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Abstract

Rationale:Mostgenomic studiesof lung functionhaveusedphenotypic
data derived from a single time-point (e.g., presence/absence of disease)
without considering the dynamic progression of a chronic disease.

Objectives: To characterize lung function change over time in
subjects with asthma and identify genetic contributors to a longitudinal
phenotype.

Methods:Wepresent amethod thatmodels longitudinal FEV1 data,
collected from 1,041 children with asthma who participated in the
Childhood Asthma Management Program. This longitudinal
progression model was built using population-based nonlinear
mixed-effects modeling with an exponential structure and the
determinants of age and height.

Measurements and Main Results:We found ethnicity was a key
covariate for FEV1 level. Budesonide-treated children with asthma had
a slightbut significant effect onFEV1whencomparedwith those treated

with placebo or nedocromil (P, 0.001). A genome-wide association
study identified seven single-nucleotide polymorphisms nominally
associated with longitudinal lung function phenotypes in 581 white
Childhood Asthma Management Program subjects (P, 1024 in the
placebo [“discovery”] and P, 0.05 in the nedocromil treatment
[“replication”] group). Using ChIP-seq and RNA-seq data, we found
that some of the associated variants were in strong enhancer regions in
human lung fibroblasts and may affect gene expression in human lung
tissue. Genetic mapping restricted to genome-wide enhancer single-
nucleotide polymorphisms in lung fibroblasts revealed a highly
significant variant (rs6763931; P = 43 1026; false discovery
rate, 0.05).

Conclusions: This study offers a strategy to explore the genetic
determinants of longitudinal phenotypes, provide a comprehensive
picture of disease pathophysiology, and suggest potential treatment
targets.
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Genome-wide association studies (GWASs)
have greatly contributed to the identification
of genes and genetic variants conferring
susceptibility to complex diseases and other
heritable traits, such as lung function (1–4).
For example, a metaanalysis of GWASs has
implicated several independent loci for
association with forced expiratory volume
in 1 second (FEV1) in the general
population (5, 6). Some genomic loci were
found to influence pulmonary function in
several populations of patients with asthma
(7). A subsequent study demonstrated that
genes involved in airway remodeling were
associated with lung function both in
general populations and in patients with
asthma (8). Using GWAS to identify the
genetic factors associated with lung function
may, in addition, lead to a greater
understanding of asthma pathophysiology.
However, in most such studies conducted to
date, the phenotype is typically defined
assuming a single time-point (e.g., the binary
classification with/without disease at a given
time or response/no-response to treatment
after one cycle). This binary “snapshot”
phenotype reflects a single depiction of the
dynamic biology, but fails to capture the
progression of a disease over time of
a chronic condition, such as asthma.

Longitudinal modeling of disease
trajectory is a useful tool to characterize
the disease progression and to identify

disease-modifying effects of drugs (9, 10). In
asthma, the most commonly used lung
function indicator is FEV1. This parameter
is highly dependent on physiologic factors
(e.g., age, body weight, height [11–14])
and pathologic conditions (e.g., severity
of asthma), and is in addition partially
genetically determined (5). Longitudinal
modeling of FEV1 allows for estimation of
an individual’s baseline lung function and
change in lung function over time, which is
independent of potentially confounding
stature-related factors. To our knowledge,
only a handful of studies have attempted
longitudinal modeling of FEV1. All were
performed in healthy subjects (11–13), with
the exception of one study that included
patients with asthma (age range, 6–88 yr).
None of these modeling studies performed
a genetic analysis (14).

In this study, we develop a method that
applies nonlinear mixed-effects modeling
(NONMEM) to longitudinal FEV1

observations with the goal of describing
lung function in children with asthma in
the presence and absence of treatment.
Furthermore, GWAS was performed to
identify genetic predictors of baseline
lung function and the rate of change in
FEV1 level over time. In our study, the
“longitudinal phenotypes” used for GWAS
were the estimates of the FEV1 baseline
level and the rate of change in FEV1 with
age for each patient derived from the
population-based model. (We use the term
“longitudinal phenotypes” throughout to
refer to the two phenotypes even though
the FEV1 baseline level is defined at a
particular [initial] time-point; “longitudinal”
refers to the fact that these phenotypes
were derived from a longitudinal modeling
approach.) These phenotypes were
independent of confounding anthropometric
factors and characterize the development
of lung function in these patients. We
hypothesized that our method, which
integrates GWAS and longitudinal
modeling, may facilitate a better
understanding of lung function in children
with asthma over time than a standard
analysis of a snapshot phenotype as
currently used.

