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Abstract

Detection in studies of species abundance and distribution is often imperfect. Assuming perfect detection introduces bias
into estimation that can weaken inference upon which understanding and policy are based. Despite availability of
numerous methods designed to address this assumption, many refereed papers in ecology fail to account for non-detection
error. We conducted a quantitative literature review of 537 ecological articles to measure the degree to which studies of
different taxa, at various scales, and over time have accounted for imperfect detection. Overall, just 23% of articles
accounted for imperfect detection. The probability that an article incorporated imperfect detection increased with time and
varied among taxa studied; studies of vertebrates were more likely to incorporate imperfect detection. Among articles that
reported detection probability, 70% contained per-survey estimates of detection that were less than 0.5. For articles in
which constancy of detection was tested, 86% reported significant variation. We hope that our findings prompt more
ecologists to consider carefully the detection process when designing studies and analyzing results, especially for sub-
disciplines where incorporation of imperfect detection in study design and analysis so far has been lacking.
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Introduction

Measuring the abundance and distribution of organisms is a

primary goal of ecology, conservation, and management [1].

These and related parameters (e.g. vital rates, species diversity) are

essential to understanding population and metapopulation dy-

namics, community assembly, trophic interactions, conservation of

threatened and endangered species, and the effects of manage-

ment. Numerous advances in measuring these parameters have

occurred over the past several decades, nearly all of which rely on

counts and/or observations of organisms [2]. Unfortunately, in

most cases complete counts (i.e., censuses) are impossible due to

logistical constraints and the cryptic nature of many species [3].

Therefore, inference is based on a sample from the broader

population of interest. Perfect or invariant detection is frequently

assumed in count-based plant and animal studies [2]. Unfortu-

nately, detection is rarely either perfect or constant due to observer

error [4], species rarity [5] or because detection varies with

confounding variables such as environmental conditions [6].

Regardless of its cause, we will refer to this condition henceforth

as imperfect detection.

When detection is imperfect, additional steps are needed to

improve inference. Failure to do so can result in biased estimation

and erroneous conclusions. Numerous studies have demonstrated

that detection varies among species, over time, and among

habitats, and there may be serious consequences when this

variability is ignored. For example, failure to correct for imperfect

detection may result in bias in estimated relationships with

ecological covariates [6], [7], estimates of species distribution or

abundance that are inaccurate or mask trends [8–11], improper

selection of indicator species [12], and misinterpreted components

of fitness such as size-dependent survival and senescence [13].

These errors can misinform management and policy and erode

trust in ecologists.

Authors of several landmark papers in the past century have (1)

alerted the scientific community to the harmful effects of imperfect

detection and (2) designed experimental and statistical approaches

that explicitly incorporate detection probability. Petersen [14] and

Lincoln [15] recognized the limitations of simple counts and

proposed a basic method to account for imperfect detection in

abundance estimation using capture histories of marked organ-

isms. Their approach laid the foundation for future methods of

estimating abundance and survival based on marked animals

including the Cormack-Jolly-Seber model [16–18], the robust

design model [19], [20], and numerous others with increasing

complexity and ability to account for variation in detection [21–

24]. Recent advances have merged analysis of animal movement

with capture-recapture, resulting in spatial capture-recapture

models to estimate density and other parameters of interest [25],

[26]. When identifying individual organisms is infeasible, repeated

counts [27] [4], [28] and distance sampling [29] may be useful to

account for detection when estimating abundance, as long as

within-sample double-counting of individuals is avoided.

Other population and community metrics (occurrence/occu-

pancy, local colonization and extinction, richness, diversity, and
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turnover) can also be biased when imperfect detection is ignored

[6], [30–32]. Methods exist to estimate these parameters while

accounting for detectability, if data are collected in a way that

allows the detection process to be modeled [1], [11], [31], [33–35].

