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Abstract

Quantitative studies of signal transduction systems have shown that ultrasensitive responses—

switch-like, sigmoidal input/output relationships—are commonplace in cell signaling. 

Ultrasensitivity is important for various complex signaling systems, including signaling cascades, 

bistable switches, and oscillators. In this first installment of a series on ultrasensitivity, we survey 

the occurrence of ultrasensitive responses in signaling systems and examine how such responses 

can arise. We review why the simplest mass action systems exhibit Michaelian responses, and 

then move on to zero-order ultrasensitivity, a phenomenon that occurs when signaling proteins are 

operating near saturation. We also discuss the physiological relevance of zero-order 

ultrasensitivity to cellular regulation.

Cooperativity and the binding of oxygen to hemoglobin

The curve that relates hemoglobin oxygen binding to the partial pressure of oxygen is, 

famously, sigmoidal rather than hyperbolic. The sigmoidal shape is biologically significant; 

it means that hemoglobin can unload a greater fraction of its oxygen in the peripheral tissues 

than it otherwise could (Fig 1). Building upon the work of Hill [1], Adair [2], and Pauling 

[3], by the 1960’s Monod, Wyman and Changeux [4] and Koshland, Némethy, and Filmer 

[5] had proposed plausible alternative models to account for the sigmoidal curve. The 

models differ in a number of respects, but share several features. Both models make use of 

the fact that hemoglobin is a multi-subunit protein complex, and assume allosteric regulation 

occurs both within its subunits and between subunits. And both assume that there is 

cooperativity: that the binding of oxygen to the first sites promotes the binding of oxygen to 

the remaining sites. Cooperativity proved to be important not just for oxygen transport, but 

for many other processes, including signal transduction, where multimeric ion channels, 

receptor proteins, and transcription factors are now known to exhibit cooperativity and 

sigmoidal input-output relationships. Cooperativity is important and beautiful, but 
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complicated, because it depends upon coordinated and precise interactions among many 

amino acids.

In 1981 Goldbeter and Koshland published a landmark paper showing that, in signal 

transduction pathways, a much simpler mechanism can yield sigmoidal response curves that 

resemble those of cooperative proteins. They called the phenomenon zero-order 

ultrasensitivity; “zero-order” because it required that the signaling enzymes be operating 

close to saturation, and “ultrasensitivity” because the sensitivity of the response, as defined 

in a particular way (discussed later), was higher than that seen if the enzymes were operating 

far from saturation [6].

Over the past decade it has become clear that ultrasensitive responses do occur in natural 

biological systems, and may in fact be commonplace in signal transduction (Table 1). In this 

series we review four basic classes of mechanism that can generate ultrasensitive responses, 

starting with zero-order ultrasensitivity and then moving on to multistep mechanisms, 

stoichiometric inhibitors, and positive feedback loops, as well as the experimental evidence 

that these mechanisms are relevant to cell signaling. We discuss a number of interesting 

variations and elaborations on these mechanisms that have emerged out of recent theoretical 

work. And finally, we look at how ultrasensitivity can be critical in the generation of other 

emergent systems-level behaviors in more complex systems, such as cascades, switches, and 

oscillators. In this way, ultrasensitive monocycles are important elements in the generation 

of sophisticated biochemical behaviors.

Further perspectives on ultrasensitivity can be found in several recent papers [7-9] as well as 

the classic papers of Goldbeter and Koshland [6, 10-12]. Here we begin with an examination 

of Michaelian responses and zero-order ultrasensitivity.

Hyperbolic or Michaelian steady-state responses

Before examining how ultrasensitive responses are generated, it is helpful to thoroughly 

understand the responses of simple systems that are not ultrasensitive. Suppose that we have 

a signaling protein X that can be activated by phosphorylation and inactivated by 

dephosphorylation (Fig 2A). If we assume mass action kinetics, it follows (Box 1) that the 

steady-state input-output relationship for the system is given by Eq 1, where Input represents 

the concentration of the kinase driving the reaction, Output is the fraction of X in the 

phosphorylated form, and K is the EC50 for the system; that is, level of Input where half of 

the X is phosphorylated.