Methods

Study Design
This study was performed using the
Childhood Asthma Management Program

(CAMP) study dataset (15). Demographic
information for the CAMP study
participants is shown in Table 1. The
CAMP study was approved by the
Institutional Review Board in all eight study
sites. Informed consent and assent were
obtained from the participants and their
guardians before enrolment (16).

Lung Function over Time and Drug
Effect Model Development
Longitudinal FEV1 (data collected every
2–4 mo in 4-yr period of time, before
administering albuterol) was fitted to
a nonlinear mixed-effects model with
extended least squares regression using the
NONMEM (Ellicott City, MD) program.
Details regarding model development and
covariate selection can be found in the
METHODS section of the online supplement.

Interindividual variability on FEV1

was evaluated using an additive error model:

Pij ¼ PTVj 1 hij ð1Þ
where Pij is the true value of the jth
parameter for the ith subject. PTVj is the
population typical value (TV) for the jth
parameter, and hij is an interindividual
random effect, which quantifies the
deviation of Pij from PTVj and is assumed
to follow a normal distribution with mean
of 0 and variance of v2

j .
Intraindividual variability was

evaluated using a combined proportional
and additive error model as follows:

FEV1obs ¼ FEV1pred$ð11 e1Þ1 e2 ð2Þ
where FEV1obs are the observations and
FEV1pred is the corresponding model
prediction. e1 and e2 are independent and
normally distributed random variables with
zero mean and variance of s2

1 and s2
2,

respectively, that account for the residual
unexplained variability. The final model
was evaluated by a nonparametric
bootstrap and the visual predictive check
to assess the predictive performance
and robustness (17, 18).

GWAS
The FEV1 for each patient was calculated
with equation 1 using NONMEM. The
individual-level parameters (theta1 and
theta3; see equation 3 in RESULTS section)
derived from the longitudinal model were
the primary phenotypes used, which
quantified the rate of change in FEV1 with
age and the baseline FEV1 level for each

At a Glance Commentary

Scientific Knowledge on the
Subject: Genome-wide association
studies of single–time-point
phenotypes have been conducted for
the discovery of genetic determinants
of lung function and/or asthma risk
in large human populations. Several
single-nucleotide polymorphisms have
been found to be reproducibly
associated with pulmonary function.

What This Study Adds to the
Field: We developed an integrative
method that combines mixed-effects
longitudinal modeling and a genome-
wide association study. This approach
may facilitate a better understanding of
the progression of a complex
phenotype over time and enable
improved discovery of genetic variants
associated with a dynamic phenotype.
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child with asthma. Genotype-phenotype
associations were calculated assuming an
additive genetic model. Details regarding
the association analyses can be found in the
METHODS section of the online supplement.
For comparison with the longitudinal
phenotypes, we also conducted GWAS on
the single-time-point phenotypes (FEV1

at 48 mo).

Functional Evaluation of Top
Single-Nucleotide Polymorphism
Associations
We annotated the GWAS-identified
variants with chromatin status using
ChromHMM (19). The WashU Epigenome
Browser was used for visualization. Using
the R package limma, we reanalyzed GEO
data GSE18965 from a microarray study
of differential expression between (atopic)
airway epithelial cells from subjects with
asthma and control subjects to determine
candidate target genes for the implicated
enhancers (20). To evaluate the relative
expression of implicated genes in a variety
of human tissues, we used RNA-Seq data
from the Illumina Human BodyMap 2.0
project (21). For details, see the METHODS

section of the online supplement.
We compared, in a quantile–quantile

(Q-Q) plot, the expected and observed
distribution of P values from the pooled
analysis for those variants mapping to
strong enhancers in lung fibroblast. We also
performed simulations (n = 100) using
single-nucleotide polymorphisms (SNPs)
that match the allele frequency and distance
to nearest gene of the SNPs that overlap

with the strong enhancers and generated
the corresponding Q-Q plot for each
simulation. We used a false discovery rate
(FDR)-based multiple testing correction
(22); FDR less than 0.05 was used to declare
a significant association.

