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Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors

when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements

in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order

linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in

homogenous tissues with arbitrary geometries for extraction of BFI (i.e., aDB). The purpose of this

study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogene-
ous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in

different types of tissues simultaneously through utilizing DCS data at multiple source-detector sep-

arations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in

a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid,

and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral

blood flow (rCBF) in deep brain, we assigned ten levels of aDB in the brain layer with a step decre-

ment of 10% while maintaining aDB values constant in other layers. Simulation results demonstrate

the accuracy (errors< 3%) of high-order (N� 5) linear algorithm in extracting BFIs in different tis-

sue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in

substantial errors in rCBF (34.5%� errors� 60.2%) and BFIs in different layers. The Nth-order lin-

ear model simplifies data analysis, thus allowing for online data processing and displaying. Future

study will test this linear algorithm in heterogeneous tissues with different levels of blood flow var-

iations and noises. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896992]

Near-infrared (NIR) diffuse correlation spectroscopy

(DCS),1 also known as diffusing-wave spectroscopy,2,3 has

been developed and validated for noninvasive and continu-

ous monitoring of relative changes of blood flow (rBF) in a

variety of in vivo tissues with a depth up to centimeters.1 A

blood flow index (BFI) is usually generated by fitting DCS

autocorrelation function to analytical solutions of correlation

diffusion equation under simple tissue boundaries.4–7

Among these boundaries, the semi-infinite geometry is com-

monly used due to its simplicity, which assumes the tissue

measured to have a large volume with flat surface. However,

our previous studies found that semi-infinite approximation

leads to calculation errors of BFI in tissues with small vol-

ume and large curvature.8

Very recently, we created an algorithm integrating a

Nth-order linear model of autocorrelation function with the

Monte Carlo simulation of photon migrations in homoge-
nous tissues for the extraction of BFI and rBF.9 Results

from computer simulations and in vivo experiments in ho-

mogenous tissue models with different volumes and geome-

tries demonstrate the accuracy and robustness of the linear

algorithm. However, most of biological tissues are not ho-

mogenous. The purpose of this study is to extend the capa-

bility of the Nth-order linear algorithm for extracting BFI

values in heterogeneous tissues with arbitrary volumes and

geometries. After deriving a Nth-order linear algorithm

used in heterogeneous tissues, we compared it with the

semi-infinite homogenous solution for extracting BFI and

rBF in a computer model of adult head with heterogeneous

tissue layers of scalp, skull, cerebrospinal fluid (CSF), and

brain.10,11

The DCS principle and instrumentation can be found

elsewhere.4,12,13 Briefly, long-coherence NIR light (650 to

900 nm) is launched by a laser into the tissue via a source

fiber. After transporting/scattering through the tissue, pho-

tons are collected by avalanche photodiodes via single-mode

fibers placed millimeters to centimeters away from the

source fiber. An autocorrelator board reads the detected pho-

tons and calculates light intensity autocorrelation function,

from which the normalized electric field temporal autocorre-

lation function g1(s) of the detected light is derived. g1(s) is

dependent on the motion of moving scatterers (primarily red

blood cells) in the tissue. For homogeneous tissues, g1(s)

(modulus value) can be determined by8,13

g1 sð Þ ¼ hE 0ð ÞE� sð Þi
hjE 0ð Þj2i

¼
ð1

0

P sð Þexp –
1

3
k2

0hDr2 sð Þi s

l�

� �
ds:

(1)

Here, P(s) is the normalized distribution of detected

photon pathlength s, k0 is the wave vector magnitude of the

light in the medium, l* is the photon random-walk step

length, which is equal to 1/ls
0 (ls

0 is the reduced scattering

coefficient), and s is the delay time of autocorrelation func-

tion. hDr2(s)i is the mean-square-displacement of the moving

scatterers. Based on flow models adopted, hDr2(s)i can have

different forms. The diffuse motion model with a form of

hDr2(s)i¼ 6DBs was found to fit experimental data well overa)Electronic mail: guoqiang.yu@uky.edu
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a wide range of tissues,4 where DB (unit: cm2/s) is the effec-

tive diffusion coefficient. A factor a is added to hDr2(s)i
(i.e., hDr2(s)i¼ 6aDBs) because not all scatterers are

“moving” in the tissue;4 a is the ratio of “moving” scatterers

to the total scatterers. The combined term aDB is referred to

as BFI in the tissue, and the relative change in BFI (i.e., BFI/

BFIbaseline) as rBF.12

Also, the unnormalized electric field temporal autocorre-

lation function G1(s)¼hE(0)E*(s)i satisfies the correlation

diffusion equation4,13

Dr2 � vla �
1

3
vl0sk

2
0hDr2 sð Þi

� �
G1 ~r; sð Þ ¼ �vS ~rð Þ: (2)

