for identifying pathological damages associated with brain diseases (e.g., stroke 

Schaefer et al., 2000, Alzheimer’s disease Hanyu et al., 1998; Wee et al., 2011, 2012; Zhang 

et al., 2013, and schizophrenia Shi et al., 2012) and brain changes associated with normal 

development (Yap et al., 2011).

To quantify white matter changes, a common space is required where images of patients and 

healthy controls can be spatially normalized and compared. Image registration is used to 

build such space and to spatially normalize the images by warping them to the space.

Traditional scalar image registration techniques are not directly applicable to diffusion-

weighted images. When diffusion-weighted images corresponding to different diffusion 

gradient directions are put together, each voxel location encodes a vector-valued signal 

profile that provides information on the segment of the fiber bundle that traverses the voxel. 

As such, registration of diffusion-weighted images requires not only the spatial alignment of 

anatomical structures, as in scalar image registration, but also the reorientation of signal 

profiles with respect to the surrounding anatomical structures, which is not considered in 

scalar image registration. DWI registration is thus much more complicated and challenging 

than scalar image registration.

A common approach to registering diffusion-weighted images is to fit some diffusion model 

to the images to estimate angular quantities, such as orientation distribution functions 

(ODFs), and then incorporate such information into a registration algorithm for structural 

alignment. There are a number of choices of diffusion models as well as registration 

algorithms, leading to a variety of DWI registration methods.

Early work uses the relatively simple diffusion tensor model (Alexander et al., 2001; Cao et 

al., 2006; Yeo et al., 2009, 2010; Zhang et al., 2006). Alexander et al. (2001) introduced the 

preservation of principal direction (PPD) algorithm for the reorientation of diffusion tensors 

during image alignment. Instead of PPD, Yeo et al. (2009) used a finite strain reorientation 

strategy (Alexander et al., 2001) together with a diffeomorphic demons algorithm 

(Vercauteren et al., 2009) for registration. Zhang et al. (2006) broke down the image into 

uniform regions and estimated an affine transformation for each region by explicitly 

optimizing tensor orientation within that region. Cao et al. (2006) proposed a large 

deformation diffeomorphic metric mapping (LDDMM) algorithm (Beg et al., 2005) to tackle 

large-deformation non-linear registration of directional vector fields.

However, the diffusion tensor model can only characterize one principal fiber direction at 

each voxel and thus is unable to handle complex fiber configurations such as crossings. It 

has been found that at least one third of voxels in white matter have complex fiber 

configurations (Behrens et al., 2007). Obviously, failure to reorient the signal profiles in 

those voxels will lead to misalignments of microstructure.
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To deal with crossing fibers, a number of researchers (Geng et al., 2011; Du et al., 2012; 

Hong et al., 2009; Raffelt et al., 2011; Yap et al., 2011; Dhollander et al., 2011; Zhang et al., 

2012) attempted to use more complicated diffusion models. Geng et al. (2011) aligned ODFs 

represented by spherical harmonics (SHs) using an elastic registration algorithm. Du et al. 

(2012) integrated a similarity metric for the ODFs, which is defined in a Riemannian 

manifold, into a variant of LDDMM algorithm (Glaunès et al., 2008). Yap et al. (2011) 

extracted coarse-to-fine features from the ODFs for hierarchically refined alignment. Instead 

of using ODFs, Hong et al. (2009) performed registration with the help of T2-weighted 

images and subsequently reoriented the fiber orientation distribution (FOD). Raffelt et al. 

(2011) registered DWI data by mapping the FODs through a subject-template-symmetric 

diffeomorphic framework.

However, the aligned data generated by the above approaches are not in the form of 

diffusion-weighted images. The ability to produce diffusion-weighted images as final 

registration outcome is important for common-space analysis using diffusion models 

without well-defined warping and reorientation methods.

