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Abstract

Rationale: Death from infection is a highly heritable trait, yet there
are few genetic variants with knownmechanism influencing survival
during septic shock.

Objectives:Wehypothesized that a synonymous coding variant in the
IL-1 receptor antagonist gene (IL1RN), rs315952, previously associated
with reduced risk for acute respiratory distress syndrome, would be
functional and associate with improved survival in septic shock.

Methods:We used a human endotoxin (LPS) model of evoked
inflammatory stress tomeasure plasma IL-1 receptor antagonist (IL1RA)
following low-dose Food and Drug Administration–grade LPS injection
(1ng/kg) in294humanvolunteers.RNAsequencingofadipose tissuepre-
and post-LPS was used to test for allelic imbalance at rs315952. In the
Vasopressin and Septic Shock Trial cohort, we performed a genetic
association study for survival, mortality, and organ failure–free days.

Measurements and Main Results: Adipose tissue displayed
significant allelic imbalance favoring the rs315952C allele in
subjects of European ancestry. Consistent with this, carriers
of rs315952C had slightly higher plasma IL1RA at baseline
(0.039) and higher evoked IL1RA post-LPS (0.011). In the
Vasopressin and Septic Shock Trial cohort, rs315952C
associated with improved survival (P = 0.028), decreased adjusted
90-day mortality (P = 0.044), and faster resolution of shock
(P = 0.029).

Conclusions: In European ancestry subjects, the IL1RN variant
rs315952C is preferentially transcribed and associated with increased
evoked plasma IL1RA andwith improved survival from septic shock.
It may be that genetically determined IL1RA levels influence survival
from septic shock.

Keywords: septic shock; polymorphism; functional genetic
variant; RNA-seq

Septic shock remains a common cause of
death in the intensive care unit, with
mortality rates as high as 35% (1, 2).
Although improved recognition of the
syndrome and careful attention to early

antibiotic therapy (3) and hemodynamic
targets (4) have decreased mortality over
time (1), there remains no specific
pharmacotherapy for septic shock.
Furthermore, among patients meeting

criteria for septic shock, there may be
unappreciated heterogeneity in molecular
pathophysiology (5–7) or genetic
predisposition (8, 9) that influences
response to treatment or outcome. Several
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studies have suggested that either high
initial or persistent proinflammatory
cytokine levels, including IL-1b, in the
plasma may correlate with organ
dysfunction and death (7, 10, 11).

We previously identified a synonymous
coding variant in the IL-1 receptor antagonist
gene (IL1RN) associated with lower risk of
developing the acute respiratory distress
syndrome (ARDS) in three critically ill
populations (combined odds ratio, 0.81; P =
4.2 3 1025) (12). The largest population,
with more than 2,000 subjects, had sepsis as
the primary risk factor for ARDS (12). The
IL1RN gene encodes for IL-1 receptor
antagonist protein (IL1RA), the naturally
occurring antagonist for IL-1a and IL-1b.
IL1RA competes with IL-1a and IL-1b to
bind the IL-1 receptor 1 (IL1R1), yet IL1RA
does not trigger IL1R1 signaling, and instead
acts as a brake on inflammasome activation
(13–15).

Among critically ill subjects, we
demonstrated that the ARDS low-risk IL1RN
single nucleotide polymorphism (SNP)
rs315952C associated with higher plasma
levels of IL1RA (12), consistent with
a hypothesis that genetically determined
higher endogenous plasma IL1RA levels
might mitigate ARDS risk. Other groups
have examined the association between
sepsis outcomes and IL1RN variation, and
found a variable number of tandem repeat
polymorphism known as allele 2 (IL1RN*2)
to associate with increased susceptibility to
sepsis (16, 17) or increased risk of death

from sepsis (11, 18), although the effects of
IL1RN*2 on secreted IL1RA protein have
been inconsistent (11, 19). In addition,
a well-described IL1RN promoter SNP
rs4251961C has been consistently associated
with decreased IL1RA levels in response to
infection or pathogen-associated molecular
patterns (20–23). These three IL1RN
variants (rs4251961, IL1RN*2 tagged by
rs419598, and rs315952) exhibit little to no
linkage disequilibrium between one another
in either European or African ancestry (EA,
AA) populations (24).