Eq 1

This relationship is plotted in Fig 2. Because the functional form of the equation is the same 

as that of the Michaelis-Menten equation, this type of response is sometimes referred to as 

Michaelian [12]. Note though that the Michaelis-Menten equation relates substrate 

concentrations to the initial rates of enzyme reactions, not kinase concentrations to the 

steady-state levels of substrate phosphorylation as we have here. Also note that here we 
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assumed that the enzyme reactions were described by the law of mass action, not by 

Michaelis-Menten kinetics. This fact is perhaps worth repeating, since the terminology can 

be confusing: a Michaelian steady-state response is not generated by systems where enzyme 

activities are described the Michaelis-Menten equation. It is generated by systems where the 

law of mass action applies.

Michaelian responses are also obtained when an output is generated by ligand binding (e.g. 

activation of monomeric receptors by monomeric hormones), regulated synthesis (e.g. 

transcription, translation, or second messenger synthesis), or translocation (e.g. the 

recruitment of Raf or Akt to the plasma membrane), as long as the input regulates one step 

in the process and simple mass action kinetics apply.

Defining sensitivity and ultrasensitivity

In common parlance, the terms “sensitive” and “sensitivity” usually refer to how much input 

you need to get a certain level of output. An assay that detects 1 ng of flu virus is more 

sensitive than one that detects 1 μg, and one might call an assay that detects a remarkably 

low amount of virus ultrasensitive. If you look at recent scientific publications, sensitivity 

and ultrasensitivity are sometimes used in this sense, particularly in assay development (see, 

for example, [13]). A common measure of this type of sensitivity is the EC50, which is the 

amount of input required to get a half-maximal output. The lower the EC50, the higher the 

sensitivity.

Goldbeter and Koshland used the term sensitivity in a different sense, however, to denote 

the relationship between a change in input and a change in output. To make sensitivity 

independent of the units used, they expressed the changes in input and output as fold 

changes:  and , with the sensitivity being the ratio of the latter to the 

former. One can define sensitivity locally (Slocal) by assuming that the change in Input is 

infinitesimal (Eq 2).

Eq 2

The higher the value of Slocal, the higher the sensitivity. Note that Slocal is the slope of a log-

log plot of Input vs. Output, which makes it the polynomial order of the response. For a 

Michaelian response, where the response approaches first-order for small stimuli and zero-

order for large stimuli, Slocal is approximately 1 for small inputs, falls to 0.5 when the input 

equals the EC50, and approaches 0 for large inputs (Fig 2). For a Hill function, Slocal is 

approximately equal to n for small inputs and approaches 0 for large inputs (Fig 2). Local 

sensitivity will be useful when we discuss signaling cascades later in this article.

Alternatively, one can calculate an overall, global value for the sensitivity of an input-output 

curve. Typically this is taken as the EC90:EC10 ratio. For a Michaelian response, the ratio is 

always 81, and so Goldbeter and Koshland defined an ultrasensitive response to be any 

response with an EC90:EC10 ratio smaller than 81 [6, 10, 12].
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An ultrasensitive response is often (though not always) sigmoidal—flat at high and low 

inputs and steep in between—and often the curve is well-approximated by the Hill equation. 

This fact suggests another way of globally quantifying sensitivity, from the effective Hill 

exponent, which is defined as the Hill exponent n for a Hill curve (Eq 3 and Fig 2) that has 

the same EC90:EC10 ratio as the response curve in question.

Eq 3

The effective Hill exponent is related to the EC90:EC10 ratio by Eq 4 [14]:

Eq 4

There are problems with this definition if the basal level of response is high, or if the 

response is not well-approximated by the Hill equation (for example, if it is a bell-shaped 

response). In these cases, a more general, but also more complicated, integrated response 

coefficient can be used to characterize the global ultrasensitivity [9]. However, for present 

purposes, the effective Hill exponent is an adequate way of quantifying sensitivity and 

ultrasensitivity, and we will use this way of quantifying ultrasensitivity in most of the 

discussion of this article.

Zero-order ultrasensitivity

Suppose that we have a phosphorylation-dephosphorylation monocycle, but now instead of 

having enzymes whose activities are given by the law of mass action, the enzymes are 

saturable and their activities are given by the Michaelis-Menten equation. As shown in Box 

2, the steady-state response of the system is now described by the formidable Goldbeter-

Koshland equation (Eq 2.3). It is not easy to intuit much from just looking at this 

complicated equation, but if one plugs in values for the parameters so that both the 

phosphorylation and dephosphorylation reactions are running close to saturation, and then 

plots the fraction of the substrate X that is phosphorylated (XP/Xtot) as a function of kinase, 

the result is indeed a highly ultrasensitive, sigmoidal curve (Fig 3D). A good way to 

understand why the curve is shaped this way is through a simple graphical method, the rate-

balance plot.

