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Abstract

Rationale: More than a million polysomnograms (PSGs) are
performed annually in the United States to diagnose obstructive
sleep apnea (OSA). Third-party payers now advocate a home sleep
test (HST), rather than an in-laboratory PSG, as the diagnostic
study for OSA regardless of clinical probability, but the economic
benefit of this approach is not known.

Objectives: We determined the diagnostic performance of OSA
prediction tools including the newly developed OSUNet, based on
an artificial neural network, and performed a cost-minimization
analysis when the prediction tools are used to identify patients who
should undergo HST.

Methods: The OSUNet was trained to predict the presence
of OSA in a derivation group of patients who underwent an
in-laboratory PSG (n = 383). Validation group 1 consisted of
in-laboratory PSG patients (n = 149). The network was trained
further in 33 patients who underwent HST and then was validated
in a separate group of 100 HST patients (validation group 2).
Likelihood ratios (LRs) were compared with two previously
published prediction tools. The total costs from the use of the three

prediction tools and the third-party approach within a clinical
algorithm were compared.

Measurements and Main Results: The OSUNet had a higher
1LR in all groups compared with the STOP-BANG and the
modified neck circumference (MNC) prediction tools. The 1LRs
for STOP-BANG, MNC, and OSUNet in validation group 1 were
1.1 (1.0–1.2), 1.3 (1.1–1.5), and 2.1 (1.4–3.1); and in validation
group 2 they were 1.4 (1.1–1.7), 1.7 (1.3–2.2), and 3.4 (1.8–6.1),
respectively. With an OSA prevalence less than 52%, the use of all
three clinical prediction tools resulted in cost savings compared
with the third-party approach.

Conclusions: The routine requirement of an HST to diagnose
OSA regardless of clinical probability is more costly compared with
the use of OSA clinical prediction tools that identify patients who
should undergo this procedure when OSA is expected to be present
in less than half of the population. With OSA prevalence less than
40%, the OSUNet offers the greatest savings, which are substantial
when the number of sleep studies done annually is considered.
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Polysomnography (PSG), the current “gold
standard” for defining the presence and
severity of obstructive sleep apnea (OSA),
is a common medical procedure in the

United States. According to a conservative
estimate, about 1.17 million PSGs were
performed in the United States in
2001 (1).

A home sleep test (HST) most often
involves portable monitoring of respiration
during the usual sleep hours; it is unattended
by a technologist and without recording
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of sleep stages. Many third-party payers now
advocate an HST as the initial diagnostic
test to diagnose OSA in all patients
regardless of clinical probability because of
the lower cost of this procedure compared
with an in-laboratory PSG (2). This process
transformation, implemented through prior
authorization for in-laboratory PSGs, has
resulted in abrupt closure of a number
of sleep centers last year in Boston,
Massachusetts, leaving more than 30,000
patients without a sleep medicine provider
(3). However, the dollar cost of the third-
party policy as compared with other
approaches is unclear because most
clinicians have a low threshold to proceed
with an in-laboratory study in symptomatic
patients with a negative HST (4, 5), and
because a significant proportion of patients
with a negative HST may have significant
OSA when studied in the laboratory (6, 7).
Duplication of tests in these patients may
negate any cost savings derived from the
lower cost of the HST (4). When a decision
has been made by the clinician to perform
a PSG, ideally patients who have a high
likelihood of having OSA should undergo
an HST (5). Indeed, in a large multicenter
study of patients suspected of having OSA,
the therapeutic decision performed after
the diagnosis by HST was effective only for
patients with severe OSA, defined as an
apnea–hypopnea index (AHI) greater than
30/hour, suggesting that only those patients
predicted to have an increased risk for the
condition should undergo the in-home test
as the initial diagnostic procedure (8).

The overall clinical impression of sleep
medicine physicians of the likelihood of
OSA in individual patients has been
reported to be of limited usefulness (9, 10).
Several clinical prediction tools for the
presence of OSA have been proposed to
help clinicians in their decision to pursue
a sleep study (10–13). However, an
economic evaluation of these clinical
prediction tools when used in clinical
practice, including whether the study
should be done at home, has not been
previously performed. The use of an
artificial neural network (ANN) has several
advantages in clinical prediction as it is
not affected by problems associated with
multicollinearity, it automatically models
nonlinear relations, and it detects implicitly
all possible interaction terms (14). In
particular situations, ANNs have been
reported to outperform physician
prediction (15). We sought to leverage

these advantages of ANN and hypothesized
that a newly developed prediction tool
based on ANN will outperform previously
published clinical predictions and will offer
cost savings when incorporated within
a clinical pathway for deciding which
patients should be referred for an HST.

Methods

The detailed METHODS are located in the
online supplement. Consecutive patients
over the age of 18 years, referred for
in-laboratory PSG for suspicion of OSA
from April 2010 to March 2011 to the Ohio
State University (OSU) Sleep Disorders
Center, were identified and included in the
study. Subjects with total sleep time less
than 2 hours, those who required oxygen
supplementation during the PSG, and those
with incomplete sleep questionnaires or
without anthropometric data were excluded
from the study. The HST program at our
center started at a later time and consecutive
patients referred for HST from April 2011
to July 2012 were included in the study,
using the same inclusion and exclusion
criteria as previously described except for the
total sleep time. Medical records and sleep
questionnaires that the patients completed
as part of their clinical evaluations were
reviewed and the data were collected on
a spreadsheet. The research protocol was
approved by the Institutional Review Board
of the Ohio State University Wexner
Medical Center (Columbus, OH).

Polysomnography
All in-laboratory PSGs included the
recommended standard channels, and each
30-second epoch was manually scored for
sleep stage, apneas, and hypopneas (16).
The total sleep time was used as the
denominator to calculate the AHI for
in-laboratory PSGs, and the recording time
from patient-reported lights-off to lights-on
was used to calculate the AHI for HSTs.