Given these findings, we sought to
identify the genetic mechanism by which
rs315952Cmight associate with higher evoked
plasma IL1RA and to test prior IL1RN
candidate SNPs for association with evoked
IL1RA. We used intravenous low-dose
endotoxin (LPS) as a human experimental
model of inflammatory stress to understand
the dynamics of IL1RA in response to
a standardized insult. In addition, we sought
to test whether rs315952C demonstrated any
protective associations during septic shock,
including improved survival, faster resolution
of shock, or reduced time on the ventilator.
These complimentary approaches allowed us
to investigate the mechanistic effects of
rs315952 both in response to a uniform
inflammatory stimulus and during clinical
septic shock. Our primary hypothesis was that
rs315952 would be more strongly associated
with innate immunity-evoked IL1RA, and
that this would translate into improved
survival during septic shock. Some of the
results of this study have been previously
reported in the form of abstracts (25, 26).

Methods

Study Populations

GENE study. The Genetics of Evoked
response to Niacin and Endotoxemia
(GENE) study recruited 294 healthy
nonobese subjects (27). The protocol was
approved by the University of Pennsylvania
Institutional Review Board, had regulatory
oversight by the US Food and Drug
Administration (LPS: IND 5,984), and
was monitored by a National Institute
of Health–appointed data safety and
monitoring board. Subjects in GENE were
admitted to the clinical translational
research center inpatient unit for
administration of intravenous endotoxin
(LPS; 1 ng/kg) and were monitored closely

as described (27). Serial blood draws were
collected immediately before and 1, 2, 4, 6,
12, and 24 hours post-LPS for plasma.
Gluteal adipose biopsy using a liposuction
catheter under local anesthesia was
performed at baseline and 4 hours post-LPS
as described for RNA extraction (28, 29).

VASST cohort. The Vasopressin and
Septic Shock Trial (VASST) was a
multicenter, double-blind, randomized
controlled trial evaluating vasopressin
versus norepinephrine for septic shock (30).
The study enrolled 778 patients with septic
shock and requiring at least 5 mg/min
norepinephrine infusion; details have been
published (30, 31). The research ethics
boards of all participating institutions
approved the trial, and written informed
consent was obtained from all patients or
their authorized representatives, including
permission to perform downstream
mechanistic testing. Of 778 patients in the
VASST trial, 632 had available DNA and
were included in this study (8, 31, 32). A
subgroup of subjects, determined by study
personnel availability, also had plasma
collected at study enrollment (n = 399).
Clinical outcomes included mortality at
28 and 90 days; site of infection; Acute
Physiology and Chronic Health Evaluation
II (APACHE II) score; duration of
vasoactive drug infusion; and days free of
moderate, severe, or extreme organ failure
as defined by the Brussels criteria (33).

Genotyping and Protein Analysis
Genomic DNA was extracted from whole
blood using a QIAmp kit (Qiagen,
Missaugua, ON, Canada). The GENE study
was genotyped with the Illumina (San Diego,
CA) Infinium Exome chip, filtered for
rs315952, rs4251961, and rs419598 and
SNPs within 1 kb of IL1RN. Plasma IL1RA
was measured by ELISA (R&D Systems,
Minneapolis, MN) in duplicate. The
VASST cohort was genotyped using the
Human 1M Duo platform (Illumina) and
filtered for rs315952 and SNPs within 1 kb
of IL1RN. Plasma IL1RA and IL1b levels
were measured in VASST in a subgroup of
patients by human multiplex kits (EMD
Millipore, Billerica, MA) using an antibody-
linked magnetic bead assay according to the
manufacturer’s recommendations. For
RNA sequencing (RNA-seq), RNA was
extracted from adipose using RNeasy
Lipid Tissue total RNA mini kit (Qiagen,
Valencia, CA), and prepared and sequenced
as previously described (29, 34). Results

At a Glance Commentary

Scientific Knowledge on the
Subject: Death from infection is
a highly heritable trait, yet there are few
replicated genetic variants associated
with death from septic shock, and
fewer still with known molecular
function.

