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Abstract

In recent years, a rich variety of shrinkage priors have been proposed that have great promise in 

addressing massive regression problems. In general, these new priors can be expressed as scale 

mixtures of normals, but have more complex forms and better properties than traditional Cauchy 

and double exponential priors. We first propose a new class of normal scale mixtures through a 

novel generalized beta distribution that encompasses many interesting priors as special cases. This 

encompassing framework should prove useful in comparing competing priors, considering 

properties and revealing close connections. We then develop a class of variational Bayes 

approximations through the new hierarchy presented that will scale more efficiently to the types of 

truly massive data sets that are now encountered routinely.

1 Introduction

Penalized likelihood estimation has evolved into a major area of research, with ℓ1[22] and 

other regularization penalties now used routinely in a rich variety of domains. Often 

minimizing a loss function subject to a regularization penalty leads to an estimator that has a 

Bayesian interpretation as the mode of a posterior distribution [8, 11, 1, 2], with different 

prior distributions inducing different penalties. For example, it is well known that Gaussian 

priors induce ℓ2 penalties, while double exponential priors induce ℓ1 penalties [8, 19, 13, 1]. 

Viewing massive-dimensional parameter learning and prediction problems from a Bayesian 

perspective naturally leads one to design new priors that have substantial advantages over 

the simple normal or double exponential choices and that induce rich new families of 

penalties. For example, in high-dimensional settings it is often appealing to have a prior that 

is concentrated at zero, favoring strong shrinkage of small signals and potentially a sparse 

estimator, while having heavy tails to avoid over-shrinkage of the larger signals. The 

Gaussian and double exponential priors are insufficiently flexible in having a single scale 

parameter and relatively light tails; in order to shrink many small signals strongly towards 

zero, the double exponential must be concentrated near zero and hence will over-shrink 

signals not close to zero. This phenomenon has motivated a rich variety of new priors such 

as the normal-exponential-gamma, the horseshoe and the generalized double Pareto [11, 14, 

1, 6, 20, 7, 12, 2].
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An alternative and widely applied Bayesian framework relies on variable selection priors 

and Bayesian model selection/averaging [18, 9, 16, 15]. Under such approaches the prior is a 

mixture of a mass at zero, corresponding to the coefficients to be set equal to zero and hence 

excluded from the model, and a continuous distribution, providing a prior for the size of the 

non-zero signals. This paradigm is very appealing in fully accounting for uncertainty in 

parameter learning and the unknown sparsity structure through a probabilistic framework. 

One obtains a posterior distribution over the model space corresponding to all possible 

subsets of predictors, and one can use this posterior for model-averaged predictions that take 

into account uncertainty in subset selection and to obtain marginal inclusion probabilities for 

each predictor providing a weight of evidence that a specific signal is non-zero allowing for 

uncertainty in the other signals to be included. Unfortunately, the computational complexity 

is exponential in the number of candidate predictors (2p with p the number of predictors).

Some recently proposed continuous shrinkage priors may be considered competitors to the 

conventional mixture priors [15, 6, 7, 12] yielding computationally attractive alternatives to 

Bayesian model averaging. Continuous shrinkage priors lead to several advantages. The 

ones represented as scale mixtures of Gaussians allow conjugate block updating of the 

regression coefficients in linear models and hence lead to substantial improvements in 

Markov chain Monte Carlo (MCMC) efficiency through more rapid mixing and 

convergence rates. Under certain conditions these will also yield sparse estimates, if desired, 

via maximum a posteriori (MAP) estimation and approximate inferences via variational 

approaches [17, 24, 5, 8, 11, 1, 2].

The class of priors that we consider in this paper encompasses many interesting priors as 

special cases and reveals interesting connections among different hierarchical formulations. 

Exploiting an equivalent conjugate hierarchy of this class of priors, we develop a class of 

variational Bayes approximations that can scale up to truly massive data sets. This conjugate 

hierarchy also allows for conjugate modeling of some previously proposed priors which 

have some rather complex yet advantageous forms and facilitates straightforward 

computation via Gibbs sampling. We also argue intuitively that by adjusting a global 

shrinkage parameter that controls the overall sparsity level, we may control the number of 

non-zero parameters to be estimated, enhancing results, if there is an underlying sparse 

structure. This global shrinkage parameter is inherent to the structure of the priors we 

discuss as in [6, 7] with close connections to the conventional variable selection priors.