Clinical Prediction Rules

Modified neck circumference. Modified neck
circumference (MNC) was measured in
centimeters and adjusted if the patient had
hypertension (4 cm added), was a habitual
snorer (3 cm added), or was reported to
choke or gasp most nights (3 cm added).
AnMNC score greater than 43 cm indicated
an increased risk of having OSA, whereas an

MNC not greater than 43 indicated low
risk (6, 10, 13).

STOP-BANG. The score for the STOP-
BANG was calculated by assigning a score
of 1 for each positive answer to Snoring,
Tiredness, being Observed to stop breathing
during sleep, high blood Pressure, Body
mass index (BMI) greater than 35 kg/m2, Age
greater than 50 years, Neck circumference
greater than 40 cm, and male Gender. An
increased risk for OSA was defined as three
or more affirmative answers to the eight
STOP-BANG items, whereas patients with
two or fewer affirmative answers were
considered to have low risk (11).

OSUNet. A generalized regression
neural network based on the cascade
correlation algorithm of S. Fahlman
(NeuroShell Classifier; Ward Systems
Group Inc., Frederick, MD) was used to
generate the OSUNet, which produced the
desired output of whether the subject is at
increased risk for OSA or not (17, 18).
The variables chosen as final inputs for
the ANN were selected from an initial list
of 19 items (see Table E1 in the online
supplement) obtained from patients’
questionnaire as well as anthropometric
measurements using regression analysis
with the AHI as the dependent variable.
A P value not exceeding 0.10 was arbitrarily
chosen as the cutoff for the continued
inclusion of a given variable in the final
ANN inputs (19). The final nine ANN
inputs were as follows: age, history of
hypertension, history of diabetes mellitus,
BMI, neck circumference, and responses to
four questions: “I am told I snore in my
sleep,” “I am told I stop breathing in my
sleep,” “I have or have been told that I have
restless legs,” and “My desire or interest in
sex is less than it used to be.” The four
questions had a six-item Likert response.
Missing values and responses marked
“not applicable” were substituted with
the class mean (20).

The ANN was initially trained to
predict the presence or absence of OSA in
a derivation group (n = 383) of patients who
underwent an in-laboratory PSG. The
ANN was then validated in another group
of consecutive patients (validation group 1)
who also underwent an in-laboratory PSG
(n = 149). The ANN was trained again,
using 33 patients who underwent in-home
PSG. The resulting network was used
to predict the presence of OSA in 100
consecutive patients who underwent
in-home PSG (validation group 2).

ORIGINAL RESEARCH

Teferra, Grant, Mindel, et al.: Cost Minimization Using a Sleep Apnea Prediction Tool 1065



Cost-Minimization Analysis
The total cost of the third-party approach
wherein all patients undergo an HST
regardless of clinical probability and the
costs of the approach using each of the three
prediction tools (MNC, STOP-BANG, and
OSUNet) were calculated on the basis of
a clinical algorithm shown in Figures 1A
and 1B, respectively (4, 5). Patients
identified as having a high risk of having
OSA by the prediction tool (Figure 1B) go
on to have an HST as the initial diagnostic
procedure whereas those with less than
a high risk have an in-laboratory PSG as the
initial diagnostic procedure (5). The

algorithm includes the following
assumptions: (1) a decision to pursue PSG
has already been made by a clinician, and
(2) patients who have negative results
when an HST is used are referred for an
in-laboratory PSG. The stakeholders for the
cost-minimization analysis include the
patients who are being evaluated for OSA,
the health care providers who order the
PSGs, and the third-party payers. Because
the outcomes of the various approaches
(third party, MNC, STOP-BANG, and
OSUNet) are similar as shown in Figure 1,
that is, all patients diagnosed with OSA will
undergo treatment and those without OSA

will not have any treatment for OSA, we
performed a cost-minimization analysis
rather than other types of economic
evaluations such as cost-benefit or cost-
effectiveness analysis (21, 22).

The template for cost-minimization
analysis using the clinical pathway described
previously is shown in Table 1 and is based
on the sensitivity (Sen) and specificity
(Spec) of the prediction tools, as well as the
prevalence (Prev) of OSA. The costs listed
in Table 1 are also shown in Figures 1A and
1B. The cost of the sleep studies was based
on 2013 Centers for Medicare & Medicaid
Services global reimbursement rates:

(Cost C)

Treatment Treatment

Clinical Suspicion of OSA

In-lab PSG (Cost B)
Home Sleep Test

(Cost A)

Prediction Tool: (–) OSA Prediction Tool: (+) OSA

(+) OSA (–) OSA (–) OSA (+) OSA

B Clinical Prediction Approach

Clinical Suspicion of OSA

Home Sleep Test (Cost A)

(–) OSA (+) OSA

Treatment

Treatment

In-lab PSG
(Cost C)

(–) OSA (+) OSA

A Third Party Approach

Figure 1. Clinical algorithm for sleep studies. (A) The total cost of the third-party approach wherein all patients undergo a home sleep test (HST) as the
initial procedure and (B) the costs of the approaches using the three prediction tools were calculated on the basis of the algorithm shown. In (B), patients
identified as having an increased risk of having obstructive sleep apnea (OSA) by the prediction tool go on to have an HST as the initial diagnostic
procedure whereas those without an increased risk have an in-laboratory polysomnogram (PSG) as the initial diagnostic procedure.

Table 1. Template for cost-minimization analysis based on various approaches

Third-Party Approach OSA Prediction Tool

Cost A: HST (US$) 174.00 [Sen(Prev) 1 (1 – Spec)(1 – Prev)] 3 174
Cost B: In-lab PSG (US$) — [Prev(1 – Sen) 1 Spec(1 – Prev)] 3 607
Cost C: In-lab PSG for patients with
negative HST (US$)

(1 – Prev) 3 607.00 [(1 – Prev) 3 (1 – Spec)] 3 607.00

Total cost (US$) Cost A 1 cost B 1 cost C Cost A 1 cost B 1 cost C
Savings per patient with prediction tool (US$) Total cost of OSA prediction tool less total cost of third-party approach
Total savings per year extrapolated to U.S.
population

Savings per patient 3 1,340,413*

Definition of abbreviations: HST, home sleep test; OSA, obstructive sleep apnea; PPV, positive predictive value for a given population was calculated as
(Sen 3 Prev)/[(Sen 3 Prev) 1 (1 – Spec) 3 (1 – Prev)]; Prev, prevalence of OSA; PSG, polysomnography; Sen, sensitivity; Spec, specificity.
*Based on 427 PSGs performed per 10,000 population/year.
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$174.00 for HST and $607.00 for
in-laboratory PSG (23).