What This Study Adds to the
Field: The present study demonstrates
that a synonymous IL1RN single
nucleotide variant is a site for
preferential transcription of one allele
in adipose tissue and is associated with
higher evoked plasma IL-1 receptor
antagonist in response to endotoxin
and with increased survival in septic
shock.
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were filtered for RNA-seq reads flanking
rs315952 (chr2:113890304), and the
number of reads carrying each allele
(C or T) was counted.

Statistical Analysis
Plasma levels in the GENE population
were analyzed by nonparametric methods
between genotypes at specific time points
and for the area under the IL1RA curve,
determined using the trapezoidal rule.
Additive (nonparametric trend) and
dominant (Wilcoxon rank sum) genetic
models were assessed. We adopted
a dominant model because there were only
14 homozygous rs315952CC subjects,
limiting power in this stratum. To analyze
the data across all time points, accounting
for large variation in concentration by
endotoxin stimulus and for repeated
measures within each individual, we
quantile-transformed data at each time
point and used a linear mixed effects model
with an individual-specific random effect
to control for the correlations among
repeated measures within individuals (35).
Analyses were separate by genetic ancestry
given significant differences in IL1RN
gene structure (36). To test whether our
results were influenced by genetic ancestral
substructure, we included the first three
principal components of genetic ancestry
determination along with covariates
sex and body mass index in a quantile
regression model for peak IL1RA response.
We also regressed transformed plasma
IL1RA levels on all polymorphic typed
SNPs (n = 18) within 1 kb of the IL1RN
gene to assess whether the determinants of
baseline and evoked IL1RA were distinct.

We used RNA-seq to analyze for allelic
imbalance (AI) by quantifying transcription
from both paternal and maternal haplotypes
using individuals that are heterozygous at
the test SNP (37). To test for AI, we compared
the number of RNA-seq reads with C versus
T allele by a one degree of freedom chi-
square goodness of fit test, with the null
hypothesis being that 50% of the reads would
contain each allele at this locus.

In VASST, survival analysis was
performed by Cox proportional hazards
methods. Association between genotype and
mortality was tested by chi-square and logistic
regression, and between genotype and
continuous outcomes by linear regression,
assuming an additive genetic model and
adjusting for APACHE II score and the first
three principal components of genetic ancestry

determination. Analyses were restricted to EA
given IL1RN gene structure and the low
numbers of non-EA subjects. Plasma levels
were inspected by genotype and analyzed by
additive model using analysis of variance with
Bonferroni adjustment, or by recessive model
using Student t test, on log-transformed
values. A recessive model was evaluated given
the observed data distribution. For all
analyses, a two-sided P value less than 0.05
was considered significant. Additional details
including genotyping quality assurances,
determination of genetic ancestry, ELISA and
multiplex assay characteristics, and power
considerations are provided in the online
supplement.

Results

IL1RN Variation and the Response to
Intravenous Endotoxin
The GENE population is described in
Table 1. Because our prior associations
with rs315952 were present only for EA
subjects (12), we initially focused on this
population. The SNP displayed Hardy-
Weinberg equilibrium (P = 0.69) and its
observed minor allele frequency was 0.27,
comparable with HapMap EA populations
(36). At baseline, EA carriers of rs315952C
had slightly increased plasma IL1RA,
and this effect was magnified post-LPS
(Table 2), with a peak additive effect at
4 hours (Figure 1). Peak IL1RA response
remained associated with rs315952 when
adjusting for the first three principal
components of genetic ancestry (P = 0.008).
At 24 hours post-LPS, IL1RA levels
remained significantly associated with
rs315952C. In a repeated measures mixed
effects model conditioned on the individual
(Figure 2), rs315952C was associated with
increased IL1RA levels whether analyzed by

additive (P = 0.049) or dominant (P =
0.023) models of genetic risk. In a cis
quantitative trait locus analysis considering
18 genotyped loci falling in the IL1RN
region, rs315952 ranked highest for peak
response, third for area under the curve,
and 18th for baseline IL1RA (see Table E1
in the online supplement).