Genetic Association with Longitudinal
versus Single–Time-Point Phenotype
Using Chromatin Profiling Data and
the National Human Genome
Research Institute Catalog
Using the SNPs overlapping the chromatin
states in normal human lung fibroblast
(NHLF), we evaluated the gain in statistical
power to detect a quantitative trait locus
from the pooled analysis of the longitudinal
phenotypes in relation to the single–time-
point phenotypes.

We also compared the P values from
each set of phenotypes for the SNPs that
have been found to be reproducibly
associated with lung function as curated
in the National Human Genome Research
Institute (NHGRI) catalog of published
GWAS.

Results

Longitudinal Model of FEV1 in
Children with Asthma
Both exponential and linear structural
models were evaluated using the CAMP
prebronchodilator FEV1 data. Before testing
potential clinical covariates, we established
a base model by evaluating age, body
weight, height, sex, and body mass index as

potential determinants of FEV1 change
over time. Akaike information criterion
(AIC) was used to compare the reference
structural models (see Table E1). The best
prediction for FEV1 was achieved by an
exponential function of age and height:

FEV1 ¼ expðtheta1 3 age1 theta2 3 height

2 theta3Þ1 thetadrugeffect

ð3Þ
In equation 3, theta1 and theta2 are the rate
of change in FEV1 associated with age
and height, respectively. The theta3 refers to
a baseline level for FEV1 (i.e., the FEV1

level at birth assuming the model is
applicable to that age range). We evaluated
the model that assumes a different
definition of baseline level (defined at the
mean age of 9, rather than age at birth) and
found that the original theta3 and the
new theta3 were significantly correlated
(Spearman correlation of 0.97; P , 2.2 3
10216). A comparison of the two models
can be found in the METHODS section of the
online supplement and Table E2.

The fit of the base model (including age
and height) was not improved by the
addition of sex, body weight, and body mass
index in children with asthma (P . 0.05).
Using the base model, additional covariates
(listed in Table 1) were evaluated. Among
them, only race was found to be a key
covariate. The FEV1 level was similar
between whites and Mexican Americans,
but it was significantly lower in African
American children with asthma.
Furthermore, we analyzed the model that

Table 1. Demographic Information of the Patients at the Time of Enrollment

Characteristic Placebo Nedocromil Budesonide

Number 418 312 311
Age, yr 9.0 6 2.2 8.8 6 2.1 9.0 6 2.1
Sex, male/female 234/184 206/106 181/130
Race, n (%)
White 292 (69.9) 218 (69.9) 201 (64.6)
African American 56 (13.4) 38 (12.2) 44 (14.1)
Mexican American 37 (8.9) 29 (9.3) 32 (10.3)
Others 33 (7.9) 27 (8.7) 34 (10.9)

Height, cm 55.3 6 28.8 56.0 6 28.7 56.8 6 28.0
Body weight, kg 42.0 6 16.0 42.2 6 16.0 42.9 6 16.8
Age of first symptoms, yr 3.0 6 2.6 3.1 6 2.4 3.1 6 2.3
Year since diagnosis of asthma 4.9 6 2.7 5.0 6 2.7 5.2 6 2.6
Maternal asthma, no/yes 301/102 224/81 225/79
Paternal asthma, no/yes 301/80 243/55 219/73
Vitamin D levels 36.7 6 15.2 37.1 6 16.8 39.9 6 14.9
Mother smoked while pregnant, no/yes 349/65 266/46 271/39
Mother, dad, or other smoked after birth, no/yes 57/361 42/270 37/274
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assumes an interaction between age and
sex. Based on AIC, this interaction model
did not perform as well as the base model
(see Table E1).