This is often achieved through replicate surveys of sampling sites

[31], [33], [34], [36] although other methods such as the collection

of times to detection are also possible [37], [38]. Software packages

have been developed to make the modeling advances described

above more accessible to ecologists, including programs CAP-

TURE [39], MARK [40], DISTANCE [41], PRESENCE [42],

COMDYN [43], and E-Surge [44], as well as numerous R

packages including ‘marked’ [45] ‘unmarked’ [46] and ‘secr’ [47].

Recently, Bayesian modeling approaches have been introduced to

ecologists as an alternative means of fitting complex population

and community models [1], [26], [48–51].

Despite numerous articles alerting ecologists to the consequenc-

es of imperfect detection, and despite available models and

software capable of addressing imperfect detection, we commonly

encounter refereed publications that fail to acknowledge or

account for the presence of non-detection error. These casual

observations beg the question: how prevalent are methods that

incorporate imperfect detection in the ecological literature, and

how does this differ among various types of studies and over time?

Identifying these patterns is crucial to understand barriers to

incorporation of imperfect detection and to target areas in which

ecological inference might be improved.

We posited that the expanding availability of analysis methods,

software, and computing power has increased the probability that,

over time, researchers account for imperfect detection. We

suspected that adoption has varied among areas of ecological

inquiry (e.g. [10], [52]), so we asked whether the probability of

accounting for imperfect detection has varied with the type of

organism studied, the level of biological organization studied, or

the spatial scale studied. Because of the taxonomic focus of many

of the researchers who have developed methods for addressing

imperfect detection, we predicted that a greater proportion of

studies focused on fish, mammals, and birds would incorporate

imperfect detection than other groups (e.g. plants, invertebrates);

however we expected this difference to have declined over time.

We also predicted that studies conducted at higher levels of

organization (e.g. communities vs. individual animals) and with

greater spatial extents (e.g. regional or landscape vs. local) would

be less likely to incorporate imperfect detection due to the

difficulties of implementing more complex study designs with

limited resources. To test our predictions, we conducted a

quantitative review of ecological literature spanning 40 years, 6

taxonomic groups, 5 commonly reported parameters, 2 levels of

biological organization, and 3 spatial scales to determine how the

use of statistical methods that incorporate imperfect detection has

varied among these variables and over time.

Materials and Methods

Article Selection
A census of the literature was impractical, so we adopted a

stratified sampling approach (Figure 1). We selected a subset of 10

journals to include in the study, chosen for their impact factors,

long publication history, and coverage of a range of taxonomic

groups (birds, fish, mammals, herpetofauna, invertebrates, and

plants; Table 1). For each of the journals, we selected 5 years from

which to sample papers: 1971, 1981, 1991, 2001, and 2011.

Within each journal/year combination, we examined all articles

(starting in the first issue), identifying those that fit our criteria for

inclusion through careful reading of the abstract, methods, and

results. Three criteria were defined: (1) the study had to be focused

on one or more of the target taxonomic groups; (2) the study had

to measure one or more of a set of parameters of interest,

composed of abundance, occurrence, survival, richness or

diversity, and extent or size of species range (selected because

they are among those most often studied by ecologists and

susceptible to the biases of imperfect detection); (3) the study had

to be implemented in a way in which detection was likely

imperfect, i.e., there was no evidence to support the feasibility of a

complete census or to ensure constancy of detection. If fewer than

15 articles were selected in a given journal/year combination, we

continued our search into the following year(s) until we had a

minimum of 15 articles that fit the criteria.

Data Collection
We recognized that our ability to correctly judge whether a

study incorporated imperfect detection was likely less than perfect

itself. We therefore implemented a replicated sampling approach

commonly used as a means of parameter estimation when

detection is imperfect. The objectives, methods, results, and

discussion of each article were carefully read by the first author

(KFK). The journal type (single-taxon focus vs. broader focus)

year, taxa and parameters measured, experimental scale (popula-

tion or community level), and spatial extent (local or landscape)

were recorded for each article, as well as the presence/absence of

an approach to account for imperfect detection. For the binary

response variable, the presence of an approach included a

statistical method of estimating detectability or an acknowledg-

ment by the authors of imperfect detection as a potential issue.