We tested previously reported IL1RN
variants for association with baseline and
evoked IL1RA. The IL1RN promoter SNP
rs4251961, previously associated with
lower IL1RA levels (21, 23), associated with
lower baseline IL1RA levels but not with
altered peak IL1RA response or area under
the IL1RA curve (see Table E2). In contrast,
rs419598, a tag for IL1RN*2 with perfect
linkage disequilibrium in European
populations (r2 = 1.0) (12, 38), showed no
association with baseline or evoked IL1RA
(see Table E3). As shown in Table E1, the
local determinants of LPS-evoked plasma
IL1RA were highly distinct from those
determining baseline plasma IL1RA.
Results for AA GENE subjects (n = 94)
are presented in the online supplement
(see Table E4). No association between
rs315952C and plasma IL1RA levels was
observed in AA subjects.

Because rs315952C is a synonymous
coding SNP in the terminal exon of IL1RN
and not previously shown to fall within
a transcription factor binding site (39, 40),
we hypothesized that AI might be the
genetic mechanism responsible for higher
plasma IL1RA levels (37). Using RNA
obtained from adipose biopsy at baseline
and 4 hours post-LPS in nine subjects
heterozygous for rs315952C/T
(chr2:113890304), we performed RNA
sequencing (RNA-seq) at a median read
depth of 414 million (range, 298–492
million) reads per sample. Results for EA
subjects are shown in Table 3. Of nine

Table 1. GENE Population Clinical Characteristics Stratified by Genotype

TT (n = 122) CT (n = 115) CC (n = 35) P Value

Age 25.4 6 6.7 26.1 6 6.7 26.5 6 7.2 0.33
Female sex 55 (47.8%) 16 (45.7%) 19 (76.0%) 0.33
Body mass index 23.7 6 2.8 24.1 6 3.0 23.4 6 2.8 0.87
African ancestry 28 (23.0%) 47 (40.9%) 21 (60.0%) ,0.001
European ancestry 94 (77.1%) 68 (59.1%) 14 (40.0%)

Definition of abbreviation: GENE = Genetics of Evoked response to Niacin and Endotoxemia.
Values shown are mean 6 standard deviation or number (proportion). Groups were compared in an
additive fashion by linear regression for continuous variables and logistic regression for categorical
ones.
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heterozygous subjects, five had fewer than
20 reads at this locus and were excluded,
leaving two EA subjects and two AA
subjects (see Table E5) for the AI analysis.
As anticipated, IL1RN was up-regulated in
adipose post-LPS, with log2(fold change) =
1.71, P = 5.0 3 1025. Furthermore, in
both EA subjects, rs315952 demonstrated
strong AI favoring the C allele at baseline
and this increased post-LPS, with the
most dramatic instance being a 80–20%
imbalance post-LPS (P = 2.1 3 10236).

rs315952 in the VASST Septic
Shock Cohort
Characteristics of the VASST cohort
subjects with available genotyping are
shown in Table 4; rs315952 displayed

Hardy-Weinberg equilibrium (P = 0.86).
Nonsurvivors of septic shock were older
and had higher APACHE II scores in
addition to other organ failures. Baseline
clinical characteristics were largely similar
across genotype groups with CC
homozygotes being slightly younger and
displaying lower APACHE II scores, as
shown in Table E6.

