Skip to main content
. 2014 Oct 30;8:136. doi: 10.3389/fncom.2014.00136

Table 1.

Model and simulation description.

A MODEL SUMMARY
Populations Three: excitatory (E), inhibitory (I), external input (Eext)
Connectivity Random convergent connectivity with probability ϵ
Neuron model Leaky integrate-and-fire (LIF), fixed voltage threshold, exact integration scheme (Rotter and Diesmann, 1999) (update every 0.1 ms)
Synapse model α-shaped post-synaptic current (PSC)
Input Independent Poisson spike trains
B POPULATIONS
Name Elements Size
E,I LIF neuron NE, NI = γNE
Eext Poisson generator Next = NE + NI
C CONNECTIVITY
Source Target Pattern
{E,I} E ∪ I Random convergent CE = ϵNE → 1, CI = ϵNI → 1
Eext E ∪ I Non-overlapping 1→ 1
D NEURON AND SYNAPSE MODEL
Name Leaky integrate-and-fire neuron with α-shaped PSCs
Subthreshold dynamics τmV˙i(t)=Vi(t)+Rm(Isyn,i(td)+Iext,i(t)) if  t>t*+τref   Vi(t) =Vres                                                                else
Spiking If V(t −) < VthrV(t +) ≥ Vthr
  1. Set spike time t* = t
  2. Emit spike with time-stamp tk = t*
Postsynaptic currents      Isyn,i(t)=j,kPSCij(ttj,k)        Network input current of neuron i      Iext,i(t)=kPSCext,i(ttk)            External input current of neuron i   PSCij(t)=A(Jij)tτsyne1t/τsynH(t),  Jij{gJ,0,J}PSCext,i(t)=A(J)tτsyne1t/τsynH(t)
E INPUT
Type Description
Poisson generators Spike times tk in Iext(t) are Poisson point processes of rate νext