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Abstract: Anti-Mullerian hormone (AMH) regulates ovarian folliculogenesis by signaling via its receptors, and elevat-
ed serum AMH levels are associated with an increased risk of breast cancer. No previous studies have examined 
the effects of genetic variants in AMH-related genes on breast cancer risk. We evaluated the associations of 62 
single nucleotide polymorphisms (SNPs) in AMH and its receptor genes, including AMH type 1 receptor (ACVR1) 
and AMH type 2 receptor (AMHR2), with the risk of breast cancer in the Women’s Insights and Shared Experiences 
(WISE) Study of Caucasians (346 cases and 442 controls), as well as African Americans (149 cases and 246 
controls). Of the 62 SNPs evaluated, two showed a nominal significant association (P for trend < 0.05) with breast 
cancer risk among Caucasians, and another two among African Americans. The age-adjusted additive odds ratios 
(ORs) (95% confidence interval (95% CI)) of those two SNPs (ACVR1 rs12694937[C] and ACVR1 rs2883605[T]) 
for the risk of breast cancer among Caucasian women were 2.33 (1.20-4.52) and 0.68 (0.47-0.98), respectively. 
The age-adjusted additive ORs (95% CI) of those two SNPs (ACVR1 rs1146031[G] and AMHR2 functional SNP 
rs2002555[G]) for the risk of breast cancer among African American women were 0.63 (0.44-0.92) and 1.67 
(1.10-2.53), respectively. However, these SNPs did not show significant associations after correction for multiple 
testing. Our findings do not provide strong supportive evidence for the contribution of genetic variants in AMH-
related genes to the risk of developing breast cancer in either Caucasians or African Americans. 
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Introduction

Anti-Mullerian hormone (AMH) is a member of 
the transforming growth factor-β (TGFβ) family 
of growth and differentiation factors known pri-
marily for its role in regulating the in-utero sex-
ual differentiation of males [1]. In women, AMH 
is secreted by the premenopausal ovary [2-4] 
and regulates ovarian folliculogenesis by sig-
naling via its receptors, including non-specific 
activin receptor-like kinase 2 receptor (ALK2) 
encoded by AMH type 1 receptor (ACVR1) gene 
and specific AMH type II receptor (AMHR2) 
encoded by AMHR2 gene. Upon binding to 

AMHR2, AMH promotes heterodimerization 
with ALK2, resulting in downstream signaling 
via Smads [5]. Moreover, binding of AMH to 
AMHR2 suppresses follicle maturation by inhib-
iting recruitment of primordial follicles into the 
pool of growing follicles and by decreasing 
responsiveness of growing follicles to follicle 
stimulating hormone (FSH) [6]. Our previous 
study showed that women with elevated serum 
levels of AMH are at a 10-fold excess risk of 
developing breast cancer [7].

Given that ovarian follicle development is inti-
mately related to steroidogenesis and breast 
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cancer risk has clearly been shown to be relat-
ed to the ovarian steroid hormones, genetic 
variants in folliculogenesis-related genes, such 
as AMH and its receptors, could be related to 
breast cancer risk via effects on hormone pro-
duction or other as yet unidentified mecha-
nisms. However, only a few previous studies 
have focused on genes involved in regulation of 
folliculogenesis [8-11] and none have evaluat-
ed associations of genetic variants in AMH and 
its receptors with breast cancer risk. 

In this study, we evaluated the associations of 
62 single nucleotide polymorphisms (SNPs) in 
AMH and its receptor genes (ACVR1 and 
AMHR2) with the risk of breast cancer in the 
Women’s Insights and Shared Experiences 
(WISE) study of Caucasians (346 cases and 
442 controls), as well as African Americans 
(149 cases and 246 controls).