Evaluating the different treatment
arms, we observed that the additive drug
effect model fit the data better than
a proportional model, with lower values of
AIC (see Table E1) and objective function
value (OFV). We found that budesonide
had a minor but statistically significant
effect on the prebronchodilator FEV1

(additive model thetadrugeffect, P , 0.001).
The FEV1 with long-term treatment of
budesonide was predicted to be 0.103 6
0.129 higher than FEV1 in the placebo

group. Nedocromil did not show any significant
effect on FEV1 when compared with the
placebo group. We observed no significant
treatment effect on the rate of change in FEV1

with age. We tested the interaction between
age and treatment (see Table E1) and found this
model, based on AIC, to perform less optimally
than our selected model.

The interindividual variability of theta2
was very small (,1026), suggesting the
rate of change in FEV1 with height was
similar among the subjects. Therefore, in
our final model, theta2’s interindividual
variability was fixed to zero. Figure 1
illustrates the relationship between the
observed and population-predicted FEV1,

and the relationship between observations
and individual predicted FEV1 values using
our final model. Most of the conditional
weighted residuals were evenly distributed
around 0 (Figure 1C).

To assess the stability of our model,
bootstrapping validation analysis was
performed. This analysis showed that
the median parameter values and the
corresponding relative standard error
resulting from the bootstrapping agreed
with the estimates from our final model
(Table 2), suggesting that the final model
fitted FEV1 observations reasonably well
and was stable. Most of the observed FEV1

fell within the 5th–95th percent prediction
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Figure 1. Goodness of fit of final model. (A) Relationship between observed FEV1 and population typical FEV1 predictions. (B) Relationship between
observed FEV1 and individual FEV1 predictions. (C) Conditional weighted residuals (WRES) versus age. Most conditional WRES evenly distributed
around 0. The solid lines are diagonal lines of identity in A and B.

Table 2. The Estimates of the Parameters from the Final Model (Equation 3)

Parameters Description

NONMEM Bootstrap

Estimate RSE (%)* Estimate RSE (%)

Theta1 Rate of change associated with age 0.0137 16.1 0.0138 16.8
Theta2 Rate of change associated with height 0.0169 2.20 0.0169 2.30
Theta3 Intercept among the ethnic groups
White/Mexican
American

1.89 1.78 1.89 1.84

African American 2.04 0.575 2.04 0.641
Others 1.95 0.742 1.94 0.787

Thetadrugeffect Drug effect of budesonide 0.103 14.1 0.108 14.4

Interindividual variability
(SD) (shrinkage %)†

Theta1 0.00722 (32.9) 0.00723
Theta3 0.0912 (26.4) 0.0915
Thetadrugeffect 0.129 (67.3) 0.123

Intraindividual variability
(shrinkage %)‡

Proportional (CV%) 5.91 (4.52) 5.91
Additive (SD) 0.0863 (4.52) 0.0859

Definition of abbreviations: CV = coefficient of variation; NONMEM = nonlinear mixed-effects modeling; RSE = relative standard error.
*Percent RSE (100% 3 standard error/estimate).
†The SD across the subjects for each parameter.
‡The CV and SD for the proportional and additive residual unexplained variability, respectively.
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intervals (Figure 2), with less than 10% of
the observations lying outside the intervals,
suggesting that the final model adequately
described most of the observed data.
Therefore, we calculated, for each CAMP
subject, the individual-level parameters
(theta1 and theta3) generated by our final
model as given by equation 1. These
individual-level parameters were used in the
subsequent GWAS analysis as phenotypes to
explore the relationship between genetic
variants and baseline FEV1 level or the
increase in FEV1 in children with asthma.