The cost of the third-party approach
was calculated as $174 for each HST in all
patients suspected of OSA (cost A). There
will be an additional cost of performing the
in-laboratory PSG on those who do not have
OSA calculated as [(1 – Prev) 3 $607]
(cost C). Therefore, the total cost for the
third-party approach was calculated as
[$174 1 (1 – Prev) 3 $607].

The derivations of the various costs
included in Table 1 are shown in Appendix
E1. Briefly, the cost resulting from the use
of the OSA prediction tool for the HSTs
performed on the proportion of those
patients with a positive prediction (the
positive test rate of the tool) was calculated
as [Sen(Prev) 1 (1 – Spec)(1 – Prev)] 3
174 (cost A). The proportion of those
patients who were predicted not to have
sleep apnea, the negative test rate of the
tool, will have an in-laboratory PSG
performed and the cost calculated as [Prev
(1 – Sen) 1 Spec(1 – Prev)] 3 607 (cost B).
In addition, in-laboratory PSGs will be
performed on the proportion of those
patients who turn out to have a negative
HST, but were predicted to have OSA by
the tool: the false positives [(1 – Prev) 3
(1 – Spec)] 3 607. Therefore, the total cost
of the approach using the OSA prediction
tools was calculated as cost A 1 cost B 1
cost C = {[Sen(Prev)1 (1 – Spec)(1 – Prev)]3
174} 1 {[Prev(1 – Sen) 1 Spec(1 – Prev)] 3
607} 1 {[(1 – Prev) 3 (1 – Spec)] 3 607}.

The cost savings per patient from each
of the prediction tools, if any, was then
extrapolated to the entire U.S. population
based on 427 PSGs performed/10,000
population/year (1). The U.S. population
(313,914,040) was based on the 2012 U.S.
Census Bureau estimate (http://quickfacts.
census.gov/qfd/states/00000.html). The total
costs from the four approaches described
previously depend on the prevalence of OSA
in the population where the clinical pathway
is applied. Therefore, we tabulated the cost-
minimization analysis based on the 49%
prevalence of OSA in our clinic population as
well as the 18–23% prevalence reported in
primary care clinics (24, 25).

Sensitivity Analysis

Impact of OSA prevalence. We used
a bootstrap approach (26) to obtain the
confidence interval of cost savings at
different levels of prevalence ranging from

0.10 to 0.90. We implemented the bootstrap
by generating 100,000 random samples
with replacement from the 100 patients
who underwent HST and in whom OSA
status was confirmed for each of the three
clinical prediction tools. Each random
sample provided an estimate of sensitivity
and specificity. We used these data to
obtain 100,000 estimates of cost savings per
patient at each level of prevalence from
which the mean and 95% confidence limits
were calculated with a computer program
written in Fortran.

Impact of the proportion of HST used as
the initial diagnostic test for OSA. In the
cost minimization analysis described
previously, the third-party approach (as the
comparator vs. the clinical prediction rules)
assumed that all patients suspected of OSA
undergo an HST first. Although third-party
payers in the United States are increasingly
adopting a policy of requiring an HST, the
exact proportion of patients who actually
undergo HST in the United States
as the initial diagnostic procedure is not
known and will vary according to the
preauthorization criteria established by

various third-party payers. Therefore, we
performed a second sensitivity analysis
wherein the relative proportions of HSTs
and in-laboratory PSGs as the initial
diagnostic procedure were varied from 1.0
to 0 in the third-party approach and the
total expenditures compared with that using
the three clinical prediction approaches.

Statistical Analysis
An AHI cutoff of at least 15/hour (based
on an in-laboratory or HST) was used to
define the presence of OSA (6, 7, 27). To
test the equality of multiple sensitivities and
specificities of the prediction tools, we used
Cochran’s Q applied to patients with or
without OSA, respectively. The alternative
hypothesis was that at least two sensitivities
(or specificities) were different. The
rejection of the Cochran’s Q null hypothesis
was followed by pairwise comparisons
using McNemar’s test. The comparisons of
the positive and negative predictive values
were based on the method of Moskowitz
and Pepe (28). The positive (1) and
negative (–) likelihood ratios (LRs) were
compared using the method of Nofuentes

Table 2. Demographics of clinic patients

In-Laboratory PSG (n = 532) HST (n = 133) P Value

Age, yr 48.5 6 0.6 50.7 6 1.1 0.06
Sex, % male 49.0 51.0 0.80
BMI, kg/m2 35.8 6 0.4 36.7 6 0.9 0.31
AHI 25.3 6 1.3 22.6 6 2.1 0.30

Definition of abbreviations: AHI, apnea–hypopnea index; BMI, body mass index; HST, home sleep
test; PSG, polysomnography.
Values represent means 6 SEM unless otherwise indicated.

Table 3. Diagnostic characteristics of obstructive sleep apnea prediction tools with
95% confidence intervals in derivation group

OSUNet MNC STOP-BANG

Sensitivity 0.74 (0.67–0.80)* 0.87 (0.80–0.91)† 0.95 (0.91–0.98)
Specificity 0.78 (0.72–0.84)* 0.42 (0.35–0.50)† 0.21 (0.16–0.28)
PPV 0.76 (0.69–0.82)* 0.58 (0.52–0.64)† 0.53 (0.48–0.59)
NPV 0.76 (0.70–0.82) 0.77 (0.68–0.85) 0.82 (0.69–0.92)
Positive LR 3.40 (2.56–4.47)* 1.50 (1.31–1.72)† 1.20 (1.12–1.31)
Negative LR 0.34 (0.26–0.44) 0.32 (0.21–0.48) 0.23 (0.12–0.46)