Materials and methods

Study population and data collection

The WISE study is a population-based retro-
spective case-control study. Incident primary 
breast cancer cases were identified through 
hospitals and the Pennsylvania State Cancer 
Registry, and frequency-matched controls were 
identified from the community using random 
digit dialing. The source population for this 
study was from the three counties of 
Philadelphia (Pennsylvania), Delaware (Penn- 
sylvania), and Camden (New Jersey). Details of 
the study have been reported previously 
[12-14]. 

Potentially eligible cases were women residing 
in these counties at the time of diagnosis who 
were aged 50-79 years and newly diagnosed 
with breast cancer between July 1, 1999 and 
June 30, 2002. The cases were identified 
through active surveillance at hospitals in 
these counties. Pennsylvania Cancer Registry 
lists were reviewed quarterly to validate com-
pleteness of case ascertainment. Breast can-
cer diagnoses were validated by review of 
pathology reports and medical records. Breast 
cancer was confirmed if a pathology report was 
compatible with a first primary, invasive breast 
cancer. Controls were selected from the same 
geographic region as the cases and were fre-
quency matched to the cases on race, age (in 
5-year age groups) and calendar date of inter-

view (within 3 months). Eligible controls had no 
history of breast cancer. Both cases and con-
trols were required to live in a non-institutional 
setting, to have a household telephone, to have 
the ability to speak English, and to have no 
severe cognitive, language, or speech impair- 
ment. 

Telephone interviews were used to collect data 
on demographic characteristics, anthropome-
try, family history of breast cancer, menstrual 
and menopausal history, reproductive history, 
medical history, oral contraceptive (OC) and 
hormone replacement therapy (HRT) use, 
smoking and alcohol ingestion. Participants 
collected buccal swabs according to standard 
directions and mailed them to the University of 
Pennsylvania. A total of 346 cases and 442 
controls for Caucasians, as well as 149 cases 
and 246 controls for African Americans were 
included in this study.

Participants provided verbal informed consent 
for the interview and written informed consent 
for the buccal samples. The University of 
Pennsylvania Committee on Studies Involving 
Human Beings, the institutional review boards 
at University of Maryland School of Medicine, 
and the institutional review boards of all the 
participating hospitals approved this study. 

Laboratory assays

Using the International HapMap project, we 
identified single nucleotide polymorphisms 
(SNPs) that effectively cover 3 candidate genes 
of interest. Some of these SNPs are in linkage 
disequilibrium; therefore, a more efficient set of 
tagging SNPs can be used to capture the same 
genetic variation [15]. Using Haploview pro-
gram and a minimum r2 threshold of 0.8, we 
identified a set of 62 parsimonious tagging 
SNPs with minor allele frequency greater than 
5% to capture genetic variation in each locus 
(introns and exons, as well as 20 kb upstream 
of the start of transcription and 10 kb down-
stream of the end of transcription) of three 
genes including AMH (13), ACVR1 (42), and 
AMHR2 (7), in a race specific manner for 
Caucasians and African Americans separately. 
Information on these 62 SNPs is presented in 
Supplementary Table 1. 

We genotyped these SNPs using the Sequenom 
platform with 10ng of all DNA samples in 384-
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Table 1. Basic characteristics of breast cancer cases and controls in WISE case-control study
Caucasians African Americans

Characteristic Cases
(n = 346)

Controls
(n = 442)

  Cases
(n = 149)

Controls 
(n = 246) 