GWAS
Because of the observed ancestry effect on
FEV1 level and the potential for population
stratification (and the small sample size
of the African-American and Hispanic
cohorts), we chose to focus on white
subjects enrolled in the CAMP study for

genome-wide association analysis.
A GWAS was performed on the pooled
samples with treatment as a covariate and
in the separate placebo (292 subjects)
and nedocromil (218 subjects) groups,
because there were no observed differences
in longitudinal FEV1 between these two
groups. Association analyses between
473,680 genotyped SNPs (which passed
quality control) and the two modeled
parameters (theta1 and theta3, equation 3)
were performed. Forty-six and 53 SNPs
were nominally associated with theta1
(P , 1 3 1024) and theta3 (P , 1 3 1024),
respectively, in the placebo group. For
replication, these SNPs were further
evaluated (P , 0.05 and concordance of
effect) in the nedocromil group. Six SNPs
for theta3 (baseline FEV1 level) and one
SNP (rs17161791) for theta1 (rate of change
in FEV1 with age) showed associations at

P less than 0.05 (Table 3) in the nedocromil
treatment group. Among them, two intronic
SNPs (rs347412, P = 1.39 3 1025; rs238349,
P = 1.42 3 1025), on chromosome 13 in the
DGKH gene, showed the most significant
associations with theta3.

The variant allele for each of these four
SNPs (rs347412, rs238349, rs6763931 [see
Figure E1], and rs2304725) was associated
with higher theta3 and, therefore, lower
FEV1. For the other two SNPs (rs559389
and rs9366309), the variant allele was found
to be associated with lower theta3 leading
to higher FEV1. The variant allele of
rs17161791 was associated with higher
theta1 resulting in higher FEV1 increase
rate. Not surprisingly, the association
P values for the model parameters (theta1
and theta3) at all seven SNPs were
improved in the pooled data analysis
(placebo 1 nedocromil) relative to the
placebo-alone analysis (Table 3).

Functional Evaluation of Top
GWAS Associations
To functionally characterize our top SNP
associations, we used ChromHMM (23)
applied to ENCODE data (19, 24) from NHLF
and a lymphoblastoid cell line (GM12878). We
found that rs6763931 (intronic to ZBTB38
gene) overlaps a strong enhancer state in both
NHLF and GM12878 (Figure 3). Consistent
with this, we observed that the same SNP
coincides with an active transcription start site
in fetal lung fibroblast cells (IMR90; see Figure
E2). Differential expression analysis of the
genes at this locus between children with atopy
and with asthma and nonatopic healthy
individuals identified a nearby gene (103 kb
away), RASA2, that was highly differentially
expressed (P = 0.002; see Figure E3); in
contrast, the host gene (ZBTB38) showed
no evidence of differential expression
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Figure 2. Visual predictive check of the final model. The median, the 5th, and 95th percent prediction
intervals from visual predictive check simulation were superimposed with the observations. (A)
Placebo and nedocromil treatment groups. (B) Budesonide treatment group. The medians of model
simulations are shown by solid lines and 95% prediction intervals are encompassed by the
broken lines. The gray circles refer to the observed FEV1.

Table 3. GWAS Results

SNP Chr (Location) Allele* (Frequency) Gene

P Value (Beta)

Placebo Nedocromil Placebo 1 Nedocromil

rs347412 13 (intron) AjG (0.5435) DGKH 1.39 3 1025 (0.033) 0.0249 (0.019) 1.42 3 1026 (0.026)
rs238349 13 (intron) CjA (0.5213) DGKH 1.42 3 1025 (0.034) 0.0497 (0.016) 3.54 3 1026 (0.025)
rs559389 11 (intergenic) TjC (0.5762) — 5.28 3 1025 (20.030) 0.0428 (20.016) 9.28 3 1026 (20.023)
rs9366309 6 (intergenic) CjT (0.6333) — 3.32 3 1025 (20.033) 0.0348 (20.017) 7.05 3 1026 (20.024)
rs6763931 3 (intron) GjA (0.5675) ZBTB38 5.90 3 1025 (0.031) 0.0107 (0.020) 4.05 3 1026 (0.024)
rs2304725 3 (synonymous) TjC (0.7091) SLC6A11 3.87 3 1025 (0.033) 0.0270 (0.019) 3.04 3 1026 (0.026)
rs17161791† 7 (intergenic) TjC (0.7303) — 3.01 3 1025 (0.002) 0.0249 (0.001) 1.56 3 1026 (0.002)