Here, v is the light speed in the medium, D� v/3 l0s is the

medium photon diffusion coefficient, la is the medium

absorption coefficient, and Sð~rÞ is continuous-wave isotropic

source. The analytical solution of Eq. (2) with semi-infinite

geometry is often used to extract aDB in homogenous tissues.4

For heterogeneous tissues consisting of n tissue types

(e.g., scalp, skull, CSF, brain) with the assumption that

hDr2(s)i is homogeneous within each tissue type,10,11 Eq. (1)

can be rewritten as

g1 sð Þ ¼
ð1

0

P s1; :::; snð Þexp –
1

3

Xn

i¼1

k2
0 ið ÞhDr2

i sð Þi si

l�i

 !

� d s1; :::; snð Þ

¼
ð1

0

P s1; :::; snð Þexp �2
Xn

i¼1

k2
0 ið ÞaDB ið Þs ið Þl0s ið Þs

 !

� d s1; :::; snð Þ: (3)

Similar to the linear algorithm for homogenous tissues,9

g1ðsÞ can be expressed as the form of N-order Taylor

polynomial

g1 sð Þ ¼ g1 0ð Þ þ g 1ð Þ
1 0ð Þsþ

XN

k¼2

g kð Þ
1 0ð Þ
k!

sk þ g Nþ1ð Þ
1 nð ÞsNþ1

N þ 1ð Þ! ;

0 < n < sð Þ: (4)

Here,

g1ð0Þ ¼
ð1

0

Pðs1; :::; snÞdðs1; :::; snÞ ¼ 1: (5)

Let

Mðs1; :::; snÞ ¼ 2
Xn

i¼1

k2
0ðiÞaDBðiÞsðiÞl0sðiÞ : (6)

From Eq. (3), we have

g1ðsÞ ¼
ð1

0

Pðs1; :::; snÞexpð�Mðs1; :::; snÞsÞdðs1; :::; snÞ; (7)

g
ðkÞ
1 ðsÞ ¼

ð1
0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�k

� exp½�Mðs1; :::; snÞs�dðs1; :::; snÞ ðk � 1Þ: (8)

When s¼ 0

g1
ðkÞð0Þ ¼

ð1
0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�kdðs1; :::; snÞ: (9)

Combining Eqs. (3), (4), and (9), we have

g1ðsÞ � 1�
XN

k¼2

ð1
0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�kdðs1; :::; snÞ

k!
sk ¼ s

ð1
0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�dðs1; :::; snÞ

þ

ð1
0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�Nþ1
exp½�Mðs1; :::; snÞn�dðs1; :::; snÞ

ðN þ 1Þ! sNþ1; 0 < n < sÞ:ð (10)

When s is sufficient small, the second term on the right

side of Eq. (10) can be ignored. The first-order (N¼ 1) and

Nth-order (N> 1) approximations are thus derived from Eq.

(10), respectively

g1ðsÞ � 1 ¼ s
ð1

0

Pðs1; :::; snÞ½�Mðs1; :::; snÞ�dðs1; :::; snÞ:

(11)

g1 sð Þ � 1–
XN

k¼2

Ð1
0

P s1; :::; snð Þ �M s1; :::; snð Þ
� �kd s1; :::; snð Þ

k!
sk

¼ s
ð1

0

P s1; :::; snð Þ �M s1; :::; snð Þ
� �

d s1; :::; snð Þ: (12)

When utilizing Monte Carlo simulations of photon

migrations in heterogeneity tissues and assuming a total of Q

photons are detected, Eqs. (11) and (12) become

g1ðsÞ � 1 ¼ �s
XQ

p¼1

wðpÞ
�

2
Xn

i¼1

k2
0ðiÞaDBðiÞsði; pÞl0sðiÞ

�

¼ s
Xn

i¼1

�2

�XQ

p¼1

wðpÞk2
0ðiÞsði; pÞl0sðiÞ

�
aDBðiÞ:

(13)

g1 sð Þ � 1�
XN

k¼2

XQ

p¼1

w pð Þ �2
Xn

i¼1

k2
0 ið ÞaDB ið Þs i;pð Þl0sðiÞ

 !k

k!
sk

¼ s
Xn

i¼1

XQ

p¼1

�2w pð Þk2
0 ið Þs i;pð Þl0sðiÞ

0
@

1
AaDB ið Þ: (14)
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Here, we define w(p)¼P(s1,s2,…,sn) to present the nor-

malized distribution of pth photon detected. s(i, p) is the pho-

ton pathlength of the pth photon in ith tissue type.