To overcome this problem recent studies propose to register DWI data directly in the Q-

space (Dhollander et al., 2011; Zhang et al., 2012). Dhollander et al. (2011) tackled the 

problem by virtue of an SH-based reorientation algorithm together with a diffeomorphic 

demons algorithm (Vercauteren et al., 2009). We (Zhang et al., 2012) achieved a similar 

goal by using a set of diffusion basis functions (DBFs) (Yap and Shen, 2012) and a geodesic 

shooting algorithm simplified proposed by Ashburner and Friston (2011). Both methods 

regard spatial alignment and local signal profile reorientation as two separate components, 

and perform optimization by alternating between (i) computing the spatial mapping without 

considering reorientation, and (ii) reorienting the data using the resulting mapping. Although 

this strategy is simple, it ignores the crucial role reorientation plays in correspondence 

establishment.

As shown by Yeo et al. (2009), a better but more complicated strategy is to integrate the two 

components into a single cost function and explicitly take into account reorientation during 

registration. In this paper we describe a method that is able to register DWI data in the Q-

space in a single framework where image matching, data reorientation, and deformation 

regularization are considered simultaneously. Part of this work has been reported in our 

recently published conference paper (Zhang et al., 2013). Herein, we provide additional 

derivations, implementation details, and experimental results that are not available in the 

conference version. Compared with the conference paper, this paper uses a more general 

symmetric tensor model, instead of Watson distribution, as the DBFs (Yap and Shen, 2012). 

In addition, the cost function is reformulated such that the solution satisfies the Euler–

Lagrange equation.

2. Outline of the approach

Our method consists of two components: (1) DWI data reorientation (Section 3) and (2) an 

LDDMM-based registration algorithm (Section 4). The first component achieves 
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reorientation in the Q-space while the second one provides a registration framework where 

alignment and reorientation are considered simultaneously.

The first component is realized based on the work of Yap and Shen (2012), where 

reorientation is achieved by three steps: (i) decomposing the diffusion signal profile into a 

set of weighted DBFs; (ii) reorienting each DBF independently using a local transformation; 

(iii) recomposing the reoriented DBFs to obtain the desired profile. Compared with the SH-

based reorientation scheme as used by Dhollander et al. (2011), this strategy avoids the 

computational complexity of SHs as well as the loss of sharp directional information when 

the maximum order of the SH basis functions is insufficient (see Yap and Shen (2012) for 

detailed discussion).

The second component involves the LDDMM algorithm (Beg et al., 2005). Based on the 

spatial mapping estimated by the LDDMM algorithm, a Jacobian matrix can be computed at 

each voxel location and used for DBF reorientation. The interaction between the two 

components is mathematically expressed as a single cost function (Section 4) and, during 

optimization, spatial alignment and local reorientation are considered simultaneously.

To simultaneously register anatomical structures at different scales we use a multi-kernel 

strategy (Risser et al., 2011). This is to introduce a natural multi-resolution property to our 

registration algorithm and to provide an intuitive way of parameter tuning based on the 

desired scales that should be captured by the registration. Details are given in Section 5.1.

This work has three major contributions. First, we propose a non-rigid registration algorithm 

for direct registration of DWI data. This allows any diffusion model to be fitted to the 

aligned data for subsequent multifaceted analysis. Second, we incorporated spatial 

alignment and local reorientation into a single cost function. In contrast to the works of 

Dhollander et al. (2011) and Hsu et al. (2012), our method does not rely on multi-shell data, 

which require long acquisition time. Last but not least, we derive the gradient of the cost 

function and describe in detail the numerical implementation.

3. Reorientation of DWI data

We now briefly review the major concepts involved in reorientation using DBFs (Yap and 

Shen, 2012).

3.1. Decomposition of signal profile

Let S(qi) be the diffusion signal measured in direction qi (i = 1, …, M). It can be represented 

by a set of N DBFs:

where f(qi∣λ1, λ2, μj) is the j-th DBF, wj is the associated weight, and f0 is a constant 

component representing isotropic diffusion. Specifically, the j-th DBF is defined by
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(1)

where b is the diffusion weighting and  is a symmetric diffusion 

tensor. λ1 and λ2 control the shape of the tensor, {μj} is a pre-defined set of tensor principal 

directions and I is an identity matrix representing an isotropic tensor. We generated {μj} via 

spherical tessellation by subdividing the faces of an icosahedron.