Definition of abbreviations: GWAS = genome-wide association studies; SNP = single-nucleotide polymorphism.
*The first allele is the common allele in whites followed by its frequency; bolded allele indicates effect allele.
†The last SNP is associated with theta1, the other six SNPs are associated with theta3.
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(P = 0.21; see Figure E4) (20). (In all, four
genes [RASA2, ZBTB38, RNF7, and
SLC25A36] in a 1-Mb region centered at
the SNP rs6763931 were tested; thus the
differential expression of RASA2 meets
Bonferroni significance.) The nongenic
SNP rs559389, another top association, is
in strong linkage disequilibrium (r2.0.80
in 1,000 Genomes EUR) with variants
(rs538322, rs3018303, and rs12366105)
that also overlap regions of strong
enhancer histone marks in NHLF.

Finally, we tested our top SNPs for
association with expression in a variety of
tissues. We found that rs238349 is a cis-
acting expression quantitative trait locus in
lung for diacylglycerol kinase, eta (DGKH;
P = 5.2 3 1025), using public GTEx RNA-
seq data (Broad) (25). DGKH is most
highly expressed in prostate and lung in
a comparison of 16 human tissues (see
Table E3).

Taken together, these results provide
strong evidence that our top SNPs are likely
to mediate their phenotypic effect via
transcriptional mechanisms in lung
fibroblast and/or an immune-related tissue.

Genetic Association with Longitudinal
versus Single–Time-Point Phenotype

Comparison for genetic variants in enhancer
regions in lung fibroblast cells. Because
of the small sample size, we did not
expect any SNPs to reach genome-wide

significance according to a conservative
Bonferroni adjustment. Remarkably,
the Q-Q plot in the pooled analysis
restricted to regions enriched for
functional SNPs (e.g., see Figure 4 for the
Q-Q plot of SNPs overlapping strong
enhancer regions in human lung
fibroblast; n = 10,751 interrogated SNPs)
showed a highly significant association

(rs6763931; FDR ,0.05; P = 4.05 3
1026) with theta3.

As expected, GWAS of single–time-
point phenotypes in the pooled dataset
yielded no genome-wide significant
findings, nor was there a Bonferroni-
adjusted significant association with any
single–time-point phenotypes among the
SNPs in strong enhancer regions in NHLF.
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a strong enhancer in normal human lung fibroblast (NHLF) and in a lymphoblastoid cell line (GM12878).
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Table 4, for example, shows a comparison
of the association results between our
longitudinal phenotypes and FEV1 at
48 months (single time-point) for SNPs that
intersect strong enhancer states in NHLF.
Furthermore, none of the simulated
datasets (n = 100) showed a significant
association (FDR , 0.05).

Comparison for pulmonary function
associated SNPs curated in the NHGRI
catalog. The NHGRI GWAS catalog (26)
lists more than 50 SNPs that have been
found to be associated with at least one
of the pulmonary functional terms
(represented by FEV1 or FEV1/FVC or
forced expiratory flow). Of these, 23 were
genotyped in the CAMP dataset (see
Table E4). Consistent with the observed
improvement to detect a significant
association with a longitudinal phenotype,
but not with a single–time-point
phenotype, using SNPs that overlap
regulatory regions, no reproducible lung
function–associated SNP as curated in
NHGRI catalog (26) showed a nominally
significant association (P , 0.05) (Table 4)
with the single–time-point phenotypes; in
contrast, we observed five SNP associations
with our longitudinal phenotypes. These
include rs4762767 and rs58667 for theta1
and rs1291183, rs12984174, and rs2571445
for theta3.