2 Background

We provide a brief background on shrinkage priors focusing primarily on the priors studied 

by [6, 7] and [11, 12] as well as the Strawderman-Berger (SB) prior [7]. These priors 

possess some very appealing properties in contrast to the double exponential prior which 

leads to the Bayesian lasso [19, 13]. They may be much heavier-tailed, biasing large signals 

less drastically while shrinking noise-like signals heavily towards zero. In particular, the 

priors by [6, 7], along with the Strawderman-Berger prior [7], have a very interesting and 

intuitive representation later given in (2), yet, are not formed in a conjugate manner 

potentially leading to analytical and computational complexity.
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[6, 7] propose a useful class of priors for the estimation of multiple means. Suppose a p-

dimensional vector y|θ~ (θ, I) is observed. The independent hierarchical prior for θj is 

given by

(1)

for j = 1, …, p, where (μ, ν) denotes a normal distribution with mean μ and variance ν and 

(0, s) denotes a half-Cauchy distribution on  with scale parameter s. With an appropriate 

transformation ρj = 1/(1 + τj), this hierarchy also can be represented as

(2)

A special case where φ = 1 leads to ρj ~ (1/2, 1/2) (beta distribution) where the name of the 

prior arises, horseshoe (HS) [6, 7]. Here ρj s are referred to as the shrinkage coefficients as 

they determine the magnitude with which θj s are pulled toward zero. A prior of the form ρj 

~ (1/2, 1/2) is natural to consider in the estimation of a signal θj as this yields a very 

desirable behavior both at the tails and in the neighborhood of zero. That is, the resulting 

prior has heavy-tails as well as being unbounded at zero which creates a strong pull towards 

zero for those values close to zero. [7] further discuss priors of the form ρj ~ (a, b) for a > 

0, b > 0 to elaborate more on their focus on the choice a = b = 1/2. A similar formulation 

dates back to [21]. [7] refer to the prior of the form ρj ~ (1, 1/2) as the Strawderman-Berger 

prior due to [21] and [4]. The same hierarchical prior is also referred to as the quasi-Cauchy 

prior in [16]. Hence, the tail behavior of the Strawderman-Berger prior remains similar to 

the horseshoe (when φ = 1), while the behavior around the origin changes. The hierarchy in 

(2) is much more intuitive than the one in (1) as it explicitly reveals the behavior of the 

resulting marginal prior on θj. This intuitive representation makes these hierarchical priors 

interesting despite their relatively complex forms. On the other hand, what the prior in (1) or 

(2) lacks is a more trivial hierarchy that yields recognizable conditional posteriors in linear 

models. [11, 12] consider the normal-exponential-gamma (NEG) and normal-gamma (NG) 

priors respectively which are formed in a conjugate manner yet lack the intuition the 

Strawderman-Berger and horseshoe priors provide in terms of the behavior of the density 

around the origin and at the tails. Hence the implementation of these priors may be more 

user-friendly but they are very implicit in how they behave. In what follows we will see that 

these two forms are not far from one another. In fact, we may unite these two distinct 

hierarchical formulations under the same class of priors through a generalized beta 

distribution and the proposed equivalence of hierarchies in the following section. This is 

rather important to be able to compare the behavior of priors emerging from different 

hierarchical formulations. Furthermore, this equivalence in the hierarchies will allow for a 

straightforward Gibbs sampling update in posterior inference, as well as making variational 

approximations possible in linear models.
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3 Equivalence of Hierarchies via a Generalized Beta Distribution

In this section we propose a generalization of the beta distribution to form a flexible class of 

scale mixtures of normals with very appealing behavior. We then formulate our hierarchical 

prior in a conjugate manner and reveal similarities and connections to the priors given in 

[16, 11, 12, 6, 7]. As the name generalized beta has previously been used, we refer to our 

generalization as the three-parameter beta (TPB) distribution.

In the forthcoming text Γ(.) denotes the gamma function, (μ, ν) denotes a gamma 

distribution with shape and rate parameters μ and ν, (ν, S) denotes a Wishart distribution 

with ν degrees of freedom and scale matrix S, (α1, α2) denotes a uniform distribution over 

(α1, α2),   (μ, ν, ξ) denotes a generalized inverse Gaussian distribution with density 

function , and Kμ(.) is a modified Bessel 

function of the second kind.