Articles that accounted for imperfect detection were further

examined to determine (1) if they explicitly reported detection

probabilities and (2) if and how detection varied (e.g. over time or

among species). The second author (RKS) independently read and

scored a subset of all articles in the same manner. Multiple

‘‘sampling occasions’’ for this subset of articles allowed for

estimation of a detection parameter, analogous to a repeated-

sample design for occupancy estimation [1], [31]. The approach

we used assumes that there are no ‘‘false positives’’, i.e., studies

identified as accounting for imperfect detection when in truth they

did not. We took a conservative approach to identifying studies

that accounted for imperfect detection and believe false positives

were negligible. Information about all articles included in the

quantitative review is contained in the Dataset S1.

Analysis
Using this repeated-sample data, we simultaneously modeled

the probability that an article incorporated imperfect detection

(hereafter pIID) and the probability that we were able to detect this

when reading the articles (hereafter pR) using a hierarchical

logistic regression model [1]. Year of publication, journal type,

taxon and parameter(s) measured, scale, and spatial extent were

considered as covariates on pIID. Taxon and reader (KFK or

RKS) were considered as covariates on pR. In addition to the full

model, we fit separate models for each taxon; these models did not

have taxa as predictor variables but were otherwise identical to the

full model. We explored models with interacting effects; however,

finding no significant interactions, our final models included only

additive effects. Models were fit in a Bayesian framework using

JAGS [53], called from R [54] using the package R2jags [55]. We

used two methods for assessing the statistical importance of each

covariate in the models. First, we calculated a 95% credible

interval for each parameter estimate based on the posterior

distribution. Second, we calculated a parameter f representing the

fraction of the sampled posterior distribution with the same sign as
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Figure 1. PRISMA flow diagram detailing how articles were selected for inclusion in the quantitative literature review.
doi:10.1371/journal.pone.0111436.g001

Table 1. Selected characteristics of the 10 journals included in a quantitative review examining use of methods that incorporate
imperfect detection in wildlife and plant studies.

Journal Name Taxa Years Published Impact Factor

Journal of Ecology Plants 1913- 5.04

Journal of Animal Ecology Multiple 1932- 4.94

Ecology Multiple 1920- 4.85

Journal of Biogeography Multiple 1974- 4.54

Ecological Entomology Invertebrates 1836- 1.95

The Auk Birds 1884- 1.81

Journal of Mammalogy Mammals 1919- 1.74

Transactions of the American Fisheries Society Fish 1872- 1.55

Journal of Wildlife Management Multiple 1937- 1.36

Herpetologica Reptiles, Amphibians 1936- 1.08

Journals were chosen for inclusion in the review on the basis of taxonomic groups studied, years published, and impact factor (from Journal Citation Reports 2011–
2012).
doi:10.1371/journal.pone.0111436.t001
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the mean; this value reflects our level of certainty that the

parameter estimate is positive or negative.

Results

A total of 537 articles surveyed by KFK fit the criteria and were

included in the review. A subset (n = 143, 27%) was also examined

by RKS. The most common parameters estimated were abun-

dance (n = 377 articles), occupancy/occurrence (n = 121) and

richness (n = 103), whereas survival (n = 66) and species range/

distribution (n = 31) were less common. Birds (n = 154), inverte-

brates (n = 150), and mammals (n = 131) were the most commonly

studied taxa.

Overall, 23%61.8 (123/537, mean6standard error) of articles

addressed imperfect detection. There was a positive effect of year

on pIID (f= 0.99, Table 2): the yearly mean percent of articles

that addressed imperfect detection generally increased from

25%65.9, 14%64.0, and 23%64.6 in 1971, 1981, and 1991,

respectively, to 29%65.1 and 35%65.1 in 2001 and 2011. The

same increasing trend over time appeared when taxa were

modeled separately, with the exception of fish and plant articles

(Figure 2, Table 3). Taxonomic group generally was an important

covariate on pIID. Specifically, studies of fish were more likely

(f= 0.97) to account for imperfect detection than the average

(43%65.9 of articles for fish vs. 23%61.8 overall). In contrast,

articles focused on plants (f= 0.99) and invertebrates (f= 0.95)

were less likely to do so (1.4%61.3 and 9.0%62.7, respectively;

Table 2). The remaining taxonomic groups (mammals, herpeto-

fauna, and birds) were positively related to pIID, but with a lesser

degree of certainty (Table 2). Articles in journals that focused on a

single taxon were less likely (f= 0.98) to incorporate imperfect

detection than multi-taxa journals.

