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Abstract

Background—Currently the only function of the resting electrocardiogram (ECG) in patients 

referred for exercise testing is to determine whether imaging is mandated. It is unknown if subtle 

ECG findings in those patients with clinically normal resting ECGs have prognostic significance.

Methods—We performed a single-center cohort study of 18,964 patients without known CVD, 

who had a clinically normal resting ECG and who underwent treadmill exercise testing for 

evaluation of suspected CAD. Eleven quantitative ECG measures related to heart rate, conduction, 

left ventricular mass, or repolarization were collected digitally. The primary outcome was all-

cause mortality. The prognostic importance of a composite ECG score was assessed by measuring 

its impact on the c-index (analogous to area under ROC curve), and by measures of 

reclassification.

Results—During a median follow-up of 10.7 years 1,585 patients died. The four most predictive 

digital ECG variables were higher ventricular rate, more left-ward QRS axis, and more downward 

ST segment deviation, and longer QT interval. The ECG score was independently associated with 

mortality (75th vs. 25th percentile HR 1.36, 95% CI [1.25 to 1.49], P<.0001). The ECG score had 

modest impact on discrimination (change in c-index 0.04) and reclassification of risk (3.0% 

decrease of relative integrated discrimination improvement, P<.001).
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Conclusions—Subtle ECG findings relating to heart rate, conduction, left ventricular mass, or 

repolarization in patients with clinically normal ECGs referred for exercise testing may provide 

modest additional prognostic information over and above clinical and exercise measures.

Introduction

The primary purpose of the resting electrocardiogram (ECG) prior to exercise stress testing 

is to identify patients who have baseline abnormalities that preclude interpretation of 

exercise-induced ST-segment changes.1 It is unknown whether, among these patients who 

have clinically normal ECGs, more precise ECG measures may improve estimation of 

prognosis.

Prior studies demonstrated that subtle ECG findings relating to heart rate (ventricular rate), 

conduction (P wave duration, PR interval, QRS duration), left ventricular mass (Sokolow-

Lyon voltage, Cornell voltage, QRS axis), and repolarization (ST segment deviation, ST 

segment slope, QT interval, T wave amplitude) have prognostic significance in 

observational cohorts,2-6 patients with hypertension7 or heart failure,8 patients resuscitated 

after cardiac arrest,9 patients referred for coronary artery bypass grafting,10 and in patients 

enrolled in clinical trials7, 11, 12. Data are sparse regarding the potential importance of subtle 

ECG findings in patients referred for exercise testing, especially those with clinically normal 

ECGs.

Exercise testing is widely recognized as a powerful yet simple prognostic tool. We 

previously published and externally validated a prognostic model13 composed of twelve 

demographic (age, gender, history of current or recent smoking), clinical (history of non-

insulin treated diabetes mellitus, insulin-treated diabetes mellitus, hypertension, and typical 

angina), and exercise test (exercise capacity, ST-segment depression during test, test angina, 

abnormal heart rate recovery, frequent ventricular ectopy in recovery) measures that 

performed well in predicting mortality. In the current study we examine in a subset of the 

same cohort, whether subtle ECG measures can augment this model’s performance.

We prospectively studied patients without known cardiovascular disease (CVD) who were 

referred for treadmill exercise testing. We hypothesized that (1) subtle ECG findings as 

identified by digital electrocardiography portend a worse prognosis, and (2) identification of 

these findings may improve risk stratification beyond twelve established demographic, 

clinical, and exercise test risk factors13 previously shown to predict all-cause mortality.

Methods

Study population

We performed a single-center (Cleveland Clinic, Cleveland, Ohio) cohort study. Between 

September 1990 and December 2002, 46,966 patients without known cardiovascular disease 

(CVD) or end-stage renal disease, 30 years of age or older, were referred for symptom-

limited treadmill exercise stress testing at our institution (Figure 1). None of the patients had 

known coronary disease (as defined by a history of myocardial infarction, percutaneous 

coronary intervention, or coronary artery bypass grafting), heart failure, documented left 
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ventricular systolic dysfunction, cardiomyopathy, valvular or congenital disease, previous 

organ transplantation, atrial fibrillation, digitalis use, pacemaker or defibrillator placement, 

or end-stage renal disease. All patients had a U.S. Social Security number. Only the first test 

performed for patients who had more than one stress test was included.