Survival curves for EA subjects
stratified by rs315952 genotype are shown in
Figure 3. The rs315952 genotype satisfied
the proportional-hazards assumption
(Schoenfeld residual test, P = 0.53) and
demonstrated a reduced hazard of death
with increasing copies of the C allele
(hazard ratio, 0.80; 95% confidence interval,
0.65–0.99; P = 0.038). This result was

unchanged by adjustment for APACHE II
score and for the first three components
of the genetic ancestry multidimensional
scaling analysis (hazard ratio, 0.79; 95%
confidence interval, 0.64–0.98; P = 0.028).
In addition, rs315952C was associated with
decreased 90-day adjusted mortality
(hazard ratio, 0.75; 95% confidence interval,
0.51–0.99; P = 0.044) and increased days
alive and free of cardiovascular system
failure (P = 0.041) (see Table E7).
Ventilator-free days were higher (P =
0.061) with increasing copies of the
rs315952C allele, although this result was
not statistically significant (see Table E7).
Eighty SNPs within 1 kb of IL1RN were
genotyped on the Illumina 1M platform
(24). We performed logistic regression of
90-day mortality with all 80 IL1RN SNPs
assuming an additive model of genetic
risk, and rs315952C was the fifth most
significantly associated P value, at P =
0.057, as displayed in Figure E1.

Initial plasma levels of IL-1b and IL1RA
were available for 399 subjects, 51% of the
overall cohort (see Table E8). Plasma IL-1b
(P = 0.038) was lower for homozygous
carriers of rs315952CC, whereas we were
unable to demonstrate significant difference
in plasma IL1RA (P = 0.19). The pair-wise
correlation between plasma IL1RA and
IL-1b levels was very strong, with r2 = 0.90.

Discussion

Variation of genetic structure across human
ancestral populations has been shown to

Table 2. rs315952C Is Associated with Higher Baseline and Evoked IL1RA Post-LPS in European Ancestry Subjects

TT (n = 93) CT (n = 68) CC (n = 14) P Value Adjusted P Value*

Additive model
Baseline IL1RA, pg/ml 101.8 (84.5–146.6) 120.1 (98.0–157.8) 108.07 (87.2–141.9) 0.12 0.073
IL1RA at 4 h, ng/ml† 39.4 (21.5–63.1) 50.9 (28.8–68.3) 60.1 (14.8–75.5) 0.064 0.008
IL1RA at 24 h, pg/ml 232.8 (183.0–286.1) 272.2 (221.7–338.1) 232.2 (184.6–347.9) 0.064 0.016
AUC IL1RA, ng/ml† 51.4 (26.9–86.1) 64.3 (38.2–90.8) 74.5 (21.5–99.3) 0.11 0.013

Dominant model
Baseline IL1RA, pg/ml 101.8 (84.5–146.6) 117.3 (94.5–157.4) 0.032 0.039
IL1RA at 4 h, ng/ml† 39.4 (21.5–63.1) 52.2 (28.8–68.8) 0.044 0.011
IL1RA at 24 h, pg/ml 232.8 (183.0–286.1) 268.6 (216.8–338.8) 0.009 0.015
AUC IL1RA, ng/ml† 51.4 (26.9–86.1) 66.0 (37.9–92.4) 0.075 0.026

Definition of abbreviation: AUC = area under the IL1RA curve.
Median (interquartile range) values are shown. Peak IL1RA response was at 4 hours post-LPS, and no shift in peak response was observed by genotype.
Given the low number of homozygous CC individuals, we collapsed CT and CC for a dominant model and analyzed by rank sum test or quantile regression
adjusting for sex and body mass index.
*Additive genetic models were tested by nonparametric trend and adjusted for sex, body mass index, and the first three components of genetic ancestry
using quantile regression.
†Change in scale to ng/ml for peak response and area under the IL1RA curve.

TT CT CC
n = 93 n = 67 n = 14

rs315952  Genotype  

p = 0.064
p = 0.008 adjusted
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Figure 1. Peak LPS-evoked plasma IL1RA increases with increasing copies of rs315952C. Adjusted
for sex and body mass index.
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bear strong marks of selection, where
evolutionary pressures have maintained
the presence of variant alleles at increased
frequency (41–45). Cytokine genes have
notably diverse genetic structures across
global populations (46), which may be
attributable to evolutionary forces including
injury or infection shaping human
genetic diversity. It may be that by
understanding genetic risk factors for death
during sepsis, we will uncover sepsis endotypes
that may have unique pathophysiology
or may respond differentially to specific
therapy. We investigated whether rs315952C
may identify a genetically determined
endotype of septic shock with hypothesized
more efficient transcription of IL1RN, higher
plasma IL1RA, and improved survival.