Rate-balance plots

The basic idea of the rate-balance plot is to isolate the terms in the rate equation that 

increase the amount of XP, which contribute to the phosphorylation rate, and the terms that 

decrease the amount of XP, which contribute to the dephosphorylation rate [15-18]. The 

phosphorylation rate and dephosphorylation rate curves are then both plotted as a function of 

XP on one set of axes. Wherever the curves cross, the rates of phosphorylation and 

dephosphorylation are equal and the system is in steady state. One can then examine how 

the steady-state level of XP depends upon, for example, the concentration of kinase present. 

Following Gomez-Uribe et al. [19], we will consider four regimes of operation of the 
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phosphorylation-dephosphorylation cycle: saturating neither reaction, both reactions, or one 

or the other.

If we assume mass action kinetics for both the phosphorylation and dephosphorylation 

reactions (Fig 3A), the rate curves are straight lines whose slopes are determined by the rate 

constants and enzyme concentrations. By plotting the values of XP/Xtot at the intersection 

points as a function of the assumed kinase concentration, one can build up an input-output 

curve (Fig 3A, right), which, of course, agrees with Eq 1. Note that the first increment of 

input (kinase) produces a reasonable increment of output, and then each successive 

increment produces less (Fig 3A, left). Thus the rate-balance analysis provides an intuitive 

feel for why mass action kinetics produces a response with a “diminishing returns” quality.

Next, we assume that the phosphatase is operating near saturation, with a Km value 100-fold 

lower than the total concentration of the substrate X (Fig 3B). The phosphorylation rate 

curves are unchanged, but the dephosphorylation rate curve becomes a hyperbola, with the 

dephosphorylation rate being half-maximal when XP=0.01 units. Now the first increments of 

input produce very little output until the phosphorylation rate curve reaches the knee of the 

dephosphorylation rate curve (Fig 3B). Saturation of the phosphatase builds a threshold into 

the response, and as the Km values for the phosphatase approaches zero, the input-output 

curve approaches a Michaelian response that has been shifted to the right by one 

concentration unit (Fig 3B, right). By Goldbeter and Koshland’s definition, the response is 

slightly ultrasensitive; as the saturation increases, the ratio  approaches 41, which is 

less than 81, and the effective Hill exponent is 1.18. Gomez-Uribe and co-workers called 

this a threshold-hyperbolic response [19].

By contrast, if the kinase is operating near saturation but the phosphatase is not (Fig 3C), 

there is no threshold in the steady-state response (Fig 3C, right). Instead, the response 

approaches its maximal value more abruptly than a Michaelian response does (Fig 3C, 

right). This is because when the phosphorylation rate curves are virtually flat (Fig 3C left), 

the kinase activity does not fall off much as the output increases. The response curve 

approaches a straight line that does not bend over until the response is nearly maximal. By 

Goldbeter and Koshland’s definition, this curve is ultrasensitive, since for a straight line the 

EC90:EC10 ratio is 9 and the effective Hill exponent (Eq 3) is 2. However, nowhere on the 

curve is the local sensitivity (the polynomial order) greater than one, and for clarity it is 

probably better to call this a linear response rather than an ultrasensitive one.

Note that in principle linear responses could be extremely useful in signal transduction [19]. 

In the mating pheromone pathway in Saccharomyces cerevisiae, the response of the terminal 

protein kinase in the response pathway (Fus3) is, indeed, a nearly linear function of the 

pheromone concentration [20], and the mechanisms underpinning this linearity are not 

understood. Saturated signal transducers could help provide this linearity, as could some of 

the mechanisms that will be discussed later in this series (e.g. multisite phosphorylation with 

“OR gate” logic and stoichiometric inhibitors).
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Finally, if both the kinase and phosphatase are assumed to be close to saturation, the 

response shows both a threshold and an abrupt leveling off at maximal response (Fig 3D). 

The result is a steeply sigmoidal input-output relationship (Fig 3D, right). The curve is 

similar (but not identical) in shape to a Hill function (Fig 3D, right, solid vs. dashed blue 

curves), and the effective Hill exponent for the degree of saturation assumed in Fig 3D is 

huge: 26.1. Thus, saturation of the kinase and phosphatase synergize to produce switch-like 

responses.