Definition of abbreviations: LR, likelihood ratio; MNC, modified neck circumference; NPV, negative
predictive value; PPV, positive predictive value; STOP-BANG, Snoring, Tiredness, being Observed to
stop breathing during sleep, high blood Pressure, Body mass index greater than 35 kg/m2, Age
greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
Note: n = 383.
*Significantly different compared with MNC and STOP-BANG.
†Significantly different compared with STOP-BANG.
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and Luna del Castillo when more than
two binary diagnostic tests were applied
to the same sample (29). All comparisons
of the diagnostic performance of the
three prediction tools using the
previously described methodologies were
accomplished with BDTcomparator
software (http://code.google.com/p/
bdtcomparator/) (30–32). All P values were
adjusted for multiple comparisons, using
Holm’s procedure (33). Comparisons of the
diagnostic performance of the prediction
tools as well as the cost-minimization
analysis were repeated with an AHI cutoff
of at least 5/hour to define the presence
of OSA.

Results

A total of 665 study participants were
included in the study with an overall OSA
prevalence of 49%; 532 study participants
had in-laboratory PSG and 133 patients
underwent HST. The demographic
characteristics are presented in Table 2.
There were no significant differences in age,
sex, BMI, and severity of OSA between
those patients who underwent an
in-laboratory PSG compared with those
who had an HST, although the latter tended
to be older.

Performance Characteristics of OSA
Prediction Tools
For the derivation group (Table 3), both
the STOP-BANG and MNC had higher
sensitivities compared with the OSUNet
(95, 87, and 74%, respectively), with the
STOP-BANG having the highest sensitivity
among the three clinical prediction tools.
However, the STOP-BANG also had
the lowest specificity compared with the
MNC and the OSUNet (21, 42, and 78%,
respectively). The OSUNet had the highest
positive predictive value (PPV) compared
with the MNC and the STOP-BANG (76,
58, and 53%, respectively). There were no
significant differences in the negative
predictive values (NPVs).

For validation group 1 (Table 4), both
the STOP-BANG and MNC had higher
sensitivities compared with the OSUNet
(97, 89, and 63%, respectively), with the
STOP-BANG having the highest sensitivity
among the three clinical prediction tools.
The STOP-BANG also had the lowest
specificity compared with the MNC and the
OSUNet (12, 30, and 70%, respectively).

The OSUNet had the highest PPV
compared with the MNC and the STOP-
BANG (67, 55, and 51%, respectively). There
were no significant differences in the NPV.

For validation group 2 (Table 5), both
the STOP-BANG and MNC had higher
sensitivities compared with the OSUNet
(97, 93, and 70%, respectively). The STOP-
BANG and the MNC had lower specificities
compared with the OSUNet (30, 44, and
79%, respectively). The OSUNet had the
highest PPV compared with the MNC
and the STOP-BANG (82, 69, and 65%,
respectively). There were no significant
differences in the NPV.

Comparison of the 1LRs is shown in
Figure 2 with the P values. In all groups, the
OSUNet had significantly higher 1LR
compared with the other prediction tools.
The MNC had a higher 1LR compared
with the STOP-BANG in the derivation
group (P , 0.001) and also tended to be

higher in validation group 1 (P = 0.056)
and validation group 2 (P = 0.087)
compared with the STOP-BANG. There
were no significant differences in the –LRs in
all groups among the three prediction tools.

The diagnostic performance
characteristics of the OSA prediction tools
using an AHI cutoff of at least 5/hour to
define OSA in the derivation group,
validation group 1, and validation group 2
are shown in the online supplement (Tables
E2, E3, and E4, respectively). Using the
lower AHI cutoff, the 1LRs of the OSUNet
and MNC were higher compared with the
STOP-BANG in both validation groups,
but the differences did not achieve
statistical significance.

Cost-Minimization Analysis
Results of the cost-minimization analysis for
the various clinical pathways are shown in
Table 6 for an OSA prevalence of 49% and

Table 4. Diagnostic characteristics of obstructive sleep apnea prediction tools with
95% confidence intervals in validation group 1

OSUNet MNC STOP-BANG

Sensitivity 0.63 (0.51–0.74)* 0.89 (0.80–0.95)† 0.97 (0.91–1.00)
Specificity 0.70 (0.58–0.80)* 0.30 (0.20–0.42)† 0.12 (0.06–0.21)
PPV 0.67 (0.54–0.78)* 0.55 (0.46–0.64) 0.51 (0.43–0.60)
NPV 0.66 (0.55–0.76) 0.74 (0.55–0.88) 0.82 (0.48–0.98)
Positive LR 2.08 (1.42–3.06)* 1.28 (1.08–1.51) 1.10 (1.01–1.20)
Negative LR 0.53 (0.38–0.74) 0.36 (0.17–0.76) 0.23 (0.05–1.04)

Definition of abbreviations: LR, likelihood ratio; MNC, modified neck circumference; NPV, negative
predictive value; PPV, positive predictive value; STOP-BANG, Snoring, Tiredness, being Observed to
stop breathing during sleep, high blood Pressure, Body mass index greater than 35 kg/m2, Age
greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
Note: n = 149.
*Significantly different compared with MNC and STOP-BANG.
†Significantly different compared with STOP-BANG.

Table 5. Diagnostic characteristics of obstructive sleep apnea prediction tools with
95% confidence intervals in validation group 2

OSUNet MNC STOP-BANG

Sensitivity 0.70 (0.57–0.82)* 0.93 (0.83–0.98) 0.97 (0.88–0.99)
Specificity 0.79 (0.64–0.90)* 0.44 (0.29–0.60) 0.30 (0.17–0.46)
PPV 0.82 (0.68–0.91)* 0.69 (0.57–0.79) 0.65 (0.54–0.75)
NPV 0.68 (0.52–0.79) 0.83 (0.61–0.95) 0.87 (0.60–0.98)
Positive LR 3.35 (1.83–6.14)* 1.67 (1.27–2.19) 1.38 (1.13–1.69)
Negative LR 0.38 (0.25–0.58) 0.16 (0.06–0.43) 0.12 (0.03–0.49)

Definition of abbreviations: LR, likelihood ratio; MNC, modified neck circumference; NPV, negative
predictive value; PPV, positive predictive value; STOP-BANG, Snoring, Tiredness, being Observed to
stop breathing during sleep, high blood Pressure, Body mass index greater than 35 kg/m2, Age
greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
Note: n = 100.
*Significantly different compared with MNC and STOP-BANG.