At our institution board-certified cardiologists and trained exercise physiologists 

qualitatively review ECGs prior to the start of stress testing. Based on their interpretation we 

excluded 13,746 patients with the following qualitative baseline abnormalities: pathological 

Q-waves, bundle branch block, left ventricular hypertrophy (LVH) with ST segment 

deviation, preexcitation syndrome, or resting ST-T wave changes unrelated to LVH 

precluding exercise interpretation (≥1mm of horizontal or down-sloping ST segment 

deviation) (Figure 1).

From the remaining 33,220 patients we excluded 14,256 who did not have a digital 12-lead 

resting ECG file performed outside the stress lab with standard lead placement within 3 

months prior to referral for exercise testing (Figure 1). All ECGs in our hospital are standard 

10 second recordings obtained with the Marquette General Electric MUSE system. Our ECG 

laboratory has standardized quality improvement protocols for assuring that lead placement 

errors and motion artifact are minimized. This resulted in 18,964 patients who had an ECG 

file that was analyzed digitally. Patients who had digital ECG files available were somewhat 

more likely to be male and less likely to have hypertension as compared to those excluded; 

otherwise there were no major differences (Appendix Table). Furthermore, when stratified 

according to risk groups based on our previously validated prognostic model, there were no 

differences in mortality among those who did and did not have digital ECG files available 

(Figure 2).

Digital electrocardiography

Eleven quantitative ECG measures were extracted for each patient that are commonly 

considered predictors of poor outcomes 2-12, and are believed to be correlates of heart rate, 

conduction, hypertrophy, or repolarization. These have not been previously scrutinized in 

patients with clinically normal ECGs undergoing exercise testing.

Digital ECGs were analyzed with General Electric’s Magellan Software System 

(Menomonee Falls, Wisconsin), which provided detailed data on the duration and 

amplitudes of all segments of the P wave, QRS complex, ST segment, and T wave in all 12 

leads, with amplitudes recorded to the nearest 100th of a millivolt and times recorded to the 

nearest millisecond.

In this study the P wave duration, PR interval, QRS duration, and uncorrected QT interval 

were the median values from all 12 leads. ST segment deviation was measured at the end of 

the segment in lead V5, as this lead has been identified as a superior marker of coronary 

artery disease.14 In an analogous manner we measured T wave amplitude was the highest 

value measured in lead V5. Sokolow-Lyon voltage was calculated by adding S wave 

amplitude in lead V1 to that of the maximum R wave in lead V5 or V6.15 Cornell voltage 

was calculated by adding R wave amplitude in lead AVL to that of the S wave in lead 
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V3.15, 16 ST slope was calculated as the difference between ST segment deviation at the end 

of the segment and at the J point in lead V5.10, 14

Clinical Data

Descriptions of prospectively collected demographic and clinical data, as well as details of 

exercise stress testing protocols in our laboratory, have been published.13, 17-19 Briefly, heart 

rate recovery was considered to be abnormal if after the first minute of exercise the heart 

rate fell ≤12 beats/minute in patients undergoing an upright cool-down period, or ≤18 beats/

minute in patients undergoing stress echocardiography. Frequent ventricular ectopy during 

recovery was defined by the presence of ≥7 premature ventricular beats per minute, 

ventricular couplets or triplets, ventricular bigeminy or trigeminy, ventricular tachycardia, 

ventricular flutter, torsade de pointes, or ventricular fibrillation.20

The study was approved by Cleveland Clinic’s institutional review board, and because all 

data were collected and recorded as part of routine clinical care, requirement for informed 

consent was waived. This project was funded by National Heart, Lung, and Blood Institute 

CAN# 8324207. The authors are solely responsible for the design and conduct of this study, 

all study analyses, the drafting and editing of the paper and its final contents.

Outcome

All-cause mortality, a clinically relevant and unbiased end-point,21 was ascertained by the 

Social Security Death Index.22, 23 Patients were followed until a common closing date of 

January 1, 2008. Previously we have shown that among our patients this method has a 

sensitivity of 97% for accurately detecting death.19

Statistical analyses

We constructed Kaplan-Meier plots24 for each ECG variable, and tested mortality 

differences by using the log-rank chi-square statistic.