Competition in zero-order monocycles

So far we have assumed that only two species contribute significantly to the total pool of the 

substrate Xtot: the phosphorylated form XP and the dephosphorylated form X. However, we 

have also assumed that the kinase and phosphatase are operating close to saturation, which 

means that a large proportion of the kinase molecules are bound to X and the phosphatase to 

XP. These complexes will still be negligible compared to X and XP if the concentrations of 

the kinase and phosphatase are small compared to the concentration of the substrate. 

However, in signaling cascades, kinases and their substrates are sometimes comparable in 

concentration. What would the steady-state response of a phosphorylation-

dephosphorylation monocycle be if the assumption that the kinase and phosphatase are low 

in concentration were relaxed?

This situation was considered by Goldbeter and Koshland in their original paper [6]. The 

algebra becomes more complicated; there are now four rate equations for four time-

dependent species (for X, XP, X•kinase, and XP•p’ase) and a conservation equation (Xtot = X 

+ XP+ X ×kinase+ XP×p’ase). It is no longer possible to carry out a simple one-variable 

rate-balance analysis or even an analytical solution, but solutions can be obtained 

numerically.

The results are shown in Fig. 4. When the phosphatase is assumed to be 1/100 the 

concentration of their substrate, there is very little difference between the exact response 

curve and the curve given by the Goldbeter-Koshland equation (Fig 4A). When the 

phosphatase reaches 1/10 the substrate concentration, the response is still highly 

ultrasensitive, but the maximal response is lower, since at high inputs 20% of the substrate is 

tied up in complexes (10% with the kinase and 10% with the phosphatase) (Fig 4B). And 

when the phosphatase is equal in concentration to the substrate, the maximal steady-state 

concentration of XP is very small (Fig 4C), with almost all of the substrate being present in 

complexes, and the sigmoidal character of the response is minimal (Fig 4, inset). Thus, zero-

order ultrasensitivity is best generated when the converting enzymes are operating close to 

saturation and they are much lower in concentration than their substrate.

Physiological relevance of zero-order ultrasensitivity

Whereas the development of the theory of cooperativity was driven by experiments, most 

especially hemoglobin’s sigmoidal oxygen binding curve, this was not the case for zero-

order ultrasensitivity. There was not some particular experimental mystery that zero-order 

ultrasensitivity was attempting to explain. The theory came first, and it then motivated and 

guided subsequent experimental studies.
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The first experimental test of zero-order ultrasensitivity came in studies of isocitrate 

dehydrogenase (IDH) phosphorylation in a reconstituted system [15]. At concentrations of 

IDH above the Km values for its phosphorylation and dephosphorylation, but still below that 

estimated to be present in vivo, a sigmoidal dose-response curve was obtained with a Hill 

coefficient of ~2 [15]. Zero-order ultrasensitivity was also demonstrated for the 

phosphorylation of glycogen phosphorylase in vitro [21] (Fig 5), and again the concentration 

of phosphorylase in vivo is thought to be high enough to make the in vitro results 

physiologically relevant. And finally, the response of the transcription factor Yan to the 

activation of the ERK MAP kinase in Drosophila ectodermal patterning has been shown to 

be ultrasensitive, and zero-order ultrasensitivity as a possible mechanism for this 

ultrasensitivity fits well with the observed insensitivity of patterning to Yan overexpression 

[22].

However, there are a number of examples of huge Hill coefficients, including some of those 

seen near the bottom of Table 1, that appear not to be due to zero-order ultrasensitivity 

alone. This raises the question of what other mechanisms can contribute to ultrasensitive 

responses. We will examine one such mechanism, multisite phosphorylation, in the next 

installment of this series.
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Glossary

Cooperativity A characteristic of some multistep processes where completing some 

of the early steps makes a later step more favorable. Examples 

include the multistep binding of oxygen to hemoglobin and priming 

in multisite phosphorylation.

Hill function
An input-output relationship of the form , 

where n is the Hill exponent or Hill coefficient.

Mass action 
kinetics

A simple kinetic scheme where the rate of a reaction is directly 

proportional to the concentration of the substrate or substrates 

involved in the reaction. This contrasts with Michaelis-Menten 

kinetics or kinetic schemes involving Hill functions.