Age (yrs, mean) 63.4 62.5   62.2 61.0
Body-mass index (kg/m2, mean) 24.0 24.0   25.7 26.0
Age at menarche (yrs, mean) 12.5 12.7   12.8 12.7
Age at menopause (yrs, mean) 48.2 48.4   48.2 47.5
Age at first full term pregnancy among parous women (yrs, mean) 24.3 24.6   21.2 20.9
Number of full term pregnancies (%)          
    0 19.9 11.5   16.8 6.9
    1~2 32.7 39.6   43.0 41.5
    ≥3 47.4 48.9   40.3 51.6
Duration of breast feeding (%)          
    Never 69.1 56.1   66.9 67.1
    < 12 months 22.3 28.1   19.6 19.8
    ≥ 12 months 8.7 15.8   13.5 13.2
Menopausal status (%)          
    Premenopausal 7.2 7.7   7.4 8.1
    Postmenopausal 76.0 80.1   80.5 72.8
    Induced (e.g., surgical)/unknown 16.8 12.2   12.1 19.1
Family history of breast cancer in 1st degree relative (%)          
    Yes 18.8 19.0   18.1 11.4
    No 81.2 81.0   81.9 88.6
Duration of combined estrogen and progestin (CHRT) use (%)          
    Never/other HRT use 75.1 70.6   92.6 87.8
    < 3 years 8.4 13.6   1.3 6.9
    ≥ 3 years 16.5 15.8   6.0 5.3
Duration of oral contraceptive (OC) use (%)          
    Never 53.8 47.7   55.7 46.8
    < 3 years 22.0 26.6   19.5 22.4
    ≥ 3 years 24.3 25.7   24.8 30.9

well format. Laboratory personnel were blinded 
to case-control status, and 3% blinded quality 
control samples were inserted to validate geno-
typing procedures; concordance for the blinded 
quality control samples was 100%.

Statistical methods

We used the X2 test to assess whether the gen-
otypes for all 62 SNPs were in Hardy-Weinberg 
equilibrium (HWE) among the controls. We eval-
uated the association between each SNP and 
breast cancer risk using unconditional logistic 
regression. An additive model was used to cal-
culate the p-value for trend on breast cancer 
risk according to an ordinal coding for genotype 
(0, 1 or 2 copies of SNP minor allele). All statisti-

cal analyses were two-sided and carried out 
using SAS V9.2 (SAS Institute, Cary, NC). 

Results and discussion

Descriptive characteristics of cases and con-
trols in this study are summarized in Table 1. 
The mean age at diagnosis of breast cancer 
cases was 63.4 years for Caucasians and 62.2 
years for African Americans. Compared with 
controls, breast cancer cases in both 
Caucasians and African Americans had lower 
number of full term pregnancies. Among 
Caucasians, cases were less likely to breast-
feed, more likely to have used long-term (≥ 3 
years) combined estrogen and progestin 
hormone replacement therapy (CHRT). Among 
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African Americans, cases were more likely to 
have a family history of breast cancer in a first 
degree relative and less likely to have used 
long-term (≥ 3 years) oral contraceptives (OCs). 

The distributions of genotypes for the four 
SNPs (rs1220135, rs13395576, rs16842009, 
and rs16842143 in ACVR1) among Caucasians 
and two SNPs (rs10933441 in ACVR1 and 
rs17695156 in AMHR2) among African 
Americans were not in Hardy-Weinberg equilib-
rium among controls (P for HWE = 0.000); thus 
were excluded from the analyses (Supple- 
mentary Table 1). We evaluated the associa-
tion of each SNP with breast cancer risk among 
Caucasians and African Americans separately. 
Of the 62 SNPs evaluated, two showed a nomi-
nal significant association with breast cancer 
risk among Caucasians (P for rs12694937, 
0.01; P for rs2883605, 0.04), and another two 
among African Americans (P for rs1146031, 
0.01; P for rs2002555, 0.02). The age-adjust-
ed additive odds ratios (ORs) (95% confidence 
interval (95% CI)) of those two SNPs (ACVR1 
rs12694937[C] and ACVR1 rs2883605[T]) for 
the risk of breast cancer among Caucasian 
women were 2.33 (1.20-4.52) and 0.68 (0.47-
0.98), respectively. The age-adjusted additive 
ORs (95% CI) of those two SNPs (ACVR1 
rs1146031[G] and AMHR2 functional SNP 
rs2002555[G]) for the risk of breast cancer 
among African American women were 0.63 
(0.44-0.92) and 1.67 (1.10-2.53), respectively 
(Table 2). These findings remained consistent 
after adjusting for breast cancer-related factors 
(Table 2). After correction for multiple testing 
(Bonferroni correction), these SNPs did not 
show significant associations with breast can-
cer risk (all p-values > 0.05/62 = 0.001).