Modeling—We previously published a non-parsimonious prognostic model composed of 

twelve demographic, clinical, and exercise test variables that performed well in predicting 

all-cause mortality in patients with a qualitatively normal resting ECG referred for treadmill 

exercise testing.13 In an analogous manner we constructed a non-parsimonious Cox 

proportional mortality hazards model including all eleven quantitative ECG variables and 

the twelve traditional risk factor variables listed in Table 1 (including gender). Nonlinear 

associations were tested with restricted cubic splines.25 We tested for interactions. The 

proportional hazards assumption was tested by scaled Schoenfeld residuals and inspection of 

hazard ratio plots.26

Constructing a composite ECG score: From this analysis a composite ECG score was 

generated: ECG score = (β1 × ECG measure 1) + (β2 × ECG measure 2) + … (β11 × ECG 

measure 11), where βn denoted the confounder-adjusted parameter coefficients. We 

constructed a second Cox proportional hazards model that included the ECG score along 

with the 12 traditional risk factors to determine the hazard ratio of this score.
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Evaluation of prognostic importance: To assess the prognostic contribution of the ECG 

variables individually and as a cluster (i.e., the ECG score) we used the following 

approaches: calculation of a bootstrapped concordance index (c-index), calculation of 

prediction error using out-of-bagging10, evaluation of reclassification27, 28, and calculation 

of integrated discrimination improvement29, 30.

Model discrimination was assessed by calculating out-of-bag estimates of the c-index for 

time to event outcomes.26 This method is similar to calculating the area under an ROC 

curve, but by bootstrapping there is adjustment for over-optimism.

The out-of-bag (OOB) method involves obtaining bootstrap samples from the original 

cohort and using each sample to compute a prediction model that incorporated the ECG 

variables and potential confounders. Each bootstrap sample left out, on average, ~ 37% of 

the patients, which was the OOB sample. The prediction model including the ECG variables 

was applied to the OOB sample to calculate the OOB c-index. The value of this technique is 

in its ability to effectively perform valid external validations of the model without an 

unrelated external dataset.10, 18

To determine the change in prediction error (equivalent to change in area under an ROC 

curve) attributed to each variable (i.e., the ‘variable importance’), we recalculated the 

prediction error after random permutation of that variable in the OOB sample (effectively 

converting the variable’s value into completely uninformative noise); an important variable 

would be expected to yield a greater degradation in the OOB c-index. The process was 

repeated 100 times for each variable.

To assess calibration, we performed 100 bootstrap resamplings in which patients were 

divided into quintiles of predicted risk. Within each quintile, actual versus predicted survival 

rates were calculated, and the differences were averaged to calculate a weighted calibration 

error. Using this technique we found the calibration of both Cox models to be excellent.

To address clinical utility we constructed a risk reclassification plot,27, 28, 31 comparing the 

10-year risk of all-cause mortality predicted by the model with the ECG score and 

established risk factors against risk predicted by model containing only the established risk 

factors. We used an objective way of quantifying improvement in classification of risk: 

integrated discrimination improvement (IDI).29, 30

Presentation—Continuous variables are summarized by medians, and categorical 

variables by frequency and percentage. Kaplan-Meier and risk adjusted plots are presented 

with error bars or bands indicating 95% confidence intervals. Life expectancy data from the 

Human Mortality Project (http://www.mortality.org) were used to produce a United States 

age-and sex-matched reference population mortality curve that was super-imposed on a plot 

of ECG score quartiles.

Computational methods—Data assembly was performed with SAS version 9.1.3 (SAS 

Institute Inc., Cary, NC). Analyses were performed using R version 2.6.2 (www.r-

project.org). We used Harrell’s Design and Hmisc libraries26 for model construction and 

assessment, an R macro written by one of us (H.I.) for the OOB and change in prediction 
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error analyses10, another macro written by Kattan13 for constructing the reclassification 

table, and the Relative Survival library for constructing the population reference plot.32, 33 

We used a SAS macro written by Pencina29 for calculating improvement in classification of 

risk.

Results

Patient Characteristics

There were 18,964 patients with both a qualitatively normal ECG and a digital 12-lead 

resting ECG file available for quantitative analysis, their characteristics are shown in Table 

1.