If λ1 ≫ λ2, Dj can be approximated by . Then, we have

which is essentially the p.d.f. of the Watson distribution (Jupp and Mardia, 1989). This 

simplified model has been used in our previous work (Zhang et al., 2012; Zhang et al., 

2013). In this work we use the more general model (1).

Let S be the signal vector, then we have S = Fw, where S = [S(q1), S(q2), …, S(qM)]T, w = 

[w0, w1, …, wN]T, and

Since typically, M < N + 1, this is a set of under-determined linear equations, which can be 

solved by an L1-regularized least-squares solver with a non-negative constraint (see Yap and 

Shen (2012) for details).

3.2. Reorientation of signal profile

At each voxel, a local affine transformation A is used to reorient the directions of the DBFs, 

i.e. . A is estimated locally from a typically non-linear mapping and hence 

varies spatially. The reoriented DBF matrix, F′, is calculated based on  as follows

The orientation-rectified signal profile is then computed as S′ = F′ w. Note that the isotropic 

component is not reoriented.
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4. LDDMM-based DWI registration

LDDMM techniques (Beg et al., 2005; Miller et al., 2006; Vialard et al., 2012; Ashburner 

and Friston, 2011) are designed for diffeomorphic registration when the object of interest 

undergoes large shape variation. Initially formulated for scalar image registration (Beg et al., 

2005), it was later extended for registering vector fields (Cao et al., 2005). In this work, we 

further extend it for DWI registration.

Let I0 be the source image and I1 be the target image. The goal of the LDDMM algorithm is 

to minimize the following cost function

(2)

where υt is a time-dependent velocity field that needs to be estimated, σ > 0 is a 

regularization constant, and ϕs,t is a mapping induced by υt, transforming a voxel from its 

position at time s to its position at time t (e.g., ϕ1,0(x) transforms a voxel at position x at 

time 1 to its position y = ϕ1,0(x) at time 0). , where V is a Hilbert space 

in which the velocity field resides, i.e. υ ∈ L2([0, 1], V) and L is a proper differential 

operator which, when appropriately chosen, guarantees a diffeomorphic solution (Beg et al., 

2005). Instead of realizing L directly, diffeomorphism can be achieved by defining a 

smoothing kernel K = (L†L)−1. Here we use a multi-Gaussian kernel scheme (Risser et al., 

2011) for simultaneous multi-scale registration.

Since our focus is on DWI registration, we further assume that I is a vector-valued image 

representing diffusion signal vector S at each position x, i.e. I(x) ≡ S(x). We denote the i-th 

element of I(x) as Ii(x). We define the action of a mapping ϕ on I as

(3)

where W is a vector-valued weight image associated with I, containing a sparse weight 

vector w at each x, i.e. W(x) ≡ w(x), and Fϕ(x) is a matrix-valued image containing the 

reoriented DBFs, with the voxel at x given by

where D is the Jacobian operator. From (3), we can see that ϕ spatially transforms the sparse 

weights and reorients the DBFs via Fϕ(x). W is computed by fitting the DBFs to the DWI 

data as described in Section 3.

To reflect reorientation, we rewrite the cost function (2) as
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(4)

where W0 is the weight image associated with I0. By computing the variation of E(υ) w.r.t. 

υ, the gradient of (4) can be obtained as

(5)

where

Ω is a bounded domain in ℝd and x ∈ Ω. The detailed derivation is given in Appendix A.

Apart from υt, there are three other terms in (5). If no reorientation is involved, the first two 

terms will vanish and it is easy to show that (5) is equivalent to the gradient for scalar image 

registration as given in Beg et al. (2005). When reorientation is in effect, the first two terms 

contribute to updating {υt} by using mappings1 estimated in the preceding iterations to 

reorient the directions of the DBFs. This reveals how spatial alignment and reorientation 

interact with each other. In contrast, spatial alignment and reorientation are regarded as two 

separate components by Dhollander et al. (2011) and Zhang et al. (2012).

1The mappings at each iteration are generated by integrating {υt} over time. See Section 5.2 for details.
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5. Numerical implementation details

We now describe the numerical implementation details of our algorithm, including multi-

Gaussian kernel, mapping computation, and gradient descent optimization.