ORIGINAL RESEARCH

1068 AnnalsATS Volume 11 Number 7| September 2014

http://code.google.com/p/bdtcomparator/
http://code.google.com/p/bdtcomparator/


20%, respectively (calculated in 1,000
patients). The use of all clinical prediction
tools in the algorithm had positive cost

savings compared with the third-party
approach. The cost savings were greater
with the use of the OSUNet when the

prevalence of OSA was lower, at 20%, such
as what may be encountered in primary
care clinics. In the latter situation, the cost
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Figure 2. Comparison of positive likelihood ratios of clinical prediction tools. (A) Derivation group, (B) validation group 1, and (C) validation group 2. The error bars
represent 95% confidence intervals. MNC = modified neck circumference; STOP-BANG, Snoring, Tiredness, being Observed to stop breathing during sleep,
high blood Pressure, Body mass index greater than 35 kg/m2, Age greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
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savings for every 1,000 patients when the
OSUNet was used to select those who
should undergo an HST as the initial
diagnostic procedure compared with the
third-party approach were $84,237. When
extrapolated to the entire U.S. population, the
cost savings were $112,912,432 per year. As
shown in Table 6, the use of either the STOP-
BANG or MNC as a guide to selecting
patients who should undergo an HST as the
initial diagnostic test also offered cost savings
compared with the third-party approach;
the savings from both these tools were also
greater with lower OSA prevalence.

Sensitivity Analysis
The sensitivity analysis of the effect of OSA
prevalence for the use of the three clinical
prediction tools is shown in Figure 3.
The cost savings and the 95% confidence
interval of the cost savings using the
OSUNet, MNC, and STOP-BANG
according to varying prevalence of OSA is
shown in Figures 3A–3C, respectively. The
cost savings increased if the population
where the clinical pathway was applied had
a lower prevalence of OSA, with the use of
the OSUNet resulting in the biggest savings
when the OSA prevalence was less than
40%. Conversely, if the population being
studied had an extremely high OSA
prevalence the savings from using the
clinical prediction tools were reduced. Use
of the OSUNet, MNC, and STOP-BANG

compared with the third-party approach
resulted in positive savings only when the
OSA prevalence was less than 52, 72, and
78%, respectively. Similar findings were
achieved when the presence of OSA was
defined as an AHI of at least 5/hour instead of
at least 15/hour. Use of the OSUNet, MNC,
and STOP-BANG compared with the third-
party approach resulted in positive savings
only when the OSA prevalence was less than
58, 66, and 74%, respectively (Figure 4).

The second sensitivity analysis for use
of the OSA clinical prediction tools is shown
in Figure E1, using an OSA prevalence
of 49%, the prevalence in our clinic
population. The cost savings from use of
the OSA clinical prediction tools were
calculated according to varying proportions
of HST from 1.0 to 0 used as the initial
test to diagnose OSA in the third-party
approach. The cost savings from use of the
OSA clinical prediction tools were greater if
the proportion of HSTs used as the initial
diagnostic procedure by the third-party
payer was lower than 1.0. As expected,
a strategy of using only in-laboratory PSG as
the initial diagnostic procedure (0% HST
and 100% in-laboratory PSG) had the
highest expense in the third-party approach.

Discussion

This study investigated the diagnostic
performance characteristics of two widely

used clinical prediction tools for OSA
(STOP-BANG and MNC) and the newly
developed OSUNet. We then performed
a cost-minimization analysis in which the
three prediction tools were used to select
patients who should undergo an HST as the
initial diagnostic procedure compared with
an approach now being adopted by third-
party payers to use HSTs in all patients
regardless of clinical probability. The major
findings of this study are (1) the newly
developed OSUNet, which is based on
ANN technology, had a higher 1LR
compared with the STOP-BANG and
MNC; (2) all three prediction tools have
equivalent –LRs, but these are not sufficient
to exclude the need for a sleep study; (3) the
routine requirement of an HST to diagnose
OSA regardless of clinical probability is
more costly compared with the use of OSA
clinical prediction tools that identify
patients who should undergo this
procedure when OSA is expected to be
present in less than half of the population;
and (4) the savings from the clinical
prediction tools were greater when used in
a population with lower OSA prevalence,
with the biggest savings derived from
the use of the OSUNet when the OSA
prevalence was less than 40%. The use of
the clinical prediction tools also resulted in
net savings regardless of the proportion of
HSTs and in-laboratory PSGs that third-
party payers would authorize as the initial
diagnostic test for patients suspected of
OSA. In settings where the prevalence of
OSA is expected to be substantially lower
than in sleep centers, such as in primary
care clinics (24, 25), we believe that use of
the OSUNet as a guide to which patients
should undergo an HST versus an
in-laboratory PSG to establish the diagnosis
of OSA offers substantial benefits to all
stakeholders involved in the process—the
patients who are being evaluated for OSA
(because of convenience if they are good
candidates for the portable HST and
avoidance of repetitive testing), the health
care providers who order the sleep studies
(because it facilitates decision-making on
what type of test to order), and the third-
party payers who reimburse for the diagnostic
testing (because of substantial cost savings).
To our knowledge, this is the first study that
has performed a cost-minimization analysis
that can be derived from the use of OSA
clinical prediction tools.