The parameter(s) estimated in each article also correlated with

pIID. Articles that measured survival were more likely (f= 1.00) to

incorporate imperfect detection than the mean (50%66.1 vs.

23%61.8); abundance was also positively related to pIID

(Table 2). In contrast, papers that measured richness, occur-

rence/occupancy, and range/distribution were less likely to

incorporate imperfect detection (6.0%62.3, 10%62.8, and

3.2%63.2; Table 2). Articles examining entire communities were

less likely to incorporate imperfect detection than studies focused

on a single species (f= 0.95, Table 2). Spatial scale, in contrast, did

not affect pIID (f= 0.67, Table 2). The effects of parameters and

scale on pIID were similar when taxonomic groups were modeled

separately, with the exception of a positive effect of community

studies on pIID for bird studies (Table 3).

The parameter pR did not differ between taxonomic groups.

There was an observer effect, but it was small (Table 2). Just 10 of

143 papers (7%62.1) examined by both readers had different

assessments for the inclusion of imperfect detection.

Among articles that accounted for imperfect detection, 62 (50%)

also reported information about detection probabilities in some

form. Of these, 48%, 33% and 19% reported maximum estimated

single-survey detection probabilities (i.e., probability of detection

on a single sampling occasion) less than 0.7, 0.5, and 0.3,

respectively. Most papers reported at least one detection proba-

bility significantly less than 1; 70% had at least one estimated

detection probability less than 0.5, and 50% had at least one less

than 0.3. Reported detection probabilities varied with at least one

covariate in 86% of papers that tested for heterogeneity; the most

common covariates were time (44%), species (25%), site or

population (19%), and methodology (e.g. effort, observer effects;

19%).

Discussion

Taxonomic Groups
Our examination of ecology papers across 5 decades, 10

journals, 5 taxa, and other parameters of interest confirmed our

initial observations: the majority (77%) of ecological studies failed

to acknowledge or correct for imperfect detection when doing so

likely would have been appropriate. As we predicted, there was

considerable contrast among taxa: vertebrates (fish, mammals,

birds, reptiles and amphibians) were more likely to account for

Figure 2. Mean estimated probability (pIID) that an article of a given taxon and year incorporated statistical methods to account for
imperfect detection, based on output from the hierarchical logistic regression model. Error bars represent 95% credible intervals around
the mean.
doi:10.1371/journal.pone.0111436.g002
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imperfect detection than other taxa (plants and invertebrates). The

earliest proponents of accounting for imperfect detection (e.g. [14],

[15]) focused on vertebrates. The generally lower overall

abundance, greater movement capability, and cryptic nature of

vertebrates, relative to plants and invertebrates, may have

encouraged earlier adoption by vertebrate ecologists of study

designs and statistical methods to correct for limitations of

sampling and detection. Many of these methods were published

in taxon-specific journals or tailored to specific taxa (e.g. removal

sampling of fish or mark-release-recapture of mammals and birds),

so their adaptation to studies of other taxa was likely limited.

Interestingly, single-taxon journals actually had a lower proportion

of studies incorporate imperfect detection, likely reflecting the

small number of studies in plant- and invertebrate-focused journals

that did so.

The proportion of studies that accounted for imperfect detection

increased over the 40-year period of our review for all vertebrate

taxa except fish, which had a comparatively high proportion

throughout (Figure 2). This positive trend presumably reflects

greater awareness among vertebrate ecologists of the risks

associated with failing to account for imperfect detection and a

correspondingly greater availability of sampling and statistical

methods designed specifically to account for errors of omission.