5.1. Multi-kernel scheme

Instead of defining L, we follow the approach proposed by Risser et al. (2011) to define a 

multi-Gaussian kernel K to achieve the desired smoothness. Specifically, K is realized by a 

set of weighted Gaussian kernels

where al is the weight of the l-th Gaussian kernel and Σl is a diagnal covariance matrix 

defined by a scale factor σl, i.e. Σl = σlI, where I is an identity matrix.

To estimate al we need to perform a pre-registration step to estimate the maximum update of 

υ at each position x, i.e. τl = max({∥δυ∥∣ δυ at ∀x ∈ Ω}), where δυ can be computed via (5) 

by setting ϕt,0 = ϕt,1 = id, where id is an identity mapping, υt = 0, and K = N(0,Σ1). Then al 

is calculated as the reciprocal of τl and normalized such that Σal = 1.

5.2. Mapping computation

Suppose the time interval is [0, 1], there are n time points {tp∣p = 1, 2, …, n} evenly 

distributed in this interval, i.e. tp = p/n and the time point 0 is denoted by t0. To update the 

gradient using (5), we have to compute the forward mappings {ϕtp,1} and backward 

mappings {ϕtp,0} at each time point tp. This can be obtained via a backward integration by 

assuming that ϕtn,1 = ϕt0,0 = id. Specifically, the forward mapping ϕt,1 and backward 

mapping ϕt,0 can be computed by concatenating a set of small mappings (Ashburner and 

Friston, 2011), i.e.

where {υtp} is a series of velocity fields.

5.3. Gradient descent

Once we have computed the gradient using (5), we can use any gradient descent algorithm 

to solve (4). In this work we use line search for gradient descent. A summary of the 

algorithm is given in Algorithm 1.

6. Experiments

DWI data were acquired from 11 adults using a Siemens 3T TIM Trio MR Scanner with an 

EPI sequence. Diffusion gradients were applied in 120 non-collinear directions with 

diffusion weighting b = 2000s/mm2. The imaging matrix was 128 × 128 with a field of view 

of 256 × 256mm2. 80 contiguous slices with thickness of 2mm covered the whole brain. A 
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diffusion tensor model was fitted to the signal vector at each voxel, leading to a field of 

diffusion tensors. The eigenvalues corresponding to the principal eigenvectors were then 

computed for each tensor. By using a region of interest (ROI) defined at the corpus 

callosum, which is known to contain coherent single-orientation fiber bundles, we computed 

λ1 by averaging the eigenvalues corresponding to the first principal directions. We then 

computed λ2 as the mean of the eigenvalues corresponding to the second and third principal 

eigenvectors.

We randomly chose an image as the target image and used the rest as source images. For 

each image, we fit the DBFs, with 321 directions uniformly distributed on a unit sphere, to 

estimate the associated weight image, which was then used to obtain a reconstructed version 

of the image. A set of affine transformations was estimated between the target image and 

each source image using their anisotropy images computed from the reconstructed data. We 

then reconstructed each source image again using the associated weight image by taking into 

account the affine transformation (see (3)). The resulting reconstructed source images were 

used for both DWI and diffusion tensor imaging (DTI) registration. We compared our 

method (Section 4), which we will refer to as LDDMM-DWI, with the following registration 

strategies:

1. Naïve LDDMM-DWI (Zhang et al., 2012): This is a registration scheme that 

iteratively (1) warps and reorients the source and target images based on an 

estimated mapping, (2) estimates a new mapping that further aligns the two 

resulting images via a geodesic shooting algorithm, (3) concatenates the estimated 

mapping with the one estimated in the previous iteration. The source image is 

reconstructed using the composite mapping together with an affine transformation, 

whereas the target is reconstructed without any transformation. At each stage the 

reconstruction is done by using an increasing number of diffusion directions.

2. DTI registration: For each image we computed a DT image by fitting the diffusion 

tensor model to the reconstructed data. We then registered each source DT image to 

the target DT image using DTI-TK (Zhang et al., 2006).