Physicians are faced with two questions
during the evaluation of an individual with

Table 6. Results of cost-minimization analysis in 1,000 patients

Third-Party Approach OSUNet MNC STOP-BANG

OSA Prevalence = 0.49
Cost A: HST (US$) 174,000 78,405 128,806 144,180
Cost B: In-lab PSG (US$) 333,483 157,659 104,027
Cost C: In-lab PSG for
patients with negative HST
(US$)

309,570 64,794 172,783 215,979

Total cost (US$) 483,570 476,682 459,248 464,186
Savings per 103 patients with
prediction tool (US$)

6,888 24,322 19,384

OSA Prevalence = 0.20
Cost A: HST (US$) 174,000 53,556 110,051 130,695
Cost B: In-lab PSG (US$) 420,170 223,087 151,069
Cost C: In-lab PSG for
patients with negative HST
(US$)

485,600 101,637 271,032 338,791

Total cost (US$) 659,600 575,363 604,170 620,555
Savings per 103 patients with
prediction tool (US$)

84,237 55,430 39,045

Definition of abbreviations: AHI, apnea–hypopnea index; BMI, body mass index; HST, home sleep
test; MNC, modified neck circumference; OSA, obstructive sleep apnea; PSG, polysomnography;
STOP-BANG, Snoring, Tiredness, being Observed to stop breathing during sleep, high blood
Pressure, Body mass index greater than 35 kg/m2, Age greater than 50 years, Neck circumference
greater than 40 cm, and male Gender.
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symptoms consistent with OSA. The first
question is whether the patient warrants
a PSG. Unfortunately, the assignment of
OSA probability via clinician impression
has been shown to be inferior to clinical
prediction rules (10). This has resulted in
the use of OSA clinical prediction tools.
The majority of these prediction tools are
based on regression analysis. Two OSA
clinical prediction rules that have been

widely used are the STOP-BANG (11) and
MNC (6, 10, 13), likely because of their
simplicity and ease of calculation.
Consistent with prior studies on these tools,
we found that they both indeed have high
sensitivity, but suffer from low specificity
(12, 34, 35), particularly the STOP-BANG
questionnaire. Their 1LRs were less than
2 in all three of our patient groups and
therefore use of these tools did not result in

any substantial change in the probability of
having OSA in any particular patient (36).
Our results are consistent with a prior study
that examined the diagnostic characteristics
of the STOP-BANG in a large community
sample (n = 4,770) included in the Sleep
Heart Health Study (34). In this community
sample, the STOP-BANG was found to
have a sensitivity of 87%, specificity of
43%, 1LR of 1.5, and –LR of 0.30. A
systematic review also reported the same
characteristics of this tool with a sensitivity
of 93%, specificity of 35%, 1LR of 1.4, and
–LR of 0.20 (9). More recently, the authors
of the STOP-BANG questionnaire have
advocated a change in the criteria of having
a high probability of moderate to severe
OSA to at least 5 instead of at least 3 (37).
With this change in cutoff, they reported
a sensitivity of 23%, specificity of 56%,
PPV of 31%, and NPV of 45%. Therefore,
the 1LR will be even lower and would
not improve the results even if we had
used this new cutoff in our groups of
patients.

ANN technology mimics the human
brain’s own problem-solving process (38).
Just as humans apply knowledge gained
from past experience to new problems,
a neural network takes previously solved
examples to build a system of neurons
(nodes) that makes new decisions and
classifications. It provides an alternative to
logistic regression, the most commonly
used method for developing predictive
models for dichotomous outcomes in
medicine (14). Compared with regression,
ANN offers several advantages in
prediction including the ability to implicitly
detect complex nonlinear relations between
dependent and independent variables, the
ability to detect all possible interactions
between predictor variables, and the
availability of multiple training algorithms
(14). We found that the newly developed
OSUNet, a prediction tool based on ANN,
had higher 1LR compared with the other
OSA prediction tools. We have used
the 1LR to compare the three clinical
predictions because it constitutes one of the
best ways to measure diagnostic accuracy
(39). In our clinic population, the OSUNet
provided a better prediction of the presence
of OSA (changing the probability by about
20%) compared with the STOP-BANG or
MNC. We also found that none of the three
clinical prediction tools have sufficiently
low –LR to exclude the possibility of OSA,
and therefore they would have limited
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Figure 3. Cost savings from the use of prediction tools using an apnea–hypopnea index (AHI) of at
least 15/hour to define the presence of obstructive sleep apnea (OSA). (A) Savings per 1,000 patients
using the OSUNet to select patients to undergo a home sleep test (HST) as the initial diagnostic
procedure according to prevalence of OSA. (B) Savings per 1,000 patients using the modified neck
circumference (MNC) to select patients to undergo HST as the initial diagnostic procedure according
to prevalence of OSA. (C ) Savings per 1,000 patients using the STOP-BANG to select patients
to undergo HST as the initial diagnostic procedure according to prevalence of OSA. The dashed

lines represent the corresponding 95% confidence intervals. STOP-BANG, Snoring, Tiredness,
being Observed to stop breathing during sleep, high blood Pressure, Body mass index greater than
35 kg/m2, Age greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
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usefulness in negating the need for a sleep
study (36).

The second question that a clinician is
faced with is the type of sleep study to
order—whether an in-laboratory PSG
or an HST. Increasingly, this decision
is out of the hands of practitioners
because many third-party payers
now require preauthorization for an
in-laboratory PSG, but not for an HST.

That HSTs have a significant role in the
diagnosis of OSA is now indeed supported
by several studies (6, 7). This change has
resulted in third-party payers adopting
a policy of requiring the portable HST as
the initial diagnostic procedure for all
patients regardless of clinical probability
(40). However, most of the studies
supporting a role for HSTs were done in
populations where the prevalence of OSA is

high. For example, in a study that showed
the noninferiority of ambulatory
management of OSA, the prevalence of the
condition was 88% (7). Indeed, our study
suggests that when the prevalence of OSA is
that high, the cost savings derived from the
clinical prediction tools as a guide to PSG
are nonexistent. However, this is not the
situation in the majority of clinical settings
where the prevalence of OSA is expected
to be much lower, for example, in primary
care offices where the prevalence has
been reported to be 18–23% (24, 25).
Interestingly, these previously reported
OSA prevalences in the primary care clinics
are similar to the most recent estimate
of 15% in the general population in the
Wisconsin Sleep Cohort when OSA is
defined as an AHI of at least 5/hour in
symptomatic patients (Epworth Sleepiness
Scale score . 10) (41). We used an AHI
cutoff of at least 15/hour to define the
presence of OSA in our primary analysis
mainly because treatment of these
individuals is considered standard of
practice, whereas treatment of those with
an AHI of 5–14/hour is considered an
option and remains controversial (42).
Nonetheless, when an AHI cutoff of at least
5/hour was used to define the presence of
OSA in our study, we also found that
the third-party approach is more costly
compared with the use of OSA clinical
prediction tools when OSA is present in less
than half of the population. When the
volume of sleep studies performed in the
United States is taken into consideration
(1), the amount of cost savings per year
from using a simple tool such as the
OSUNet is significant. Furthermore, use
of the OSUNet within the clinical algorithm
in Figure 1 also offers an objective tool in
helping the practitioner make consistent
decisions as to which patients should
go on to have an HST versus an
in-laboratory PSG.