While we did not collected detailed data on the specific statistical

method(s) used to account for imperfect detection, we observed a

corresponding generally positive trend in the diversity of statistical

approaches used over time. Early studies (prior to 1981) of fish and

mammals primarily used simple mark-release-recapture methods

like the Lincoln-Peterson index [14], [15]. From 1981–2001 more

complex mark-release-recapture methods [16–18] were most

commonly used, but methods were still focused on specific taxa

(primarily mammals and fish). From 2001 onward, the diversity of

approaches greatly increased for most taxa thanks to the

widespread introduction of occupancy modeling and related

hierarchical modeling approaches applicable to wide variety of

species [1], [31], [33], [36].

While the trend over time in adoption of methods that

incorporate imperfect detection is less pronounced for plants and

invertebrates (Figure 2), it is nevertheless positive and likely will

continue as publications on these taxa draw attention to the issue

[3], [56–59]. For example, [10] estimated detection probability for

plants surveyed in the Swiss Biodiversity Monitoring program.

Based on a random sample of 100 species (of 1700 detected),

median single-survey detection probability was 0.74 (range 0.03–

0.99) for the spring survey and 0.82 (range 0.03–0.99) for the late

summer survey. Thus, distribution maps based on a single survey

risk modeling the joint patterns of occurrence and detection.

These two parameters potentially could be disentangled if they rely

on covariates that are not identical and sample sizes are reasonably

large [60], but these constraints suggest that researchers should use

caution in making inferences from a single survey.

Table 2. Estimated parameter values from a hierarchical logistic regression relating covariates (taxa, parameter estimated, year,
journal type, and experimental scale) on the probability a given study accounted for imperfect detection.

Parameter Estimate 95% Credible Interval f b

Year 0.45a (0.23, 0.66) 0.99

Fish 1.01 (0.01, 2.13) 0.97

Mammals 0.38 (20.51, 1.49) 0.75

Herps 0.53 (20.38, 1.50) 0.85

Birds 0.33 (20.70, 1.22) 0.76

Invertebrates –0.83 (21.83, 0.16) 0.95

Plants –1.70 (22.95, 20.35) 0.99

Abundance 0.49 (20.26, 1.18) 0.90

Occurrence –0.60 (21.42, 0.14) 0.95

Survival 0.91 (0.23, 1.65) 1.00

Richness –1.10 (21.81, 20.25) 0.99

Range –0.92 (22.17, 0.22) 0.94

Scale (1 = community) –0.51 (21.10, 0.08) 0.95

Spatial extent (1 = landscape) –0.12 (20.69, 0.45) 0.67

Journal type (1 = single taxon) –0.60 (21.12, 20.03) 0.98

Detection Covariates

Observer (1 = RKS) 1.33 (0.16, 2.51) 0.98

Fish –0.02 (21.37, 1.51) 0.52

Mammals –0.68 (22.02, 0.52) 0.85

Herps 0.83 (20.52, 2.36) 0.85

Birds –0.62 (21.80, 0.64) 0.84

Invertebrates –0.14 (21.70, 1.48) 0.57

Plants –0.21 (22.35, 1.77) 0.55

aBolded parameters had 95% credible intervals that did not overlap 0 and are considered statistically important.
bProportion of the parameter’s posterior distribution with same sign as the mean value; values approaching 1 reflect increasing certainty that the parameter is different
from 0.
doi:10.1371/journal.pone.0111436.t002
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Parameters Estimated
Each parameter measured in ecological studies presents unique

logistical and statistical challenges. For example, estimating

survival inherently requires marking individuals and following

them through time, with collected data likely including multiple

sampling events. Correcting for imperfect detection is a logical

extension when these data are available, and the majority of

survival studies did so. Important exceptions include survival

studies that do not correct for conflation of non-detection with

mortality, in which case an individual that is not detected at a

given sampling occasion is assumed to be dead. The relatively high

proportion of abundance studies that accounted for imperfect

detection likely reflects a long history and proliferation of

approaches to account for undetected individuals in abundance

estimates [2], [61]. A notable exception to this pattern is the

widespread use of ‘‘catch per unit effort’’ (CPUE) and similar

metrics as indices of abundance. CPUE does not require marked

organisms but implicitly assumes that detectability does not vary

across time or experimental site, which has been shown to

introduce bias into estimation [22], [62], [63].