Michaelis-
Menten kinetics

A model for the rate of an enzymatic reaction, premised on the 

assumption that the enzyme is small in concentration compared to its 

substrate, and that the concentration of the enzyme-substrate complex 

is unchanging with respect to time. In the Michaelis-Menten model 
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the rate of an enzymatic reaction is given by 

.

Ultrasensitivity A property of steady-state input-output relationships that makes them 

switch-like in character. Goldbeter and Koshland defined input-

output relationships to be ultrasensitive if it took less than an 81-fold 

change in input stimulus to drive the output from 10% to 90% of 

maximum.

Zero-order A zero-order chemical or biochemical reaction is one where the rate 

of the reaction is independent of the substrate concentration. Enzyme 

reactions approach zero-order when the enzyme is saturated with 

substrate.
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• The simplest signal transduction systems exhibit hyperbolic, Michaelian 

responses.

• But sigmoidal, ultrasensitive responses are commonplace in cell signaling.

• Zero-order ultrasensitivity is one mechanism for producing such responses.

• Zero-order ultrasensitivity is probably employed by real signaling systems.
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Box 1

Michaelian responses

Here we derive the steady-state response of a simple phosphorylation-dephosphorylation 

system (Fig 2A). If we assume mass action kinetics, the net rate of phosphorylation is:

Eq 1.1

where k1 is the rate constant for phosphorylation, k−1 is the rate constant for 

dephosphorylation, and p’ase is the concentration of the phosphatase. We do not need to 

write an equation for the other time-dependent species, X; because producing one 

molecule of XP takes away one molecule of X, this single rate equation describes the 

dynamics of both X and XP. This ordinary differential equation can be solved: XP 

exponentially approaches its steady-state level with a half-time of k1kinase+k−1p’ase. 

However, for present purposes, we need only an expression for the steady-state level of 

XP, which can be obtained by solving an algebraic equation. At steady state the net rate 

of phosphorylation is zero; it follows that:

Eq 1.2

We have taken the input to be the concentration of the kinase, the output to be the 

fraction of X that is phosphorylated. The constant represents the EC50 for the system, 

since when Input = K, .
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Box 2

Zero-order ultrasensitivity

For a phosphorylation-dephosphorylation reaction with saturable enzymatic reactions 

rather than mass action kinetics, the situation becomes more complicated. Assuming that 

the total concentration of the substrate X is the sum of the concentrations of X and XP 

(i.e., the concentrations of the kinase•X and p’ase•XP complexes are negligible), the 

system can be described by a single rate equation:

Eq 2.1

Here Km1 and Km2 are the Michaelis constants for the kinase and phosphatase, 

respectively. At steady state:

Eq 2.2

Eq 2.2 can be solved for XPss, the steady-state concentration of XP, analytically, yielding 

the Goldbeter-Koshland equation:

Eq 

2.3

Similarly, if we assume that the phosphatase reaction is saturable but the kinase reaction 

is described by mass action kinetics, it follows that:

Eq 

2.4

And if we assume that the kinase reaction is saturable and the phosphatase is described 

by mass action kinetics, it follows that:

Eq 

2.5

Note that Eq 2.3 can be simplified slightly by defining V1 = k1kinase , V−1 = k−1p’ase , 

, and  and dividing through by Xtot:

Eq 

2.6

This is the usual form of the Goldbeter-Koshland equation.
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Fig 1. The binding of oxygen to hemoglobin
If the binding curve were hyperbolic (A), at best 38% of its oxygen could be delivered to the 

peripheral tissues. However, in reality the binding curve is sigmoidal with an apparent Hill 

coefficient of 2.7 (B). A sigmoidal curve with this Hill coefficient could allow hemoglobin 

to deliver as much as 80% of its oxygen.
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Fig 2. Ultrasensitivity and the Hill function
(A) Input-output relationships for Hill functions with exponents of 1, 2, 3, 4, and 5. When n 

= 1 the response is the same as a Michaelian response. When n > 1, the response is 

ultrasensitive, and the greater the value of n, the more switch-like the response. (B) Local 

sensitivities, as measured by the function , for Hill curves with exponents of 1, 