Definition 1

The three-parameter beta (TPB) distribution for a random variable X is defined by the 

density function

(3)

for 0 < x < 1, a > 0, b > 0 and φ > 0 and is denoted by   (a, b, φ).

It can be easily shown by a change of variable x = 1/(y + 1) that the above density integrates 

to 1. The kth moment of the TPB distribution is given by

(4)

where 2F1 denotes the hypergeometric function. In fact it can be shown that TPB is a 

subclass of Gauss hypergeometric (GH) distribution proposed in [3] and the compound 

confluent hypergeometric (CCH) distribution proposed in [10].

The density functions of GH and CCH distributions are given by

(5)

(6)

for 0 < x < 1 and 0 < x < 1/ν, respectively, where B(b, a) = Γ(a)Γ(b)/Γ(a + b) denotes the 

beta function and Φ1 is the degenerate hypergeometric function of two variables [10]. 
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Letting ζ = φ − 1, r = a + b and noting that 2F1(a + b, b; a + b; 1 − φ) = φ−b, (5) becomes a 

TPB density. Also note that (6) becomes (5) for s = 1, ν = 1 and ζ = (1 − θ)/θ [10].

[20] considered an alternative special case of the CCH distribution for the shrinkage 

coefficients, ρj, by letting ν = r = 1 in (6). [20] refer to this special case as the 

hypergeometric-beta (HB) distribution. TPB and HB generalize the beta distribution in two 

distinct directions, with one practical advantage of the TPB being that it allows for a 

straightforward conjugate hierarchy leading to potentially substantial analytical and 

computational gains.

Now we move onto the hierarchical modeling of a flexible class of shrinkage priors for the 

estimation of a potentially sparse p-vector. Suppose a p-dimensional vector y|θ ~ (θ, I) is 

observed where θ = (θ1, …, θp)′ is of interest. Now we define a shrinkage prior that is 

obtained by mixing a normal distribution over its scale parameter with the TPB distribution.

Definition 2

The TPB normal scale mixture representation for the distribution of random variable θj is 

given by

(7)

where a > 0, b > 0 and φ > 0. The resulting marginal distribution on θj is denoted by   

(a, b, φ).

Figure 1 illustrates the density on ρj for varying values of a, b and φ. Note that the special 

case for a = b = 1/2 in Figure 1(a) gives the horseshoe prior. Also when a = φ = 1 and b = 

1/2, this representation yields the Strawderman-Berger prior. For a fixed value of φ, smaller 

a values yield a density on θj that is more peaked at zero, while smaller values of b yield a 

density on θj that is heavier tailed. For fixed values of a and b, decreasing φ shifts the mass 

of the density on ρj from left to right, suggesting more support for stronger shrinkage. That 

said, the density assigned in the neighborhood of θj = 0 increases while making the overall 

density lighter-tailed. We next propose the equivalence of three hierarchical representations 

revealing a wide class of priors encompassing many of those mentioned earlier.

Proposition 1

If θj ~    (a, b, φ), then

1. θj ~ (0, τj), τj ~ (a, λj) and λj ~ (b, φ).

2.
θj ~ (0, τj),  which implies that τj /φ ~ β′

(a, b), the inverted beta distribution with parameters a and b.

The equivalence given in Proposition 1 is significant as it makes the work in Section 4 

possible under the TPB normal scale mixtures as well as further revealing connections 

among previously proposed shrinkage priors. It provides a rich class of priors leading to 

great flexibility in terms of the induced shrinkage and makes it clear that this new class of 
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priors can be considered simultaneous extensions to the work by [11, 12] and [6, 7]. It is 

worth mentioning that the hierarchical prior(s) given in Proposition 1 are different than the 

approach taken by [12] in how we handle the mixing. In particular, the first hierarchy 

presented in Proposition 1 is identical to the NG prior up to the first stage mixing. While 

fixing the values of a and b, we further mix over λj (rather than a global λ) and further over 

φ if desired as will be discussed later. φ acts as a global shrinkage parameter in the 

hierarchy. On the other hand, [12] choose to further mix over a and a global λ while fixing 

the values of b and φ. By doing so, they forfeit a complete conjugate structure and an 

explicit control over the tail behavior of π(θj).