Among these 18,964 patients, 3,441 (18%) were on aspirin, 1,178 (6%) were on statins, 217 

(1%) were on other antihypelipidemic medications, 1,529 (8%) on thiazide diuretics, 1,968 

(10%) on beta-blockers, 1,635 (9%) on calcium-channel blockers, and 1,447 (8%) on 

angiotensin-converting enzyme inhibitors. During exercise testing, 1,917 (10%) developed 

between 1 mm and 2 mm of horizontal or downsloping ST-segment depression, and an 

additional 325 (2%) developed ST-segment depression greater than 2 mm. Digital ECG 

variables that were correlated with abnormal ST segment depression during exercise 

included ventricular rate, P wave duration and PR interval, Sokolow-Lyon voltage, ST 

segment deviation in lead V5, QT interval, and QRS axis (all P<0.0001).

ECG Findings and Mortality

During a median follow-up of 10.7 years (range for survivors 5-17 years), 1,585 patients 

(8%) died. The following quantitative ECG findings were most strongly associated (log-rank 

chi squared > 100) with increased mortality in an unadjusted analysis: more downward ST 

segment deviation, more left-ward QRS axis, more downward ST slope, lower T-wave 

amplitude, faster ventricular rate, longer PR interval, greater Cornell voltage, and longer P-

wave duration were all associated with higher mortality (Figure 3).

The OOB c-index of the Cox model containing the 12 established risk factors13 and all 11 

quantitative ECG measures was 0.84. Among the ECG variables, those that contributed most 

to improved prediction were: higher ventricular rate (decrease in OOB c-index=0.004 [0.5% 

decrease]), more left-ward QRS axis (0.003 [0.4%]), more downward ST segment deviation 

(0.003 [0.4%]), longer QT interval (0.002 [0.2%]), more downward ST-segment slope 

(0.0007 [0.08%]), lower T-wave amplitude (0.0006 [0.07%]), greater Cornell voltage 

(0.0003 [0.04%]), longer PR interval (0.0003 [0.04%]), longer P-wave duration (0.0001 

[0.01%]), and longer QRS duration (0.0001 [0.01%]).

ECG Score and Mortality

The adjusted ECG score (Appendix Formula), a non-parsimonious cluster of the ECG 

variables, was predictive of death (Figure 4), even after multivariable adjustment (75th vs. 

25th percentile, adjusted HR 1.36, 95% CI [1.25 to 1.49], P<.0001). There was a significant 

interplay between age and the adjusted ECG score (P for interaction=0.005) whereby the 

younger the patient the higher the predicted utility of the adjusted ECG score.

Gorodeski et al. Page 6

Am Heart J. Author manuscript; available in PMC 2014 October 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The OOB c-index of the model with the adjusted ECG score was 0.84. Adjusted ECG score 

was the third most important contributor to accuracy of predicting mortality (decrease in 

OOB c-index=0.04 [4.8% decrease]) after percent predicted METS (0.24 [28.6%]) and age 

(0.22 [26.2%]) (Figure 5).

To assess whether the association of adjusted ECG score with mortality differed over time, 

we performed a supplementary analysis in two subsets of the cohort. In 6,797 patients who 

had the exercise test between 1990-1995 and censored at five years, adjusted ECG score was 

at least as predictive of death (75th vs. 25th percentile, adjusted HR 1.38, 95% CI [1.22 to 

1.57], P<.0001) as in 7,558 patients who had the test between 1995-2000 and censored at 

five years (75th vs. 25th percentile, adjusted HR 1.58, 95% CI [1.32 to 1.88], P<.0001).

Figure 6 shows 10-year risk of mortality predicted by the model containing the ECG score 

and established risk factors against risk predicted by the model containing only the 

established risk factors. Each point represents an individual patient. The integrated 

discrimination improvement, a measure of improvement in model performance, was 0.006 

(95% CI, 0.003-0.008, P-value<0.0001). This corresponds to a relative IDI of 3%, meaning 

there was a 3% improvement in model performance due to the addition of ECG score. 

Despite this value being statistically significant, it’s absolute value is small and suggests 

only limited utility of adding ECG score to the prognostic model. The modest effect of ECG 

score is also reflected by the minimal spread observed around the 45 degree line of identity.