Discussion

In this study, we developed an integrative
method that combines population-based
mixed-effects modeling and GWAS to
identify SNPs that may contribute to
baseline FEV1 or rate of change in FEV1

with age in children with asthma. Current
approaches to finding disease susceptibility
loci are primarily based on single-time-
point phenotypes yielding results that

reflect only a snapshot of the dynamic
biology of disease. These approaches, which
focus on limited observations, are prone
to bias. Population-based mixed-effects
modeling, used in this study, considers
all FEV1 observations by concurrently
fitting them. The random errors can be
appropriately accounted for by repeated
measures per subjects (9). Additionally,
FEV1 is highly dependent on the
pathophysiologic condition in children
(11–14). A significant association between
the genotype and FEV1 observed at
a selected time-point may be related to
a confounding factor (e.g., transient
bronchospasm) rather than lung function.
The individual-level parameters from our
model (used as phenotypes here), which are
defined independently of the clinical and
pathophysiologic terms, reflect baseline
lung function level and lung function
progression in this disease setting resulting
in a more appropriate and comprehensive
understanding of lung function in children
with asthma. The approach developed
here can be extended to other diseases
and/or drug effect (27) with longitudinal
data. Sikorska and coworkers (28) proposed
a two-step integrative method using the
classical linear mixed-effect model as
reference. Our method applies nonlinear
mixed-effect modeling, and both linear and
nonlinear models were tested.

Demonstrating the benefit of using
longitudinal modeling of disease, we
observed that budesonide had a small but
significant effect on FEV1 with DOFV
of 19.34 when using mixed-effects
modeling in FEV1 over a period of up to
6 years. This treatment benefit was not
reported in the previous CAMP study [2],
when % FEV1 change after bronchodilator
at a selected time-point was compared
with that of baseline. The initial CAMP
study nevertheless concluded that inhaled

corticosteroids, such as budesonide, are
still useful, because they provide better
control of asthma resulting in fewer
hospitalizations and urgent care visits to
a caregiver and reduced albuterol treatment
for symptoms (15). Our study found the
justification for the conclusion, because we
observed a significant treatment effect of
budesonide on FEV1 level in children with
asthma by using disease progression
modeling. In our study, we did not detect
any drug effect for nedocromil; indeed, the
inclusion of drug effect did not give
a significant change in OFV. This is
consistent with the previous report based
on the same dataset (15). The longitudinal
modeling described here may provide
a powerful tool to capture the long-term
drug effect over time. When applied in
clinical trials, our approach may detect
additional drug effects that would be
missed by the standard single–time-point
strategy. This is consistent with some other
previous reports in both healthy subjects
and subjects with asthma (13, 14).

We have demonstrated that age
and height are the essential physiologic
determinants of lung function growth in
children with asthma, and race is a key
covariate for FEV1 level. Hankinson and
coworkers (11) reported lung function
reference values in nonsmokers between the
ages of 8 and 80 years. They also found
age and height were predictive variables for
FEV1 function in children, consistent
with the model developed in this study.
Interestingly, in their study, whites and
Mexican Americans had similar FVC and
FEV1. The values for FVC and FEV1 were
higher than in African Americans, which
was corroborated by our results. Another
study reported that age, height, and body
weight were predictors of FEV1 in patients
with asthma ranging in age from 6 to 88
(14). However, in our study, body weight

Table 4. Comparison between Longitudinal Phenotype and Single–Time-Point Phenotype for SNPs Located in Strong Enhancer
States in Human Lung Fibroblast and SNPs Known to Be Reproducibly Associated with Lung Function as Curated in the NHGRI
Catalog

Analysis Using Enhancer SNPs in
Lung Fibroblast FDR < 0.05 FDR < 0.10

Bonferroni
(0.05/N)

Analysis Using Known Lung
Function-associated SNPs in the

NHGRI Catalog P < 0.05

Longitudinal 1 1 1 Longitudinal 5
FEV1 at 48 mo 0 0 0 FEV1 at 48 mo 0
Permuted longitudinal data (n = 100) 0 0 0

Definition of abbreviations: FDR = false discovery rate; NHGRI = National Human Genome Research Institute; SNP = single-nucleotide polymorphism.
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did not improve the goodness of fit (DOFV
,3.84; P . 0.05 after addition) likely
because of the high correlation between
height and body weight in children. Both
exponential and linear models were used
to describe the time course of FEV1 in
previous studies (11–14). Exponential
function had the best fit for our model
(see Table E1). Sex was also included in
a previous report (12), although it did not
show a significant difference in our study
(DOFV ,3.84, after addition).