As a direct corollary to Proposition 1, we observe a possible equivalence between the SB 

and the NEG priors.

Corollary 1

If a = 1 in Proposition 1, then TPBN = NEG. If (a, b, φ) = (1, 1/2, 1) in Proposition 1, then 

TPBN ≡ SB ≡ NEG.

An interesting, yet expected, observation on Proposition 1 is that a half-Cauchy prior can be 

represented as a scale mixture of gamma distributions, i.e. if τj ~ (1/2, λj) and λj ~ (1/2, 

φ), then  . This makes sense as τ1/2|λj has a half-Normal distribution and 

the mixing distribution on the precision parameter is gamma with shape parameter 1/2.

[7] further place a half-Cauchy prior on φ1/2 to complete the hierarchy. The aforementioned 

observation helps us formulate the complete hierarchy proposed in [7] in a conjugate 

manner. This should bring analytical and computational advantages as well as making the 

application of the procedure much easier for the average user without the need for a 

relatively more complex sampling scheme.

Corollary 2

If θj ~ (0, τj),  and φ1/2 ~ (0, 1), then θj ~    (1/2, 1/2, φ), φ ~ 

(1/2, ω) and ω ~ (1/2, 1).

Hence disregarding the different treatments of the higher-level hyper-parameters, we have 

shown that the class of priors given in Definition 2 unites the priors in [16, 11, 6, 7] under 

one family and reveals their close connections through the equivalence of hierarchies given 

in Proposition 1. The first hierarchy in Proposition 1 makes much of the work possible in the 

following sections.

4 Estimation and Posterior Inference in Regression Models

4.1 Fully Bayes and Approximate Inference

Consider the linear regression model, y = Xβ+ε, where y is an n-dimensional vector of 

responses, X is the n × p design matrix and ε is an n-dimensional vector of independent 

residuals which are normally distributed, (0, σ2In) with variance σ2.
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We place the hierarchical prior given in Proposition 1 on each βj, i.e. βj ~ (0, σ2τj), τj ~ 

(a, λj), λj ~ (b, φ). φ is used as a global shrinkage parameter common to all βj, and may be 

inferred using the data. Thus we follow the hierarchy by letting φ ~ (1/2, ω), ω ~ (1/2, 1) 

which implies φ1/2 ~ (0, 1) that is identical to what was used in [7] at this level of the 

hierarchy. However, we do not believe at this level in the hierarchy the choice of the prior 

will have a huge impact on the results. Although treating φ as unknown may be reasonable, 

when there exists some prior knowledge, it is appropriate to fix a φ value to reflect our prior 

belief in terms of underlying sparsity of the coefficient vector. This sounds rather natural as 

soon as one starts seeing φ as a parameter that governs the multiplicity adjustment as 

discussed in [7]. Note also that here we form the dependence on the error variance at a lower 

level of hierarchy rather than forming it in the prior of φ as done in [7]. If we let a = b = 1/2, 

we will have formulated the hierarchical prior given in [7] in a completely conjugate 

manner. We also let σ−2 ~ (c0/2, d0/2). Under a normal likelihood, an efficient Gibbs 

sampler may be obtained as the fully conditional posteriors can be extracted: β|y, X, σ2, τ1, 

…, τp ~ (μβ, Vβ), σ−2|y, X, β, τ1, …, τp ~ (c*, d*), 

, λj |τj, φ ~ (a+b, τj +φ), 

, where μβ = (X′X + T−1)−1X′y, Vβ = 

σ2(X′X + T−1)−1, c* = (n + p + c0)/2, d* = {(y − Xβ) ′(y − Xβ) + β′T−1β + d0}/2, T = 

diag(τ1, …, τp).