Three prior studies have reported the
use of ANN to predict the presence and
severity of OSA based on demographic
characteristics and answers to sleep
questionnaires (19, 20, 43). However, none
of these studies compared their diagnostic
performance with the widely used STOP-
BANG and MNC prediction tools in the
same group of patients. In addition, these
prior studies also did not involve HSTs and
none performed a cost-minimization
analysis regarding use of the prediction
tools to guide clinicians to identify those
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Figure 4. Cost savings from the use of prediction tools using an apnea–hypopnea index (AHI) of at
least 5/hour to define the presence of obstructive sleep apnea (OSA). (A) Savings per 1,000 patients
using the OSUNet to select patients to undergo a home sleep test (HST) as the initial diagnostic
procedure according to prevalence of OSA. (B) Savings per 1,000 patients using the modified neck
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to prevalence of OSA. (C ) Savings per 1,000 patients using the STOP-BANG to select patients to
undergo HST as the initial diagnostic procedure according to prevalence of OSA. The dashed

lines represent the corresponding 95% confidence intervals. STOP-BANG, Snoring, Tiredness,
being Observed to stop breathing during sleep, high blood Pressure, Body mass index greater than
35 kg/m2, Age greater than 50 years, Neck circumference greater than 40 cm, and male Gender.
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who will be ideal candidates for
in-home tests.

Our study had limitations. First, we
assumed that all patients who had a negative
HST will be referred by their practitioner
for an in-laboratory PSG. As stated
previously, clinicians have a low threshold to
proceed with an in-laboratory study for
symptomatic patients with a negative HST,
and because a significant proportion of
patients with a negative HST may have
significant OSA when studied in the
laboratory (6, 7). Therefore, we believe that
our assumption would be reasonable.
However, the proportion of patients with
a negative HST who would really need to
be referred for an in-laboratory PSG (as
opposed to other nontesting strategies such
as clinical follow-up) is unknown. This
matter should be the subject of future
studies because additional significant
savings could be anticipated if it could be
predicted reliably which patients with
a negative in-home test will also turn out to
have a negative in-laboratory PSG. It is
entirely possible that patients predicted by
the OSUNet to have a low probability of
having OSA with a negative HST do not
need to have an in-laboratory test. Second,

our study participants are clinic patients
with a relatively high prevalence (49%) of
OSA. Further studies will be needed in the
primary care setting, where the prevalence
of OSA is expected to be lower, to
determine the test characteristics and cost
savings from the OSUNet. Our sensitivity
analysis, however, suggests that even
greater cost savings from use of the
OSUNet could be achieved when the
prevalence of OSA is lower. Third, our
study involved only a single sleep disorders
center. Multicenter studies involving
a larger number of patients will be needed
to determine the generalizability of our
findings. Fourth, it was beyond the scope
of our study to take into account the
treatment phase in our cost-minimization
analysis. However, two studies show that
the use of automatic continuous positive
airway pressure (CPAP) titration at home
has equivalent outcomes in those OSA
patients without significant comorbidities
compared with an in-laboratory CPAP
titration. Therefore, this approach would be
a reasonable strategy for treatment after
a diagnosis of OSA has been confirmed by
PSG in the majority of cases. Finally, our
study applies to the evaluation of OSA only

and we recognize that sleep clinicians
evaluate patients with other sleep disorders
that may require an in-laboratory PSG.

In summary, when the prevalence of
OSA is less than 52%, our study strongly
suggests that an approach requiring an HST
regardless of clinical probability that is
increasingly being adopted by third-party
payers results in greater costs compared
with a clinical pathway incorporating the
OSA clinical prediction tools to identify
patients who should undergo an HST. The
OSUNet, as compared with the MNC and
STOP-BANG, offers greater savings when
the OSA prevalence is less than 40%, such as
what may be expected in the primary care
setting. The savings are substantial when
extrapolated to the number of sleep studies
done in the United States. The savings from
use of the OSA clinical prediction tools are
more pronounced the lower the prevalence
of OSA in the population to which it is
applied. Future studies involving other sleep
disorders center as well as primary care
clinics are needed to determine the
generalizability of our findings. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

References

1 Tachibana N, Ayas NT, White DP. A quantitative assessment of sleep
laboratory activity in the United States. J Clin Sleep Med 2005;1:
23–26.

2 Pack AI. What can sleep medicine do? J Clin Sleep Med 2013;9:629.
3 Quan SF, Epstein LJ. A warning shot across the bow: the changing face

of sleep medicine. J Clin Sleep Med 2013;9:301–302.
4 Ayas NT, Fox J, Epstein L, Ryan CF, Fleetham JA. Initial use of portable

monitoring versus polysomnography to confirm obstructive sleep
apnea in symptomatic patients: an economic decision model. Sleep
Med 2010;11:320–324.

5 Collop NA, Anderson WM, Boehlecke B, Claman D, Goldberg R,
Gottlieb DJ, Hudgel D, Sateia M, Schwab R; Portable Monitoring
Task Force of the American Academy of Sleep Medicine. Clinical
guidelines for the use of unattended portable monitors in the
diagnosis of obstructive sleep apnea in adult patients. J Clin Sleep
Med 2007;3:737–747.