To study the genetic contribution to
evoked plasma IL1RA more precisely,
we turned to an experimental model of
inflammatory stress with intravenous LPS,
ensuring that each subject received an
identical stimulus. Low-dose LPS reliably
induced a 100-fold increase in evoked
plasma IL1RA. In this system, we replicated
the association between rs315952C and
increased plasma IL1RA levels (47), and this
effect was most pronounced at the peak
inflammatory response compared with
baseline. Interestingly, the previously
studied genetic variants affecting IL1RA
response, rs4251961 and the VNTR tagged
by rs419598, did not influence peak evoked
IL1RA, and only rs4251961 associated with
resting plasma IL1RA levels. We interpret

these results as implicating rs315952 as
an important locus for regulating evoked
inflammation, such as might occur during
septic shock.

Our RNA sequencing analyses
implicate adipose tissue AI favoring
transcription of the C allele in EA
individuals and suggest that rs315952 is
a functional SNP. Adipose tissue strongly
expresses IL1RN and is a significant source
of plasma IL1RA (48). Body mass index
explains a significant proportion of the
observed variance in baseline plasma
IL1RA (27, 47). In addition, adipose
explants secrete IL1RA in response to LPS
(48), making adipose a relevant tissue to
investigate. However, our group has
previously shown dramatic tissue specificity
to basal and LPS-evoked gene expression
(34), whereas others have shown tissue
specificity to AI responses within the same
individual (49, 50). The AI that we detected
in two EA individuals was statistically
impressive, yet the sample size is small.
In the future, it will be important to test
for similar imbalance in transcription in
monocytes and neutrophils, cell types we
believe to substantially contribute to plasma
IL1RA during sepsis, and to confirm these
findings in a larger population. Indeed,
optimally such work would test for AI in
leukocytes harvested directly from patients
with septic shock, and would confirm more
efficient IL1RN transcription and higher
plasma IL1RA levels in comparably timed
blood samples.

To confirm the significance of
rs315952C as a functional variant, we tested
the SNP’s association with outcomes
following septic shock. In the VASST
cohort, we demonstrate an association
between carriage of the C allele and
improved survival, and faster resolution of
shock, a direction of effect consistent with
our prior results (12). We also report for
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Figure 2. Carriers of rs315952C have increased LPS-evoked plasma IL1RA levels. At each time
point, the median (dot or square) and interquartile range (whiskers) are shown, stratified by
rs315952C allele carriage. The y axis is interrupted to allow discrimination at the earlier time points,
when the concentration of plasma IL1RA was 100-fold lower. Repeated measures analysis was
performed by linear mixed effects model with an individual-specific random effect and with quantile
transformation of the data at each time point.

Table 3. RNA-Seq Analysis at rs315952 (chr2:113890304) in Adipose Tissue for Heterozygous European Ancestry Subjects
Indicates Strong Allelic Imbalance Favoring the C Allele

Pre-LPS Post-LPS

C Allele
Counts

T Allele
Counts

Proportion C
Reads P Value

C Allele
Counts

T Allele
Counts

Proportion C
Reads P Value

A 112 36 0.7568 4.18 3 10210 358 91 0.7973 2.10 3 10236

B 163 98 0.6245 5.74 3 1025 289 198 0.5934 3.73 3 1025

Of four European Ancestry subjects with adipose RNA and heterozygous (C/T) at rs315952, only subjects “A” and “B” met our filtering criteria of greater
than or equal to 20 reads at this locus. The expected proportion of reads containing the C allele was 0.50, or 50%. Both subjects demonstrated strong
allelic imbalance favoring the C allele (bold) both at rest and post-LPS.
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the first time that homozygous carriers of
rs315952C (CC) demonstrate lower plasma
IL-1b level, consistent with the hypothesis
that reduced IL-1b–driven signaling may
improve outcomes during sepsis.