As an alternative to MCMC and Laplace approximations [23], a lower-bound on marginal 

likelihoods may be obtained via variational methods [17] yielding approximate posterior 

distributions on the model parameters. Using a similar approach to [5, 1], the approximate 

marginal posterior distributions of the parameters are given by β ~ (μβ, Vβ), σ−2 ~ (c*, 

d*), , λj ~ (a+b, 〈τ〉 +〈φ〉), φ ~ (pb+1/2, 

, ω ~ G(1, 〈φ〉 + 1), where μβ = 〈β 〉 = (X′X + T&minus;1)−1X′y, Vβ = 

〈σ−2〉−1(X′ X + T−1)−1, , c* = (n + p + c0)/2, 

, 〈ββ′〉 = Vβ + 〈β〉 〈β′〉, 

〈σ−2〉 = c*/d*, 〈λj〉 = (a + b)/(〈τj〉 + 〈φ〉), 

 and

This procedure consists of initializing the moments and iterating through them until some 

convergence criterion is reached. The deterministic nature of these approximations make 

them attractive as a quick alternative to MCMC.
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This conjugate modeling approach we have taken allows for a very straightforward 

implementation of Strawderman-Berger and horseshoe priors or, more generally, TPB 

normal scale mixture priors in regression models without the need for a more sophisticated 

sampling scheme which may ultimately attract more audiences towards the use of these 

more flexible and carefully defined normal scale mixture priors.

4.2 Sparse Maximum a Posteriori Estimation

Although not our main focus, many readers are interested in sparse solutions, hence we give 

the following brief discussion. Given a, b and φ, maximum a posteriori (MAP) estimation is 

rather straightforward via a simple expectation-maximization (EM) procedure. This is 

accomplished in a similar manner to [8] by obtaining the joint MAP estimates of the error 

variance and the regression coefficients having taken the expectation with respect to the 

conditional posterior distribution of  using the second hierarchy given in Proposition 1. 

The kth expectation step then would consist of calculating

(8)

where  and  denote the modal estimates of the jth component of β and the error 

variance σ2 at iteration (k − 1). The solution to (8) may be expressed in terms of some 

special function(s) for changing values of a, b and φ. b < 1 is a good choice as it will keep 

the tails of the marginal density on βj heavy. A careful choice of a, on the other hand, is 

essential to sparse estimation. Admissible values of a for sparse estimation is apparent by 

the representation in Definition 2, noting that for any a > 1, π(ρj = 1) = 0, i.e. βj may never 

be shrunk exactly to zero. Hence for sparse estimation, it is essential that 0 < a ≤ 1. Figure 2 

(a) and (b) give the prior densities on ρj for b = 1/2, φ = 1 and a = {1/2, 1, 3/2} and the 

resulting marginal prior densities on βj. These marginal densities are given by

where Erf(.) denotes the error function and  is the incomplete gamma 

function. Figure 2 clearly illustrates that while all three cases have very similar tail behavior, 

their behavior around the origin differ drastically.

5 Experiments

Throughout this section we use the Jeffreys’ prior on the error precision by setting c0 = d0 = 

0. We generate data for two cases, (n, p) = {(50, 20), (250, 100)}, from , for i = 

1, …, n where β* is a p-vector that on average contains 20q non-zero elements which are 
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indexed by the set  for some random q ∈ (0, 1). We randomize the procedure 

in the following manner: (i) C ~ (p, Ip×p), (ii) xi ~ (0, C), (iii) q ~ (1, 1) for the first 

and q ~ (1, 4) for the second cases, (iv) I(j ∈ ) ~ Bernoulli(q) for j = 1, …, p where I(.) 

denotes the indicator function, (v) for j ∈ , βj ~ (0, 6) and for j ∉ , βj = 0 and finally (vi) 

εi ~ (0, σ2) where σ ~ (0, 6). We generated 1000 data sets for each case resulting in a 

median signal-to-noise ratio of approximately 3.3 and 4.5. We obtain the estimate of the 

regression coefficients, β̂, using the variational Bayes procedure and measure the 

performance by model error which is calculated as (β* − β̂)′C(β* − β̂). Figure 3(a) and (b) 

display the median relative model error (RME) values (with their distributions obtained via 

bootstrapping) which is obtained by dividing the model error observed from our procedures 

by that of ℓ1 regularization (lasso) tuned by 10-fold cross-validation. The boxplots in Figure 

3(a) and (b) correspond to different (a, b, φ) values where C+ signifies that φ is treated as 

unknown with a half-Cauchy prior as given earlier in Section 4.1. It is worth mentioning that 

we attain a clearly superior performance compared to the lasso, particularly in the second 

case, despite the fact that the estimator resulting from the variational Bayes procedure is not 

a thresholding rule. Note that b = 1 choice leads to much better performance under Case 2 

than Case 1. This is due to the fact that Case 2 involves a much sparser underlying setup on 

average than Case 1 and that the lighter tails attained by setting b = 1 leads to stronger 

shrinkage.