Considering that the relationship of genetic 
variants in folliculogenesis-related genes with 
breast cancer risk could be affected by HRT or 
OC use, for those four SNPs that showed nomi-
nal associations in the main effect analyses, 
we conducted additional analyses in which 
users of HRT or OC were excluded. The results 
did not materially change for each of the four 
SNPs (data not shown). 

A few previous studies have examined genetic 
variants in genes involved in regulation of fol-
liculogenesis. A previous study of Dutch and 
German cohorts reported that women who 
carry the variant allele of the common polymor-

phism Ile49Ser (rs10407022) in the AMH gene 
have significantly higher serum estradiol levels 
in the follicular phase of the menstrual cycle 
compared to those who are homozygous wild-
type [11]. This variant was also associated with 
altered hormonal profiles in polycystic ovary 
syndrome (PCOS) patients [16], and its interac-
tion with AMHR2 variant may modify age at 
natural menopause [17]. Similar to women who 
carry the Ile49Ser variant allele in AMH, women 
who carry the variant allele of the common 
A-482G promoter polymorphism in AMHR2 
gene (rs2002555) have significantly higher fol-
licular phase serum estradiol levels compared 
to women who are homozygous wild-type in the 
cohorts of Dutch and German [11]. Furthermore, 
women who carry variant alleles for both 
Ile49Ser in AMH and A-482G in AMHR2 have 
the highest follicular phase estradiol levels. It 
has been shown that the A-482G polymor-
phisms in AMHR2 is associated with infertility 
in Italy [18] and Japanese women [19], and 
interacts with parity in relation to age at meno-
pause [10]. In this study, -482G allele in AMHR2 
(rs2002555) was associated with an increased 
risk of breast cancer among African American 
women. Considering the effect of A-482G poly-
morphisms on serum estradiol level and well-
known relationship between ovarian steroid 
hormone and breast cancer risk, it is plausible 
that this SNP is related to breast cancer risk 
partially through alteration of hormone produc-
tion. For ACVR1, several tagging SNPs 
(rs1220134, rs10497189, and rs2033962/
rs13021202) and their corresponding haplo-
types were associated with AMH levels and fol-
licle number in PCOS patients [20]. However, 
little is known about variants in ACVR1 in rela-
tionship to AMH and follicle number in healthy 
women. In this study, we did not find an associ-
ation of these SNPs with breast cancer risk. 

One limitation of this study is potential recall 
bias from the retrospective case-control study 
design. However, deviations due to the major 
factors related to AMH, such as use of HRT and 
OC, could be minimized, because OC use is only 
modestly related to breast cancer risk and risk 
is limited in duration after discontinuation [21], 
and WISE was completed before the Women’s 
Health Initiative heightened public awareness 
of the association of HRT use with breast can-
cer risk.

In summary, we evaluated the associations 
between 62 SNPs in three AMH-related genes 
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Table 2. SNPs significantly associated with breast cancer risk in WISE case-control study
SNP (gene) Caucasians   African Americans
rs12694937 (ACVR1) Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa

    TT 292 (92.4) 417 (96.5) 1.00 1.00   102 (71.8) 163 (71.5) 1.00 1.00
    TC 24 (7.6) 15 (3.5) 2.33 (1.20-4.52) 2.35 (1.20-4.63)   38 (26.8) 59 (25.9) 1.02 (0.64-1.65) 0.89 (0.53-1.48)
    CC 0 (0.0) 0 (0.0) - -   2 (1.4) 6 (2.6) 0.51 (0.10-2.61) 0.47 (0.09-2.49)
    Additive OR     2.33 (1.20-4.52) 2.35 (1.20-4.63)       0.93 (0.61-1.42) 0.83 (0.53-1.29)
    p for trend       0.01 0.01       0.74 0.40
rs2883605 (ACVR1)   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa

    GG   286 (86.1) 347 (80.5) 1.00 1.00   138 (97.9) 232 (97.9) 1.00 1.00
    GT   44 (13.3) 80 (18.6) 0.66 (0.44-0.99) 0.67 (0.44-1.01)   3 (2.1) 5 (2.1) 1.09 (0.26-4.67) 1.34 (0.30-5.94)
    TT   2 (0.6) 4 (0.9) 0.60 (0.11-3.31) 0.67 (0.12-3.74)   0 (0.0) 0 (0.0) -
    Additive OR       0.68 (0.47-0.98) 0.69 (0.47-1.01)       1.09 (0.26-4.67) 1.34 (0.30-5.94)
    p for trend       0.04 0.06       0.91 0.70
rs1146031 (ACVR1)   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa

    AA   323 (97.6) 430 (99.1) 1.00 1.00   95 (66.0) 133 (55.6) 1.00 1.00
    AG   7 (2.1) 4 (0.9) 2.30 (0.67-7.92) 2.55 (0.71-9.10)   46 (31.9) 89 (37.2) 0.73 (0.47-1.14) 0.70 (0.43-1.12)
    GG   1 (0.3) 0 (0.0) - -   3 (2.1) 17 (7.1) 0.24 (0.07-0.84) 0.28 (0.08-1.03)
    Additive OR       2.60 (0.83-8.17) 2.82 (0.86-9.27)       0.63 (0.44-0.92) 0.63 (0.43-0.93)
    p for trend       0.10 0.09       0.01 0.02
rs2002555 (AMHR2)   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa   Cases (%) Controls (%) Age-adjusted OR Multivariate-adjusted ORa

    AA   216 (69.9) 304 (71.2) 1.00 1.00   98 (68.5) 176 (76.5) 1.00 1.00
    AG   77 (24.9) 109 (25.5) 0.99 (0.71-1.40) 0.99 (0.70-1.41)   38 (26.6) 53 (23.0) 1.32 (0.81-2.15) 1.23 (0.73-2.08)
    GG   16 (5.2) 14 (3.3) 1.67 (0.79-3.50) 1.84 (0.86-3.94)   7 (4.9) 1 (0.4) 12.4 (1.51-103) 13.3 (1.53-115)
    Additive OR       1.12 (0.86-1.46) 1.14 (0.87-1.50)       1.67 (1.10-2.53) 1.62 (1.04-2.52)
    p for trend       0.41 0.34       0.02 0.03
aMultivariate-adjusted ORs are adjusted for age, age at menarche (< 12 yr, 12 yr, or > 12 yr), number of full term pregnancies (0, 1 to 2, or ≥ 3), menopausal status (premenopaus-
al, postmenopausal, or induced/unknown), family history of breast cancer in 1st degree relative (yes or no), body-mass index (< 25, 25 to 30, or ≥ 30), duration of CHRT use (never/
other HRT use, < 3 yrs, or ≥ 3 yrs), and duration of OC use (never, < 3 yrs, or ≥ 3 yrs).
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and breast cancer risk in both Caucasians and 
African Americans. We did not find strong sup-
portive evidence for the contribution of genetic 
variants in AMH-related genes to the risk of 
developing breast cancer, although four SNPs 
showed suggestive association. The sample 
size of this study was modest, and additional 
larger studies are warranted to confirm the sug-
gestive associations observed in the present 
study. 
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Supplementary Table 1. 62 SNPs in AMH, ACVR1, and AMHR2 genes
Caucasians African Americans