6 Rosen CL, Auckley D, Benca R, Foldvary-Schaefer N, Iber C, Kapur V,
Rueschman M, Zee P, Redline S. A multisite randomized trial of
portable sleep studies and positive airway pressure autotitration
versus laboratory-based polysomnography for the diagnosis and
treatment of obstructive sleep apnea: the HomePAP study. Sleep
2012;35:757–767.

7 Kuna ST, Gurubhagavatula I, Maislin G, Hin S, Hartwig KC, McCloskey
S, Hachadoorian R, Hurley S, Gupta R, Staley B, et al. Noninferiority
of functional outcome in ambulatory management of obstructive
sleep apnea. Am J Respir Crit Care Med 2011;183:1238–1244.

8 Masa JF, Corral J, Pereira R, Duran-Cantolla J, Cabello M, Hernández-
Blasco L, Monasterio C, Alonso A, Chiner E, Zamorano J, et al.;
Spanish Sleep Network. Therapeutic decision-making for sleep
apnea and hypopnea syndrome using home respiratory polygraphy:
a large multicentric study. Am J Respir Crit Care Med 2011;184:
964–971.

9 Myers KAMM, Mrkobrada M, Simel DL. Does this patient have
obstructive sleep apnea? The Rational Clinical Examination
systematic review. JAMA 2013;310:731–741.

10 Flemons WW, Whitelaw WA, Brant R, Remmers JE. Likelihood ratios for
a sleep apnea clinical prediction rule. Am J Respir Crit Care Med
1994;150:1279–1285.

11 Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S,
Khajehdehi A, Shapiro CM. STOP questionnaire: a tool to screen
patients for obstructive sleep apnea. Anesthesiology 2008;108:
812–821.

12 Rowley JA, Aboussouan LS, Badr MS. The use of clinical prediction
formulas in the evaluation of obstructive sleep apnea. Sleep 2000;23:
929–938.

13 Flemons WW. Clinical practice: obstructive sleep apnea. N Engl J Med
2002;347:498–504.

14 Tu JV. Advantages and disadvantages of using artificial neural
networks versus logistic regression for predicting medical outcomes.
J Clin Epidemiol 1996;49:1225–1231.

15 Baxt WG. Use of an artificial neural network for the diagnosis of
myocardial infarction. Ann Intern Med 1991;115:843–848.

16 Iber C, Ancoli-Israel S, Chesson A, and Quan SF; for the American
Academy of Sleep Medicine. The AASM manual for the scoring of
sleep and associated events: rules, terminology, and technical
specifications. Westchester, IL: American Academy of Sleep
Medicine; 2007.

17 Hoehfeld M, Fahlman SE. Learning with limited numerical precision
using the cascade-correlation algorithm. IEEE Trans Neural Netw
1992;3:602–611.

18 Fahlman S, Lebiere C. The cascade-correlation learning architecture.
In: Touretzky D, editor. Advances in neural information processing
systems. San Mateo, CA: Morgan Kaufmann; 1990, pp. 524–532.

19 Kirby SD, Eng P, Danter W, George CF, Francovic T, Ruby RR,
Ferguson KA. Neural network prediction of obstructive sleep apnea
from clinical criteria. Chest 1999;116:409–415.

ORIGINAL RESEARCH

Teferra, Grant, Mindel, et al.: Cost Minimization Using a Sleep Apnea Prediction Tool 1073

http://www.atsjournals.org/doi/suppl/10.1513/AnnalsATS.201404-161OC/suppl_file/disclosures.pdf
http://www.atsjournals.org


20 el-Solh AA, Mador MJ, Ten-Brock E, Shucard DW, Abul-Khoudoud M,
Grant BJ. Validity of neural network in sleep apnea. Sleep 1999;22:
105–111.

21 Robinson R. Costs and cost-minimisation analysis. BMJ 1993;307:
726–728.

22 Higgins AM, Harris AH. Health economic methods: cost-minimization,
cost-effectiveness, cost-utility, and cost-benefit evaluations. Crit
Care Clin 2012;28:11–24, v.

23 Young TK, Martens PJ, Taback SP, Sellers EA, Dean HJ, Cheang M,
Flett B. Type 2 diabetes mellitus in children: prenatal and early
infancy risk factors among native Canadians. Arch Pediatr Adolesc
Med 2002;156:651–655.

24 Kushida CA, Nichols DA, Simon RD, Young T, Grauke JH, Britzmann JB,
Hyde PR, Dement WC. Symptom-based prevalence of sleep disorders
in an adult primary care population. Sleep Breath 2000;4:9–14.

25 Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK. Prevalence of
diagnosed sleep apnea among patients with type 2 diabetes in
primary care. Chest 2012;141:1414–1421.

26 Efron BTR. Bootstrap methods for standard errors, confidence intervals
and other measures of statistical accuracy. Stat Sci 1986;1:54–77.

27 Masa JF, Corral J, Pereira R, Duran-Cantolla J, Cabello M, Hernández-
Blasco L, Monasterio C, Alonso A, Chiner E, Rubio M, et al.
Effectiveness of home respiratory polygraphy for the diagnosis of
sleep apnoea and hypopnoea syndrome. Thorax 2011;66:567–573.

28 Moskowitz CS, Pepe MS. Comparing the predictive values of
diagnostic tests: sample size and analysis for paired study designs.
Clin Trials 2006;3:272–279.

29 Nofuentes JAR, Luna del Castillo JdD. Comparison of the likelihood
ratios of two binary diagnostic tests in paired designs. Stat Med
2007;26:4179–4201.

30 Fijorek K, Fijorek D, Wisniowska B, Polak S. BDTcomparator:
a program for comparing binary classifiers. Bioinformatics 2011;27:
3439–3440.

31 Jastrzebski M, Kukla P, Fijorek K, Sondej T, Czarnecka D.
Electrocardiographic diagnosis of biventricular pacing in patients
with nonapical right ventricular leads. Pacing Clin Electrophysiol
2012;35:1199–1208.

32 Arias-Loste MT, Bonilla G, Moraleja I, Mahler M, Mieses MA, Castro B,
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