Subset analysis

To assess how ECG score performed in different subsets of the cohort we compared 

mortality risk in the highest ECG score quartile versus the lower three quartiles in subsets of 

sex, diabetes, smoking, history of hypertension, and age. ECG scores within the highest 

quartile portended increased risk in all subsets of patients (Figure 7), with a significantly 

higher utility in males, and those without history of diabetes or hypertension.

Discussion

In this study of 18,964 patients without known CVD, who were referred for exercise testing 

and who had a clinically normal resting ECG, we found that a number of digitally measured 

ECG findings reflective of heart rate, conduction, left ventricular mass, and repolarization, 

were predictive of long-term mortality individually and as a composite. However, the 

increased risk associated with a composite ECG score led to a small change in the OOB c-

index (4.8%), which suggested that adding information from quantitative ECG measures to 

established risk factors only modestly improved discrimination for prediction of 10-year 

mortality. Further, a prediction model with ECG score yielded only modest reclassification 

of risk (3% increase in model performance) beyond the standard prediction model, which 

was based on easily obtained demographic, clinical, and exercise test measures.

Our findings are consistent with prior studies demonstrating the predictive utility of subtle 

ECG measures for long-term mortality4, 7, 11, 34-40. Denes and colleagues11 recently 

demonstrated that “minor” ECG abnormalities (defined as first or second degree 

atrioventricular block, borderline prolonged ventricular excitation, prolonged ventricular 
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repolarization, isolated minor Q and ST-T abnormalities, left ventricular hypertrophy 

without ST-T abnormalities, left atrial enlargement, frequent atrial or ventricular premature 

beats, or fascicular blocks) added incremental prognostic information to established risk 

factors in asymptomatic postmenopausal women. Consistent with this we found that in a 

relatively healthy stress testing population with clinically normal ECGs, quantitative ECG 

measures added incremental prognostic value beyond established risk factors, but the 

increment of improvement was modest. This may be because unlike previous investigations, 

we accounted for systematic measures of exercise capacity, which have consistently been 

shown to be one of the most powerful predictors of mortality.

Based on our analysis health care providers utilizing exercise testing for assessment of 

prognosis will gain little from incorporating ECG measures into their current risk 

assessment algorithm. It remains unknown though if ECG measures can have greater clinical 

utility in non-stress testing populations, where the powerful prognostic value of functional 

capacity is not assessed objectively.

Limitations

Our study population was derived from Cleveland Clinic, a single tertiary referral-center, 

and as such our results can only be generalized to exercise test patients in similar settings. 

We did not have an external dataset on which to validate our findings. As we are not aware 

of any other cohorts who have had these types of detailed clinical, stress testing, and 

quantitative ECG information collected, we opted instead to use out-of-bagging for 

validation.10 With this internal validation approach our prediction estimates were not based 

on one dataset alone but on 100 bootstrapped segments of the larger cohort.

Potential for selection bias exists. We only studied patients who had resting ECGs collected 

with standard lead placement, in addition to pre-test resting ECGs with modified torso leads. 

Some physicians did not refer patients for standard 12-lead ECGs if they were available 

from prior visits or from outside institutions, or if they felt that the stress laboratory 

modified lead ECGs were adequate. Other reasons for missing digital ECGs included those 

patients who had a resting ECG done at a satellite of the hospital where central storage is not 

available, and a small fraction whose digital file was corrupted. To assess for potential 

selection bias we examined the excluded patient’s baseline characteristics and their 

outcomes. There were few major differences between included and excluded patients, 

particularly for the two major clinical predictors of risk, namely age and predicted metabolic 

equivalents achieved (Appendix Table). Further, the mortality rate of the excluded subset 

closely mirrored that of the studied subset (Figure 2).

The ECG measurements were performed digitally from surface ECGs. Intra-cardiac 

measurements done in the electrophysiology lab might provide even more precise measures.

Summary and conclusions

We found that the resting ECG done prior to exercise testing may provide incremental 

prognostic value beyond determining validity of ST-segment interpretation. Subtle ECG 

findings relating to heart rate, conduction, left ventricular mass, and repolarization portend a 
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worse long-term prognosis, but only modestly improve discrimination and clinical risk 

stratification for all-cause mortality.

Appendix

Appendix Table

Comparison of patients who were (‘“With resting ECGs”) and were not (“Without resting 

ECGs”) included in the study.