2, 3, 4, and 5. Note that the local sensitivity is the same as the polynomial order of the curve, 

and at low values of Input the sensitivity approaches n.
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Fig 3. Michaelian responses and zero-order ultrasensitivity: rate-balance analysis
(A) Rate balance analysis assuming mass action kinetics, which yield a Michaelian 

response. (B-D) Rate balance analysis assuming that one or both of the reactions is running 

close to saturation. In each panel, the left-hand plot shows the rate curves, with the 

phosphorylation rates shown in green and the dephosphorylation rates shown in red. The 

intersection points (solid black circles) correspond to steady states. The right-hand plots 

show the input ([kinase]) vs. output (the fraction of Xtot phosphorylated at steady-state) 

relationships in solid blue, as described by Eqs 2.3-2.5. The solid black circles are the same 

steady states shown in the left-hand plots. The dashed black curves in panels B-D show 

Michaelian input-output relationships, for comparison, and the dashed blue curve in panel B 

shows a Michaelian input-output curve shifted one concentration unit to the right. The 

assumed kinetic parameters were: k1 = k−1 = Xtot = p’ase =1; Km1 = Km2 = 0.01; and kinase 

= 0.2, 0.4, 0.6, 0.8, 1.0, or 1.2. The effective Hill coefficients for the blue curves were 1, 

1.18, 2, and 26.1, respectively. The dashed blue line in panel D shows a Hill function with a 

Hill exponent of 26.1 for comparison. Similar input-output curves can be found in [19].
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Fig 4. Zero-order ultrasensitivity requires that the converting enzymes be saturated and small in 
concentration compared to the substrate
(A-C) Goldbeter-Koshland (GK) response curves (dashed blue curves) compared with 

exactly-calculated response curves (solid blue curves), assuming various ratios of the 

converting enzymes to the substrate. In each case we assumed that the association (a), 

dissociation (d), and catalytic (k) rate constants for both phosphorylation and 

dephosphorylation were a = 200, d =1 and k = 1. Thus, in each case the Km values for both 

the phosphorylation and dephosphorylation reactions were 0.01, so that the total substrate 

concentration was 100 times as high as the Km values (i.e. both converting enzymes were 

operating close to saturation). The inset in panel C shows that at low total kinase 

concentrations, the two curves are similar.
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Fig 5. Zero-order ultrasensitivity in a reconstituted phosphorylase phosphorylation system
The fitted curves are from the Goldbeter-Koshland equation based on the measured Km 

values, and the effective Hill coefficients were 1.35 (blue curve) and 2.35 (red curve). 

Adapted from [21].
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Table 1

Some examples of ultrasensitivity in signal transduction

Stimulus Response Effective
Hill
Exponent

Experimental
System

Reference

Acetylcholine Nicotinic cholinergic
receptor conductance

1.3 Chicken neuronal
homomeric α7
receptors

[23]

Delta (in trans only) Notch production 1.7 CHO cells [24]

Mos MEK1 1.7 Xenopus laevis
oocyte extracts

[25]

Phosphorylase
kinase/phosphatase

Glycogen
phosphorylase

2 Reconstituted
mammalian
muscle enzymes

[21]

RsbQP σ B 2.1 Bacillus subtilis [26]

AICAR AMPK 2.5 Rat INS-1 cells [27]

Ca2+ Calmodulin-dependent
cAMP
phosphodiesterase

2.7* Purified beef heart
proteins

[28]

IP3 Calcium release 3 Permeablized rat
basophilic
leukemia cells

[29]

Cdk1 Wee1A 3.5 Xenopus laevis
egg extracts

[30]

Anisomycin Jnk 3 - 10 HeLa, HEK293,
and Jurkat cells

[31]

Sorbitol Jnk 4 - 9 HeLa, HEK293,
and Jurkat cells

[31]

Mos Erk2 5 Xenopus laevis
oocytes

[25]

Cln2 Cln2 synthesis 5 S. cerevisiae [32]

KinA σE and σF 10 Bacillus subtilis [33]

CheY-P Flagellar motor output ~10 - 20 Escherichia coli [34-36]

Cdk1 Cdc25C 11 Xenopus laevis
egg extracts

[37]

Delta (cis and trans) Notch production 12 CHO cells [24]

Cdk1 APC/CCdc20 ≥ 17 Xenopus laevis
egg extracts and
embryos

[38, 39]

Yan ERK Not
determined

Drosophila
embryos

[22]

*
Our estimate based on the data in Fig 3 from [28].
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