Equations (13) and (14) contain n unknowns of BFIs

(i.e., aDB(i), i¼ 1,2,…,n). To solve these unknowns, it is

generally required to collect multiple DCS correlation func-

tions at n S-D separations.

For jth (j¼ 1,…,n) S-D separation, Eqs. (13) and (14)

become

g1ðs; jÞ � 1 ¼ �s
XQ

p¼1

wðp; jÞ
�

2
Xn

i¼1

k2
0ðiÞaDBðiÞsði; p; jÞl0sðiÞ

�

¼ s
Xn

i¼1

�XQ

p¼1

�2wðp; jÞk2
0ðiÞsði; p; jÞl0sðiÞ

�
aDBðiÞ

¼ s
Xn

i¼1

Aði; jÞ aDBðiÞ: (15)

g1 s; jð Þ � 1�
XN

k¼2

�

XQ

p¼1

w p; jð Þ �2
Xn

i¼1

k2
0 ið ÞaDB ið Þs i; p; jð Þl0sðiÞ

 !k

k!
sk

¼ �s
XQ

p¼1

w p; jð Þ 2
Xn

i¼1

k2
0 ið ÞaDB ið Þs i; p; jð Þl0sðiÞ

 !

¼ s
Xn

i¼1

XQ

p¼1

�2w p; jð Þk2
0 ið Þs i; p; jð Þl0sðiÞ

0
@

1
AaDB ið Þ

¼ s
Xn

i¼1

Aði; jÞ aDB ið Þ: (16)

Here, Aði; jÞ ¼
PQ

p¼1�2wðp; jÞk2
0ðiÞsði; p; jÞl0sðiÞ can be

calculated from Monte Carlo simulations of photon migra-

tions (sði; p; jÞ and wðp; jÞ) in the tissue measured, assuming

that tissue optical properties (k2
0ðiÞ and l0sðiÞ) are known or

can be measured by other technologies (e.g., near-infrared

diffuse optical tomography14).

For the first-order (N¼ 1) approximation (Eq. (15)), thePn
i¼1 Aði; jÞ aDBðiÞ is the slope SlðjÞ at jth S-D separation.

Thus, BFIs (aDB) can be calculated from A(i, j) and the

slope SlðjÞ, i.e., aDB ¼ ðATÞ�1Sl. Here, aDB ¼ ½aDBð1Þ; :::;
aDBðnÞ�T , A ¼ Aði; jÞn�n, and Sl ¼ ½Slð1Þ; :::; SlðnÞ�T .

For the Nth-order approximation (Eq. (16), containing the

unknown aDB on both left and right sides), aDB can be derived

iteratively using following equations (Eqs. (17) and (18)):

g1 s; jð Þ � 1�
XN

k¼2

�

XQ

p¼1

w p; jð Þ �2
Xn

i¼1

k2
0 ið ÞaD N�1ð Þ

B ið Þs i;p; jð Þl0sðiÞ
 !k

k!
sk

¼ sSl Nð Þ jð Þ: (17)

aD
ðNÞ
B ¼ ðATÞ�1SlðNÞ: (18)

To estimate the errors of aDB determined by Eqs.

(15)–(18), let

MðpÞ ¼ 2
Xn

i¼1

k2
0ðiÞaDBðiÞsði; p; jÞl0sðiÞ : (19)

As such, M(p), M(p)N�1 and M(p)N contain the true aDB,

estimated aD
ðN�1Þ
B and estimated aD

ðNÞ
B , respectively.

Let DMN�1(p)¼MN�1(p)�MN(p) and follows the simi-

lar mathematical procedures of error estimation described in

our previous study,9 we finally have

err sð Þ ¼ aD Nð Þ
B � aDB

aDB

�����
�����

�
XN

k¼2

XQ

p¼1

w p; jð Þ �M pð Þ
� �k � �MN�1 pð Þ

� �k
h i

k!
XQ

p¼1

w pð ÞMN pð Þ
sk�1

�����������

�����������

þ

XQ

p¼1

w pð Þ �M pð Þ
� �Nþ1

N þ 1ð Þ!
XQ

p¼1

w pð ÞMN pð Þ
sN

�����������

�����������
�
XN

k¼2

max
DMN�1 pð Þ

MN pð Þ
	
�M pð Þs
� �k�1

k � 1ð Þ!

 !�����
�����

þ max
�M pð Þs
� �N

N þ 1ð Þ!