Richness, occurrence, and range are closely related parameters.

Richness can be represented as the sum of all species’ occurrences

at a site, and range loosely corresponds to species occurrence

across a large geographic area. They shared an additional

characteristic in our study – a low probability of incorporating

imperfect detection. Estimating these parameters (especially at the

community scale) can require sampling for many species at

numerous sites, requiring potentially difficult or costly repeated

samples and/or careful allocation of sampling effort to obtain the

data necessary to estimate detection. In addition, sampling designs

and statistical methods that incorporate imperfect detection into

estimation of occupancy and richness have appeared in the

ecological literature only recently [31], [33], [34], [36]. For

estimates of species range and distribution, a further issue is that

researchers often have relied on historical presence-only data (e.g.

from museum collections) which makes estimation of occupancy

probability and subsequent inferences difficult [64] but not

impossible [65–67], at least in a relative sense [68].

Implications
We concede that it is impossible to know the extent of bias in

past studies that have ignored imperfect detection. It certainly is

possible that bias may have been small in some of the studies that

failed to incorporate detection error, because detection probability

was either high or invariant. However, for the subset of papers in

our study that estimated detection probability, the median values

of minimum and maximum single-survey detectability were 0.29

and 0.71, respectively, and 70% had at least one estimated

detection probability less than 0.5, an indication that detection can

commonly be much less than perfect. Admittedly, these studies are

not a random subset of the studies we considered, as their authors

presumably considered imperfect detection to be problematic in

their study system. Still, the magnitude and frequency of bias seen

in these and other studies (e.g. [6–13]) suggests strongly that

imperfect detection is common and can weaken inference for

many types of ecological processes. For example, simulations have

demonstrated that ignoring imperfect detection, as is done with

presence-absence and presence-only data, can dramatically

diminish a model’s capacity to identify environmental correlates

of species distributions [32].

Even if detection is imperfect, bias may not affect inference

adversely for some purposes if detection is invariant. For instance,

population indices are commonly used to monitor trends and

assume constant detectability relative to abundance [69], [70],

even though evidence of variation is common [71] and led [72] to

recommend that the burden of proof should be shifted to

demonstrate that detection probability is invariant. Our results

provide support and warrant expansion of their recommendation;

in 86% of papers from our study that examined the constancy

assumption, detectability varied significantly. Rather than assume

that detection is perfect, it seems prudent, then, for field ecologists

to assume that detection probabilities differ and to require

evidence of their equivalence before using indices or other

measures that conflate this nuisance parameter with the param-

eter(s) of ecological interest.

Collectively, our findings should concern ecologists in search of

stronger inference, and particularly managers and policy makers

whose decisions often depend on accurate knowledge of species

Table 3. Estimated parameter values (with 95% credible intervals in parentheses) from a series of hierarchical logistic regressions
(separated by taxa) relating covariates (parameter estimated, year, journal type, and experimental scale) on the probability a given
study accounted for imperfect detection.

Taxon

Parameter Fish Mammals Herps Birds Inverts Plants

Year –0.19 (20.66, 0.22) 0.60a (0.12, 1.16) 0.44 (0.02, 1.01) 0.79 (0.32, 1.30) 0.54 (0.08, 1.07) 0.18 (21.00, 1.68)

Abundance 0.51 (–0.83, 1.95) 1.31 (0.09, 2.64) 0.38 ((–0.82, 1.69) 0.55 (–0.76, 2.00) –0.67 (–1.99, 0.62) 0.08 (–1.84, 1.95)

Occurrence –0.34 (–1.83, 1.20) –0.20 (–1.62, 1.22) –0.11 (–1.44, 1.21) –1.05 (–2.38, 0.18) –0.99 (–2.43, 0.27) –0.15 (–1.89, 1.68)