Characteristic Value

With resting ECGs
(n=18,964)

Without resting ECGs
(n=14,256)

Demographic and clinical

 Age, y 52 (44, 60) 54 (45, 62)

 Male, n (%) 12,478 (66) 8,004 (56)

 Current or recent smoking, n (%) 3,251 (17) 2,426 (17)

 Non-insulin treated diabetes mellitus, n (%) 921 (5) 899 (6)

 Insulin-treated diabetes mellitus, n (%) 347 (2) 318 (2)

 Hypertension, n (%) 8,491 (45) 7,659 (54)

 Typical angina, n (%) 157 (1) 201 (1)

Exercise

 Predicted Metabolic Equivalents Achieved *, % 103 (90, 117) 102 (88, 116)

 ST-segment depression (10th, 90th percentiles), mm 0 (0, 1) 0 (0, 1)

 Test angina, n (%) 256 (1) 230 (2)

 Abnormal heart rate recovery, n (%) 3,194 (17) 2,441 (17)

 Frequent ventricular ectopy in recovery, n (%) 687 (4) 515 (4)

Continues variables are medians (25th to 75th percentiles), unless otherwise indicated.
*
Predicted metabolic equivalents (METS) achieved was calculated with previously validated models17: for men -- 

observed METS / (18 − [0.15 × age]) × 100, and for women – observed METS / (14.7 − [0.13 × age]) × 100. See text for 
details.

Appendix

Appendix Formula

The equation of the ECG score:
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** pmax: Pick maximum of the two possible values. For example, pmax(QRS axis + 15,0) 

means that if (QRS axis + 15) is greater than zero that value is chosen; if (QRS axis + 15) is 

less than zero than the value zero is chosen.
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Figure 1. 
Flow diagram of patient recruitment and participation.
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Figure 2. 
To address possible selection bias, plotted is observed mortality according to availability of 

digital ECG data and categories of predicted risk by our previously validated prognostic 

model13 that did not include ECG variables.
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Figure 3. 
Mortality risk according to quartiles of quantitative ECG measures. Only shown are 

measures with χ2> 50. Log-rank P-value for all <.001. Quartile values: ST segment 

deviation (Q1: <0.29 mV, Q2: 0.29-0.68, Q3: 0.68-1.2, Q4: ≥1.2), QRS axis (Q1: <5 

degrees, Q2: 5-30, Q3: 30-54, Q4: ≥54), ST segment slope (Q1: <30 mV, Q2: 30-58, Q3: 

58-97, Q4: ≥97), T-wave amplitude (Q1: <0.18 mV, Q2: 0.18-0.28, Q3: 0.28-0.40, Q4: 

≥0.40), ventricular rate (Q1: <59 bpm, Q2: 59-67, Q3: 67-75, Q4: ≥75), PR interval (Q1: 

<148 ms, Q2: 148-164, Q3: 164-180, Q4: ≥180), Cornell voltage (Q1: <0.98 mV, Q2: 

0.98-1.31, Q3: 1.31-1.68, Q4: ≥1.68), and P-wave duration (Q1: <104 ms, Q2: 104-112, Q3: 

112-120, Q4: ≥120). Error bars indicate 95% confidence intervals.
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Figure 4. 
Mortality risk according to quartiles of ECG score (Q1: <22.4, Q2: 22.4-23.4, Q3: 23.4-24.5, 

Q4: ≥24.5). See appendix for ECG score equation. Error bars indicate 95% confidence 

intervals. Dashed line is predicted mortality based on US vital statistics and the age and sex 

distribution of our cohort.
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Figure 5. 
Change in prediction error by out-of-bagging. Only variables that contribute to predictive 

discrimination are shown. Results are based on 100 bootstrap samples. Error bars indicate 

95% confidence intervals.
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Figure 6. 
Ten-year risk of all-cause mortality predicted by the model containing the ECG score and 

established risk factors against risk predicted by model containing only the established risk 

factors. If a variable adds no predictive value to the model, all points fall on the line of 

identity. Spread around the line indicates modulation of predicted risk; if the variable 

correctly modulates predicted risk, there should be a greater preponderance of events (red 

circles) above the line of identity. Improvement of classification is expressed as relative 

integrated discrimination improvement (IDI), demonstrating as a 3% improvement in model 

performance with the ECG score.
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Figure 7. 
Subset analysis comparing highest ECG score quartile to bottom quartiles.
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