 !�����
�����: (20)

The err(s) is approximately equal to zero when

MðpÞs ¼ 2s
Xn

i¼1

k2
0ðiÞaDBðiÞsði; p; jÞl0sðiÞ Þ 
 1;

that is,

s
 1

2
Xn

i¼1

k2
0 ið ÞaDB ið Þs i; p; jð Þl0sðiÞ

: (21)

To evaluate the accuracy of the proposed Nth-order lin-

ear algorithm (Eqs. (15)–(18)) and corresponding errors (Eq.

(20)), we built a simple 4-layer spherical model of adult

head with multiple source and detector fibers on it for DCS

data collection (Fig. 1). As shown in Fig. 1(b), the layers of

head in order from outer to inner represent scalp, skull, CSF,

and brain tissues, respectively.10,11 According to multiple-

scattering theory,2,3,13 g1(s) decay results from the scattering

events of moving scatterers, and can be quantified using

Eq. (1) (for homogenous tissues) and Eq. (3) (for heterogene-

ous tissues). It is known from the literature11 that the

CSF has very low absorption and scattering coefficients

(i.e., la¼ 0.017 cm�1 and ls
0 ¼ 0.1 cm�1) compared to other

layered tissues (la> 0.1 cm�1 and ls
0> 7 cm�1 for scalp,

skull, and brain). Therefore, the weight of CSF (depending

on 1/l*¼ls
’) contributing to g1(s) decay (Eq. (3)) is remark-

ably less than those of other layers, and thus its contribution
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can be ignored. However, the existing of CSF layer does

influence the photon pathlengths in other tissue layers, thus

affecting their BFIs (associated with g1(s) decay).

The S-D separations were set as 2.0, 2.5, and 3.0 cm (Fig.

1(a)). The dimension and measurement setup matched approx-

imately the in vivo experiments in adult brains.7,15 The Monte

Carlo simulations of 10 � 106 photon migrations in heteroge-

neous tissues were utilized to generate w(p) and s(i, p, j) inside

the head model.8 These values were then combined with the

assigned BFIs (aDB) and optical properties (i.e., la and ls
0)11

marked in Fig. 1(b) to generate a g1(s) at each detector based

on Eq. (3). From the generated g1(s) curves at multiple S-D

separations, we extracted BFIs using the semi-infinite homog-

enous solution and Nth-order linear algorithm, respectively.

Note that only the BFIs in three tissue layers (i.e., scalp, skull,

brain) were extracted using the Nth-order linear algorithm

because the CSF layer contributes little to the decay of g1(s).

Similar to our previous study,9 DCS data with the delay times

of 0.2� s� 30 ls (78 data points) were used for extracting

aDB values in the linear algorithm.

To test the capability of the N-order linear algorithm for

extracting relative changes of cerebral blood flow (rCBF) in

deep brain, we assigned ten levels of aDB in the brain layer

with a step decrement of 10% (i.e., aDB (k)¼ [1� (k� 1)/

10]� 10�8 cm2/s, k¼ 1,2,…,10) while maintaining the aDB

values constant in other layers. This protocol simulates CBF

changes during functional stimulations (e.g., visual and

motor cortex stimuli or memory tests7,15).

Figure 2(a) shows g1(s) curves generated by Eq. (3)

with the assigned aDB values at the first step (i.e., aDB¼ 0.5,

0, and 1� 10�8 cm2/s for scalp, skull, and brain, respec-

tively). Larger S-D separations resulted in longer photon

pathlength and faster decay of autocorrelation function. To

examine the fitting of the linear model to the DCS data, we

defined the left sides of Eqs. (15) and (17) as the modified

autocorrelation decays (MADs). Figs. 2(b)–2(d) show the

linear regressions of MADs at the S-D separation of 3.0 cm

using the first-order (b), third-order (c), and fifth-order (d)

linear models (Eqs. (15) and (17)). Higher-order (i.e., N� 3)

linear models exhibited excellent linear relationships

between the MADs and delay time s (Figs. 2(c) and 2(d)).

Figure 3 shows the BFIs calculated by the semi-infinite

homogenous solution and the Nth-order linear algorithm

(N¼ 1, 3, and 5) at the first step (i.e., aDB¼ 0.5, 0, and

1� 10�8 cm2/s for scalp, skull, and brain, respectively). The

semi-infinite homogenous solution extracted the BFIs sepa-

rately from DCS data at different S-D separations (i.e., 2.0,

2.5, or 3.0 cm). Based on photon diffusion theory in biologi-

cal tissues, light penetration depth depends on tissue optical

properties and the S-D separation.1 The maximum penetra-

tion depth is approximately one half of the S-D separation.