Survival 1.17 (–0.34, 2.63) 0.09 (–1.23, 1.37) 0.55 (–0.84, 1.80) 1.33 (0.09, 2.74) 1.09 (–0.38, 2.49) –0.06 (–1.92, 1.81)

Richness –0.58 (–2.08, 0.92) –0.42 (–1.87, 1.22) –0.98 (–2.72, 0.49) –1.05 (–2.33, 0.11) –0.16 (–1.31, 1.13) –0.18 (–2.20, 1.69)

Range –0.53 (–2.36, 1.17) –0.53 (–2.35, 1.17) –0.77 (–2.41, 0.85) 0.23 (–1.93, 0.15) –0.45 (–2.17, 1.38) –0.07 (–1.90, 1.69)

Scale (1 = community) 0.22 (–0.79, 1.27) –0.55 (–1.60, 0.45) –0.25 (–1.51, 1.08) 1.27 (–2.46, 20.16) –0.68 (–1.95, 0.61) –0.52 (–2.51, 1.44)

Spatial extent (1 = landscape) 0.44 (–0.69, 1.65) –0.77 (–1.98, 0.43) –0.62 (–1.89, 0.46) 0.05 (–1.16, 1.30) –0.10 (–1.36, 1.13) –0.40 (–2.29, 1.65)

Journal type (1 = single taxon) 0.08 (–1.08, 1.14) –0.78 (–1.79, 0.34) 0.05 (–1.20, 1.27) –0.79 (–1.93, 0.15) –0.03 (–1.18, 1.27) 0.12 (–1.75, 2.02)

Detection covariates

Observer (1 = RKS) 0.64 (–1.15, 1.22) 0.01 (–2.22, 1.79) 0.23 (–1.43, 1.89) 0.01 (–2.13, 2.16) 0.08 (–1.83, 1.99) –0.12 (–1.99, 1.62)

aBolded parameters had 95% credible intervals that did not overlap 0 and are considered statistically important.
doi:10.1371/journal.pone.0111436.t003
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presence or abundance. Accounting for imperfect detection has

been the exception and not the rule in ecology across most sub-

disciplines and study types. We hope the patterns we have

identified will encourage ecologists to consider carefully the

detection process when designing studies and analyzing results.

This is particularly important with taxonomic groups and

parameters we highlighted that, in the past, have generally not

accounted for imperfect detection.

We recognize that the methods developed thus far to deal with

imperfect detection are not a panacea for estimation. For instance,

methods to address imperfect detection, as with all estimation

approaches, rely on assumptions that need to be carefully

evaluated and may not be suitable for certain species or systems

(e.g., [73], [74]). Further, addressing imperfect detection will not

solve other forms of hidden bias that can afflict observational

studies [75]. But we disagree with the suggestion that ignoring

imperfect detection may be preferable to accounting and adjusting

for it [76], [77]. We believe that a more suitable approach to

improved estimation is to minimize bias associated with model

assumptions generally, including the issue of detection, by careful

consideration of study design, data collection, and statistical

analysis [78]. Using hierarchical occupancy models as an example,

[78] showed that, in virtually all realistic cases, accounting for

detectability reduces the bias in the estimation of occupancy

relative to naı̈ve models even when detectability is heterogeneous.

Of course reliable inference depends on sampling methods that

produce reasonable odds of detection given presence; no estimator

will be particularly helpful when applied to data on populations or

species that are ‘‘invisible’’ to sampling [79].

We restricted our quantitative review to a subset of ecological

parameters in which imperfect detection may play an important

role. But there certainly are other parameters of ecological interest

for which inference may be improved by accounting for imperfect

detection. For example, most studies of seed dispersal by animals

have ignored the implications of seeds that were undetected (but

see [80]). Recently, though, methods of varying complexity have

been developed to account for the effects of imperfect detection on

estimates of seed dispersal and survival [81–83]. In general, the

current proliferation of detection methods [84–86] and statistical

techniques for modelling detectability [1], [26], [49] are applicable

to a wide range of taxonomic groups, parameters, and exper-

imental scales and present an unprecedented opportunity for

ecologists to provide more robust estimation and inference.
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