We did not identify a consistent
relationship between rs315952C and plasma
IL1RA in VASST, in contrast to the findings
in GENE and in our and other’s prior
publications (12, 47). Although this was
surprising, it may be that the timing of
plasma draw in VASST, with a median of
12-hour duration of septic shock (30), a
late manifestation of a severe systemic
inflammatory response, influenced results.
Our previous report used plasma primarily
drawn in the emergency department with
either severe sepsis or severe trauma (12). If
the C allele of rs315952 is more efficiently
transcribed, as our RNA-seq data suggest, it
may be that earlier up-regulation of IL1RA
acts as a brake on subsequent IL-1b–driven
self-induction (51), and might explain
a lower IL-1b and IL1RA level observed at
a later period because IL-1b also regulates
IL1RA (14, 52). Previous human and
primate studies report that exogenous

IL1RA therapy lowers plasma IL-1b
and even IL-6 levels, demonstrating the
potential for IL1RA to have a broad-based
modulation of the cytokine inflammatory
response (53, 54). Although this is an
attractive theory, it does not explain the
observed differences between homozygous
and heterozygous carriers of the C allele,
because one would predict that each C allele
would lower IL-1b in an additive fashion.
Several other differences in the populations
studied may account for the observed
results, including differences between
a clinical trial population and observational
cohorts, differences between trauma- and
sepsis-induced inflammatory responses, or
between sepsis and septic shock. Ideally, we
would use a prospective cohort of patients
with sepsis with uniform repeat blood and
leukocyte mRNA sampling to replicate the
associations observed in GENE.

Our results in both the GENE and
VASST populations implicate rs315952 as
a variant modifying IL1RA response and
septic outcomes in EA populations, with
attenuated or no effect in non-EA subgroups.
In GENE, AA subjects demonstrated no

association between rs315952C and plasma
IL1RA levels, andAI at the SNP is either absent
or slightly favors the T allele. It may be that we
were underpowered to detect a difference
in AA populations, but it is also striking
how the AI analysis yielded very discordant
results for the two ancestries. Although our
data suggest this locus is a cis regulatory
variant or enhancer in EA subjects (49), the
region is not an area of known enhancer
function by the VISTA Enhancer database
(55), nor is it predicted to be a transcription
factor binding site by the ChIP-seq experiments
performed by the Encyclopedia of DNA
Elements project (39). A potential explanation
for how ancestral IL1RN gene structure might
result in different allele-specific results at
our locus would be that rs315952 alters
binding of the CCCTC-binding factor,
a regulator of chromatin and transcription
factor binding. Prior work has established
that CCCTC-binding factor binding can
vary in an allele-specific manner (56–58),
and the divergent linkage disequilibrium
across chromosome 2q13 in ancestral
populations might influence overall
conformation in a population-specific

Table 4. Characteristics of the VASST Population with Available DNA for Genotyping

90-d Nonsurvivors (n = 287) 90-d Survivors (n = 345) P Value

Age 63.5 6 16 57.7 6 17 ,0.001
Female 118 (41.1%) 144 (41.7%) 0.72
Ancestry
European 232 (80.8%) 298 (86.4%) 0.065
Asian 24 (8.4%) 17 (4.9%) 0.10
African 9 (3.1%) 5 (1.5%) 0.18

Site of infection
Lung 129 (45.0%) 147 (42.6%) 0.56
Abdomen 73 (25.4%) 97 (28.1%) 0.39
Other 85 (29.6%) 101 (29.3%)

Infectious pathogen
Gram-positive bacteria 79 (27.5%) 110 (31.9%) 0.32
Gram-negative bacteria 55 (19.2%) 83 (24.1%) 0.19
Fungal or viral 38 (13.2%) 41 (11.9%) 0.40
Not identified 131 (46.8%) 143 (41.5%) 0.18