Gene rs# Major/minor allele MAF (%)a P for HWE Major/minor allele MAF (%)a P for HWE
Anti-mullerian hormone (AMH) rs733846 T/G 16 0.340   G/T 43 0.016

rs2074860 A/G 18 0.379   G/A 42 0.224

rs3746158 A/G 23 0.528   A/G 42 0.203

rs3761021 T/C 2 0.654   T/C 15 0.537

rs4806834 C/T 3 0.456   C/T 29 0.281

rs6510652 G/T 9 0.098   G/T 26 0.976

rs6510653 A/G 10 0.427   G/A 45 0.068

rs7249235 C/A 9 0.052   C/A 29 0.170

rs7250822 G/C 16 0.228   G/C 18 0.366

rs7253181 T/G 22 0.398   G/T 48 0.859

rs8112524 A/G 38 0.229   G/A 37 0.038

rs10407022 T/G 13 0.012   T/G 39 0.723

rs10415913 G/A 9 0.816   A/G 49 0.073

AMH type 1 receptor (ACVR1) rs12936 G/T 0 0.961   G/T 5 0.605

rs1146031 A/G 0 0.923   A/G 26 0.691

rs1146033 A/G 1 0.904   A/G 26 0.024

rs1146037 T/C 22 0.569   T/C 19 0.042

rs1220110 T/A 27 0.739   A/T 36 0.090

rs1220133 G/A 28 0.477   A/G 33 0.583

rs1220134 T/A 28 0.761   A/T 35 0.234

rs1220135 T/C 0 0.000   T/C 8 0.778

rs2883605 G/T 10 0.796   G/T 1 0.870

rs3738927 T/C 0 0.981   T/C 5 0.581

rs4233672 G/A 19 0.023   A/G 32 0.363

rs4380178 G/A 16 0.124   G/A 20 0.369

rs4664898 A/G 19 0.661   A/G 26 0.522

rs4664901 T/C 23 0.140   C/T 23 0.560

rs7561419 C/T 0 0.962   C/T 23 0.415

rs7563276 G/A 6 0.886   G/A 9 0.932

rs7565550 C/A 20 0.329   C/A 29 0.688

rs7603425 T/C 0 0.981   T/C 9 0.151

rs9288697 G/T 5 0.924   G/T 29 0.312

rs10168000 C/T 18 0.137   T/C 23 0.068

rs10497189 T/C 12 0.542   T/C 1 0.842

rs10497190 C/T 19 0.215   C/T 27 0.776

rs10497191 C/T 13 0.312   T/C 21 0.006

rs10497192 T/C 27 0.494   C/T 16 0.002

rs10497193 A/G 18 0.728   A/G 42 0.413

rs10933441 C/T 7 0.913   C/T 5 0.000

rs10933443 T/C 25 0.885   C/T 38 0.581

rs12694937 T/C 2 0.713   T/C 16 0.812

rs12987698 T/G 17 0.071   G/T 30 0.020

rs13021202 C/T 19 0.060   C/T 27 0.474

rs13395576 T/C 0 0.000   T/C 6 0.884

rs13398650 G/A 8 0.340   A/G 44 0.026

rs13426299 C/G 0 0.981   C/G 20 0.435

rs16842009 C/T 0 0.000   C/T 5 0.703

rs16842018 G/T 1 0.902   G/T 32 0.106

rs16842023 C/T 1 0.904   C/T 15 0.710

rs16842091 C/T 0 0.962   C/T 5 0.407

rs16842126 A/T 1 0.828   A/T 11 0.445

rs16842128 G/T 0 0.981   G/T 6 0.888

rs16842130 C/T 0 0.961   C/T 12 0.033
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rs16842143 G/A 0 0.000   G/A 6 0.351

rs17182166 G/T 18 0.232   G/T 17 0.394

AMH type 2 receptor (AMHR2) rs784888 C/G 0 0.922   C/G 33 0.623

rs784892 C/T 0 0.962   C/T 27 0.715

rs784893 T/C 1 0.904   T/C 47 0.825

rs2002555 T/C 16 0.279   T/C 12 0.152

rs11170550 G/T 16 0.396   G/T 16 0.625

rs17695156 C/T 7 0.169   C/T 1 0.000

rs36120387 C/T 10 0.254   C/T 2 0.768
aMinor allele frequency (MAF) was calculated among controls in this study.