For LDDMM-DWI, we ran line search for 30 iterations. For naïve LDDMM-DWI (Zhang et 

al., 2012), we performed the registration in 6 stages: 30 iterations in the first two stages, 20 

in the middle stages, and 10 and 5 in the last two stages. In each stage, the number of 

diffusion directions was 1, 6, 21, 81, 120, and 321, respectively. The default parameters 

provided on the DTI-TK website2 were used for DTI registration.

To quantify the comparison, we computed the voxel-wise root mean square (RMS) error 

between the target image and each of source image, warped and reoriented using the 

estimated affine and non-linear mapping. Averaging the resulting RMS error images across 

subjects for each method leads to the mean images shown in Fig. 1. For reference, we also 

show the mean RMS error image of source images warped and reoriented using affine 

transformations alone. For each mean RMS error image we computed its statistics (i.e. 

mean, standard deviation, median, and the 90-th percentile) over all voxels and report the 

2http://dti-tk.sourceforge.net/pmwiki/pmwiki.php.
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results in Table 1. For each method, we also computed the mean intensity value of the RMS 

error image associated with each subject and used these means to perform two-tailed 

student’s t-tests using LDDMM-DWI as the baseline. The results, given in the same table, 

indicate that the performance differences are statistically significant.

From Fig. 1, it is clear that LDDMM-DWI significantly improves the alignment of white 

matter structures, such as the internal capsule. Affine registration and naïve LDDMM-DWI 

do not take into account reorientation in the optimization process and are hence less 

effective in white matter alignment. Although DTI-TK explicitly considers reorientation 

during optimization, it can only handle one principal fiber direction per voxel and thus 

ambiguity will occur where fiber configuration is complex. The quantitative results given in 

Table 1 show that LDDMM-DWI outperforms the other methods and reduces overall 

mismatching error (e.g., smaller median).

To further demonstrate the efficacy of LDDMM-DWI, we compared the similarity of ODFs 

(for high-anisotropy voxels) computed from the target image and each source image using 

the symmetrized Kullback–Leibler (sKL) divergence (Chiang et al., 2008)

where p1 and p2 are the ODFs and s is a vector defined on the unit sphere S2. The mean sKL 

divergence images resulting from each method are given in Fig. 2 and the statistics of the 

mean images are given in Table 2. Similarly, we can see that LDDMM-DWI works much 

better than other registration methods and reduces white matter misalignment.

Figure 3 shows the anisotropy images of the target image and the mean of the aligned source 

images, from which we can see that LDDMM-DWI registers all main structures reasonably 

well. ODFs computed from the target image and the LDDMM-DWI mean image are shown 

in Fig. 4. It can be observed that the results produced by LDDMM-DWI are in close 

agreement at voxel level with the target image. This is important for applications such as 

white matter tractography (Yap et al., 2011; Yap et al., 2011), which is sensitive to errors in 

local fiber orientations.

7. Conclusion and discussions

We have described a method for directly registering the DWI data under large deformation. 

This is achieved by incorporating a DWI data reorientation technique (Yap and Shen, 2012) 

into an LDDMM algorithm (Beg et al., 2005), optimizing spatial alignment and local 

reorientation simultaneously. Unlike most of the existing methods, our approach eventually 

results in a set of diffusion-weighted images, thus allowing the fitting of any diffusion model 

for subsequent analysis. Experimental results indicate that our method significantly 

outperforms several other registration strategies as well as the method proposed in our 

earlier work (Zhang et al., 2012), which does not explicitly consider reorientation during 

optimization. In the future, to overcome the large computation cost of our method, general-
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purpose computing on graphics processing units (GPGPU) can be employed to significantly 

speed up the computation of the parallelizable portion of the algorithm.
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Appendix A. Derivation of the gradient of the cost function

To minimize the cost function (4), we consider a small perturbation of υ ∈ L2 ([0, 1], V) 

along direction h ∈ L2 ([0, 1], V). The variation of energy functional E(υ) w.r.t υ can be 

obtained as

where ∂h E(υ) is the Gâteaux derivative of E and ∇υ E is the Fréchet derivative of E.

The variation of  can be obtained easily as follows

(A.1)

Now focusing on the variation of , we have

where Ω is a bounded domain in ℝd and y ∈ Ω.  at y is given by
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Note that we drop y for simplicity, i.e. .