APACHE II 28.0 6 9 25.3 6 7 ,0.001
Randomized to vasopressin 141 (49.1%) 185 (53.6%) 0.26
Plasma available 164 (57%) 235 (68%) 0.004
Acute organ failure
Lung 286 (99.7%) 334 (96.8%) 0.032
Kidney 246 (85.7%) 161 (46.7%) ,0.001
Liver 236 (82.2%) 121 (35.1%) ,0.001
Coagulation 269 (96.4%) 289 (87.3%) ,0.001
Central nervous system 269 (93.7%) 289 (83.8%) ,0.001

Days alive and free of vasopressors, 28 d 0 (0–9) 23 (19–25) ,0.001
Days alive and free of ventilator, 28 d 0 (0–4) 18 (10–23) ,0.001

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; VASST = Vasopressin and Septic Shock Trial.
Variables are displayed as mean 6 standard deviation, median (25–75 percentile range), or as number (percentage). Site of infection and infectious
pathogen were not exclusive and thus the total may exceed 100%. Acute organ failures and organ failure–free days were defined by Brussels criteria within
the first 28 days. Comparisons were made by t test, Wilcoxon rank sum test, chi-square, or Fisher exact test as appropriate. PF ratio = ratio of PaO2

to FIO2
.
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manner. Additional studies to understand
chromosome conformation at this locus
will be important to pursue.

Our investigations had some limitations.
We performed multiple tests in the GENE
population centered on the hypothesis that
rs315952 would associate with increased
evoked IL1RA, and our multiple testing may
have inflated the overall type I error. The
associations we observed between rs315952
and plasma IL1RA levels would not withstand
a stringent Bonferroni adjustment formultiple
testing; however, they are not truly
independent tests. Because the analyses
were conducted in a previously completed
observational study and clinical trial, our
sample size was fixed and may only provide

limited power to detect modest genetic
effects on complex traits. In GENE, we were
powered to detect a difference in half of
one standard deviation in means for plasma
IL1RA, whereas in VASST, our minimal
detectable relative risk for genotype onmortality
was 1.49 (59). For both populations, these
are moderate to large effect sizes. Our RNA-seq
data, while compelling, involved a small
number of individuals. Our power limitation
was more potent in the AA population in the
GENE study, and the VASST cohort lacked
sufficient non-EA subjects to make inferences
in African or Asian populations. In addition,
we acknowledge the inability of a low-dose
LPS injection to precisely model the
complexity of septic shock, yet we believe the

controlled nature of the LPS challenge is ideal
for studying evoked response to a uniform
stimulus. Furthermore, there are ample data
that the inflammatory response to severe
infections and to LPS share many features
(60–63). We attempted to measure IL-1b in
the plasma of all GENE subjects but for
many subjects, the level of plasma IL-1b
seemed to be at the limits of detection at peak
response (4 h), and undetectable at other
times. Thus, we were unable to test whether
increased peak IL1RA response with
rs315952C results in lower IL-1b post-LPS.

Previous clinical trials of recombinant
IL1RA, anakinra, for severe sepsis failed to
achieve a large reduction in mortality (54, 64,
65). Given the associations of rs315952C
with improved survival in the VASST cohort,
with potential preferential transcription,
and with increased evoked plasma IL1RA,
attenuating IL-1b remains an attractive
potential treatment paradigm, particularly
if it were possible to predict which patients
might be more likely to respond to such
an intervention. Anakinra may display
pharmacogenomic variation in response
to treatment for rheumatoid arthritis (66);
it is unknown whether response to this
drug when used to decrease mortality in
sepsis may also have varied by genotype.
Beyond genetic variation, it may be that
clinical factors result in sepsis endotypes that
differ in their degree of inflammasome
activation (6). Alternatively, a more successful
intervention may need to combine anti–IL-1b
therapy with strategies to block IL-18 (67, 68),
or to mitigate vascular permeability (69).
Despite recent disappointments in the ability
of pharmacologic interventions to improve
sepsis mortality (70), we remain optimistic
that with improved understanding of
sepsis endotypes, effective therapies may
yet emerge. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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