To give a high dimensional example, we also generate a data set from the model 

, for i = 1, …, 100, where β* is a 10000-dimensional very sparse vector with 10 

randomly chosen components set to be 3, εi ~ (0, 32) and xij ~ (0, 1) for j = 1, …, p. This 

β* choice leads to a signal-to-noise ratios of 3.16. For the particular data set we generated, 

the randomly chosen components of β* to be non-zero were indexed by 1263, 2199, 2421, 

4809, 5530, 7483, 7638, 7741, 7891 and 8187. We set (a, b, φ) = (1, 1/2, 10−4) which 

implies that a priori ℙ(ρj > 0.5) = 0.99 placing much more density in the neighborhood of ρj 

= 1 (total shrinkage). This choice is due to the fact that n/p = 0.01 and to roughly reflect that 

we do not want any more than 100 predictors in the resulting model. Hence φ is used, a 

priori, to limit the number of predictors in the model in relation to the sample size. Also note 

that with a = 1, the conditional posterior distribution of  is reduced to an inverse 

Gaussian. Since we are adjusting the global shrinkage parameter, φ, a priori, and it is chosen 

such that ℙ (ρj > 0.5) = 0.99, whether a = 1/2 or a = 1 should not matter. We first run the 

Gibbs sampler for 100000 iterations (2.4 hours on a computer with a 2.8 GHz CPU and 12 

Gb of RAM using Matlab), discard the first 20000, thin the rest by picking every 5th sample 

to obtain the posteriors of the parameters. We observed that the chain converged by the 

10000th iteration. For comparison purposes, we also ran the variational Bayes procedure 

using the values from the converged chain as the initial points (80 seconds). Figure 4 gives 

the posterior means attained by sampling and the variational approximation. The estimates 

corresponding to the zero elements of β* are plotted with smaller shapes to prevent clutter. 

We see that in both cases the procedure is able to pick up the larger signals and shrink a 

significantly large portion of the rest towards zero. The approximate inference results are in 

accordance with the results from the Gibbs sampler. It should be noted that using a good 
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informed guess on φ, rather than treating it as an unknown in this high dimensional setting, 

improves the performance drastically.

6 Discussion

We conclude that the proposed hierarchical prior formulation constitutes a useful 

encompassing framework in understanding the behavior of different scale mixtures of 

normals and connecting them under a broader family of hierarchical priors. While ℓ1 

regularization, or namely lasso, arising from a double exponential prior in the Bayesian 

framework yields certain computational advantages, it demonstrates much inferior 

estimation performance relative to the more carefully formulated scale mixtures of normals. 

The proposed equivalence of the hierarchies in Proposition 1 makes computation much 

easier for the TPB scale mixtures of normals. As per different choices of hyper-parameters, 

we recommend that a ∈ (0, 1] and b ∈ (0, 1); in particular (a, b) = {(1/2, 1/2), (1, 1/2)}. 

These choices guarantee that the resulting prior has a kink at zero, which is essential for 

sparse estimation, and leads to heavy tails to avoid unnecessary bias in large signals (recall 

that a choice of b = 1/2 will yield Cauchy-like tails). In problems where oracle knowledge 

on sparsity exists or when p ≫ n, we recommend that φ is fixed at a reasonable quantity to 

reflect an appropriate sparsity constraint as mentioned in Section 5.
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Figure 1. 
(a, b) = {(1/2, 1/2), (1, 1/2), (1, 1), (1/2, 2), (2, 2), (5, 2)} for (a)–(f) respectively. φ = {1/10, 

1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} considered for all pairs of a 

and b. The line corresponding to the lowest value of φ is drawn with a dashed line.
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Figure 2. 
Prior densities of (a) ρj and (b) βj for a = 1/2 (solid), a = 1 (dashed) and a = 3/2 (long dash).
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Figure 3. 
Relative ME at different (a, b, φ) values for (a) Case 1 and (b) Case 2.
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Figure 4. 
Posterior mean of β by sampling (square) and by approximate inference (circle).
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