The differentiation of each non-zero element in the above matrix yields

Note that now . According to the proof given by Beg et al. (2005),

Hence,  can be obtained by simply taking differentiation w.r.t y on both 

sides of the above equation, i.e.

where Dy· is the value of D· at y, D2· is the Hessian operator,  is the value of D2· at y, 

giving a vector-valued matrix. For instance,  represents the 

Jacobian  at position . Then we have

We now deal with the two terms in the above equation one by one:

and
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where we have used  and  for simplification. 

Hence, we have

Also, we have

Now we are ready to compute , 

where G is a vector-valued image and the i-th element of its voxel at y is given by Gi (y). We 

have

where
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 and [w0, …, wN]T is the sparse weights of W0 at position 

y. Let bi = [f0, bi1, ⋯, biN]T, we can then compute Gi(y) as

Now we can rewrite ∂h E2 (v) as

Let , then  and . By changing the variable, we have

where now . As ν, h ∈ V, we have the following two equations (see (Cao et 

al., 2005) for details on the property of the reproducing kernel Hilbert space)

Hence, the variation of E2 (v) is given by
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(A.2)

Since h is arbitrary in L2 ([0, 1], V), we obtain the gradient as given in (5) by combining 

results (A.1) and (A.2).
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Fig. 1. 
The mean RMS error images (top) and the close-ups of regions marked by black circles 

(bottom). Note that the images were not sliced for left–right symmetry. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
The mean sKL divergence images (top) and the close-ups of regions marked by yellow 

circles (bottom). Note that the low-anisotropy regions were not masked out for display 

purpose. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
Anisotropy images of the target image and the mean of the align source images. The ODFs 

in regions marked by yellow rectangles are shown in Fig. 4. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 4. 
ODFs in the regions marked by yellow rectangles in Fig. 3. The target anisotropy image is 

used as the background. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Table 1

Statistics of the mean RMS error images given by various registration strategies.

Method Mean ± s.d. Median 90%-ile p-value

Affine 14.7 ± 6.3 13.4 21.4 p < 10−6

DTI-TK 13.3 ± 6.1 12.2 19.6 p < 0.01

Naïve LDDMM-DWI 12.9 ± 5.4 11.9 18.3 p < 0.05

LDDMM-DWI 11.7 ± 4.5 11.3 16.5 –
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Table 2

Statistics of the mean sKL divergence images given by different registration strategies.

Method Mean ± s.d. Median 90%-ile p-value

Affine 0.22 ± 0.10 0.21 0.35 p < 0.01

DTI-TK 0.21 ± 0.10 0.20 0.36 p ≈ 0.01

Naïve LDDMM-DWI 0.21 ± 0.08 0.21 0.32 p < 0.05

LDDMM-DWI 0.19 ± 0.09 0.19 0.31 –
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Algorithm 1

LDDMM-based DWI registration

Input: I0, I1, {μj}, {qi}, λ1, λ2, b, n, {σl} and {α} (step size)

Initialization {υtp ∣ υtp ← 0, ∀p}

 1: estimate kernel weights {al}

 2: repeat

 3:  for each p do

 4:    

 5:    

 6:  end for

 7:  compute current energy E using (4)

 8:  for each p do

 9:   compute gradient (∇υ E)tp using (5)

 10:  end for

 11:  (E′, α) ← LINESEARCH (E, {υtp}, {α}, {(∇υ E)tp})

 12:  if E′ < E then

 13:   for each p do

 14:    υtp ← υtp − α(∇υ E)tp

 15:   End For

 16:  end if

 17: until E′ ≥ E ∨ α = inf {α} ∨ maximum number of iterations

 18: function LINESEARCH (E, {υtp}, {α}, {(∇υ E)tp})

 19:  for each α do

 20:   for each p do

 21:     

 22:   end for

 23:   for each p do

 24:     

 25:     

 26:   end for

 27:   compute current energy E′ using (4)

 28:   if E′ < E then

 29:    return E′, α

 30:   end if
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 31:  end for

 32:  return E, inf {α}

 33: end function
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