We identified seven SNPs nominally
associated with the modeled FEV1

parameters in both placebo and nedocromil
groups. Of these, two intronic SNPs
(rs347412 and rs238349 in the DGKH gene)
and another SNP (rs2304725 in SLC6A11
gene) have been reported to be associated
with smoking cessation (29). Another two
SNPs have been reported to be associated
with height, namely rs347412 (30) and
rs6763931 (P = 5.90 3 1025) (31–33). The
latter one has also been implicated in
growth impairment (34). We interpret
these findings to indicate that the SNPs
we identified may also be implicated in
physiologic growth on a macro scale in
children, an observation that needs to be
further validated.

GWAS of single–time-point
phenotypes have been conducted for the
discovery of genetic determinants of lung
function and/or asthma risk in large human
populations. Of the SNPs associated with
pulmonary function in the NHGRI catalog
(26), 23 were genotyped in the CAMP
dataset. Of these, we found five SNPs were
suggestively associated with baseline level
and progression of FEV1 (P , 0.05) in our
study: rs4762767 and rs58667 for theta1
and rs1291183, rs12984174, and rs2571445
for theta3. Specifically, rs1291183, located
within the gene YES1 on chromosome 18,
was previously reported to be associated
with percent predicted FEV1 and percent
predicted FVC (P = 3.5431026 and
5.4731025, respectively) in populations of

European descent with asthma (8). This
SNP was associated with our longitudinal
phenotype (theta3 at P , 0.05) in placebo
and nedocromil treatment groups. In
addition, the SNPs rs2571445 and rs58667
were reported to be associated with FEV1

or percent predicted FEV1 with P =
1.11310212 and 3.9531027 in individuals
of European ancestry (with rs58667, the
association was seen in patients with
asthma of European ancestry) (5, 8).
rs12984174 was previously reported to be
associated with percent predicted FVC
(8.8931026) in subjects with asthma (8), as
was rs4762767 with pulmonary function
as measured by FEV1/FVC (35).

Besides replicating these five previously
reported SNPs, our study discovered seven
additional loci that may be linked to lung
function progression in asthma, suggesting
improved biologic discovery from a
longitudinal modeling approach. Indeed,
trait mapping using a longitudinal
phenotype, but not the single–time-point
phenotypes, restricted to genetic variants
that overlap enhancer regions in lung
fibroblast identified a highly significant
association. We should note that we were
still underpowered to detect associations
with the rate of change in FEV1 versus
the baseline level even with the use of
functional data. However, both theta1 and
theta3 showed improved replication
relative to single–time-point phenotypes
with respect to previously identified
loci (as found in the NHGRI catalog).
Longitudinal molecular-level and gene
expression investigations in relevant cell
types may further improve biologic
discovery.

One limitation of our study, common
in asthma genetic studies, is the small
sample size, which results in only nominally
significant findings from the GWAS.
However, the use of functional and
epigenomic datasets in relevant cell types
to prioritize genetic variants allowed us
to discover loci that pass Bonferroni

significance (Figure 4), and our longitudinal
approach (in contrast to the use of
single–time-point phenotypes) enabled us
to confirm lung function loci previously
identified by other GWAS. One notable
finding from the molecular and epigenomic
datasets used here is the differential
expression in children with atopy with
asthma versus control subjects of an
adjacent gene (RASA2), and not the
host gene (ZBTB38), to the regulatory
variant rs6763931 that overlaps an
enhancer region in lung fibroblast.
Although the exact mechanism for
this connection remains to be fully
elucidated, this finding is consistent
with several recent studies (36, 37)
showing the distal regulatory effects
(and proposing potential mechanisms),
at several hundred kilobases, of
(noncoding) enhancer SNPs associated
with complex human phenotypes. Future
studies on the functional connection
between rs6763931 and RASA2 are
warranted.

In summary, our study developed
a genetic locus mapping approach that
combines nonlinear mixed-effects
longitudinal modeling of phenotype and
GWAS. This integrative approach allows
us to identify new SNPs associated with
longitudinal lung function in childhood
asthma. These may offer insights into
the mechanism underlying pulmonary
function regulation in subjects with
asthma and may further indicate potential
treatment targets. n
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