Therefore, it is not surprising that the BFI decreased with the

FIG. 2. g1(s) curves at three S-D sepa-

rations generated by Eq. (3) (a) and

Nth-order liner fitting results ((b)–(d))

at the first variation step of BFIs (i.e.,

aDB¼ 0.5, 0, and 1� 10�8 cm2/s for

scalp, skull, and brain, respectively).

The 78 DCS data points (at S-D sepa-

ration of 3.0 cm) with 0.2� s� 30 ls

between the two grey lines (a) were

used to perform the linear regressions

using first-order (b), third-order (c) and

fifth-order (d) linear model (Eqs. (15)

and (17)).

FIG. 1. A sphere with 4-layer tissues (scalp, skull, CSF, and brain) to mimic

an adult human head model. One source (S) and three detector (D1–D3)

fibers were placed on the forehead of the model (a). S-D separations were

set as 2.0, 2.5, and 3.0 cm, respectively. The scalp, skull, and CSF with the

thicknesses of 0.4, 0.6, and 0.1 cm, respectively were illustrated in the cross-

section view of the sphere model (b). Tissue optical properties (la, ls’, and

aDB) of the 4-layer tissues were assigned according to the literature.11
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increase of S-D separation (Fig. 3) since photons detected at

larger separations travel inside the skull layer (aDB¼ 0)

more than other layers (aDB> 0). By contrast, the linear

algorithm (Eqs. (15)–(18)) used DCS data at all S-D separa-

tions simultaneously to extract BFIs at different layer tissues.

The estimation errors of BFIs decreased with the increase of

the order number. Using the fifth-order solution, for exam-

ple, the reconstructed errors of aDB in different tissue layers

were less than 3%, and fell into the range estimated by Eq.

(20). In fact, the linear model with higher orders (N> 5) gen-

erated even smaller errors (<2%) in calculating BFIs in dif-

ferent layers (data are not shown).

To compare the accuracies of the semi-infinite homoge-

nous solution and the high-order linear algorithm for quantify-

ing rCBF in deep brain, BFIs at the ten variation steps were

calculated using both methods. All BFIs were normalized (di-

vided) to their reconstructed values at the first variation step,

respectively, and presented as percentage changes (%). As

shown in Fig. 4, rCBF values extracted by the fifth-order linear

algorithm were highly consistent with the assigned true flow

values at all steps (errors< 3%). By contrast, the semi-infinite

homogenous solution resulted in large errors in rCBF over the

ten steps (34.5%� errors� 60.2%). As expected, the estima-

tion errors increased with the decrease of S-D separation.

In summary, we have extended our previous Nth-order

linear algorithm for extracting BFI and rBF in homogenous

tissues9 to heterogeneous tissues. This algorithm integrates a

Nth-order linear model and Monte Carlo simulation of pho-

ton migrations in heterogeneous tissues with arbitrary geom-

etry, and utilizes the DCS data at multiple S-D separations

simultaneously. As long as the one-time Monte Carlo simu-

lation is done, the linear model requires only simple alge-

braic calculations (Eqs. (17) and (18)), thus allowing for

online data processing and displaying. Simulation results on

an adult head model with 4-layer tissues of scalp, skull, CSF,

and brain demonstrate its accuracy in extracting both BFI

and rBF values in different layers. Although we have tested

this linear algorithm only on the simple spherical layer tis-

sues, arbitrary tissue geometry and volume can be obtained

and tested in the future by incorporating other imaging

modalities (e.g., MRI). By contrast, the semi-infinite homog-

enous solution is susceptible to overlaying tissues, leading to

substantial evaluation errors in BFIs of layered tissues and

underestimations in rCBF (i.e., partial volume effect14).

Note that for simplicity, we assumed scalp blood flow

remains constant in the simulation, which may not be true

during specific physiological manipulations (e.g., head-up

bed titling, breath-holding).16 Future study will test this lin-

ear algorithm for the use in heterogeneous tissues with dif-

ferent levels of blood flow variations and noises.
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linear algorithm (N¼ 1, 3, and 5) at the first variation step of BFIs (i.e.,

aDB¼ 0.5, 0, and 1� 10�8 cm2/s for scalp, skull, and brain, respectively).

The reconstructed errors of aDB decreased with the increase of the order

number, and the solutions with higher orders (i.e., N� 3) generated smaller

aDB errors than the semi-infinite solution.

FIG. 4. rCBF (%) calculated by the semi-infinite solution at three S-D sepa-

rations and the fifth-order linear model at the 10 variation steps of BFIs.

CBF values were normalized to their reconstructed values at the first varia-

tion step and presented as rCBF (%). The fifth-order linear algorithm

extracted much more accurate rCBF values over the 10 variation steps com-

pared to the semi-infinite homogenous solution.
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