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Abstract

Climate change is predicted to increase water temperatures in many lotic systems, but little is known about how changes in
air temperature affect lotic systems heavily influenced by groundwater. Our objectives were to document spatial variation in
temperature for spring-fed Ozark streams in Southern Missouri USA, create a spatially explicit model of mean daily water
temperature, and use downscaled climate models to predict the number of days meeting suitable stream temperature for
three aquatic species of concern to conservation and management. Longitudinal temperature transects and stationary
temperature loggers were used in the Current and Jacks Fork Rivers during 2012 to determine spatial and temporal
variability of water temperature. Groundwater spring influence affected river water temperatures in both winter and
summer, but springs that contributed less than 5% of the main stem discharge did not affect river temperatures beyond a
few hundred meters downstream. A multiple regression model using variables related to season, mean daily air
temperature, and a spatial influence factor (metric to account for groundwater influence) was a strong predictor of mean
daily water temperature (r2 = 0.98; RMSE = 0.82). Data from two downscaled climate simulations under the A2 emissions
scenario were used to predict daily water temperatures for time steps of 1995, 2040, 2060, and 2080. By 2080, peak numbers
of optimal growth temperature days for smallmouth bass are expected to shift to areas with more spring influence,
largemouth bass are expected to experience more optimal growth days (21 – 317% increase) regardless of spring influence,
and Ozark hellbenders may experience a reduction in the number of optimal growth days in areas with the highest spring
influence. Our results provide a framework for assessing fine-scale (10 s m) thermal heterogeneity and predict shifts in
thermal conditions at the watershed and reach scale.

Citation: Westhoff JT, Paukert CP (2014) Climate Change Simulations Predict Altered Biotic Response in a Thermally Heterogeneous Stream System. PLoS
ONE 9(10): e111438. doi:10.1371/journal.pone.0111438

Editor: Michael Sears, Clemson University, United States of America

Received July 10, 2014; Accepted October 2, 2014; Published October 30, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This project was funded through the United States Geological Survey Natural Resources Preservation Project through Research Work Order 116 of the
Missouri Cooperative Fish and Wildlife Research Unit (http://www.nature.nps.gov/challenge/2011/nrpp.cfm). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: westhoffj@missouri.edu

Introduction

The ecological importance of water temperature to aquatic

organisms has been the impetus for numerous studies that sought

to develop predictive temperature models for various systems [1–

3]. Many external drivers interact with the physical properties of

rivers to determine water temperature and include air tempera-

ture, solar radiation, relative humidity, wind speed, riparian shade,

cloud cover, solar angle, discharge, tributary contributions, and

groundwater contributions [4–6]. However, it is often not feasible

to obtain information on all of these factors for an aquatic system

of interest, especially at the fine spatial scales required to document

thermal heterogeneity. Lotic systems heavily influenced by

groundwater inputs create spatially heterogeneous thermal envi-

ronments and are difficult to explain with coarse-scale temperature

models [7,8]. Progress has been made to address the heterogeneity

of stream water temperatures at finer spatial scales [9–12], but

collecting appropriate data to parameterize models that can be

applied over long distances (100 s km) at a fine-scale spatial

resolution (10 s m), while accounting for seasonal variation, is

difficult.

Groundwater springs occur in patchy distributions around the

globe and provide unique physical and chemical environments

that support many biological assemblages [13,14]. Systems with

significant groundwater input or cold-water tributaries serve as

thermal refuges for aquatic species [15–20]. Further, certain

species can exist in groundwater fed systems that may not be able

to survive in geographically proximate systems lacking ground-

water influence [21,22]. Species composition within and outside of

springs is also known to differ, enhancing beta diversity in the

system [14]. At a coarse spatial scale, groundwater can influence

the distribution and abundance of aquatic organisms [23,24] and

reduce the occurrence of temperature fluctuations that may result

in reproductive failure of certain species [25]. At fine spatial scales,

some fishes show behavioral responses to thermal refuges by

selecting spawning locations [26,27], avoiding ice break up and

frazil ice [28], or thermoregulating by occupying groundwater

influenced areas during warm or cool water periods [16,19,20,29].
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Climate change has the potential to alter environmental

conditions in streams in many ways, but especially the physical

properties associated with discharge and water temperature

[30,31]. Altered environmental conditions in aquatic systems

may result in physiological effects [32,33], behavioral or compet-

itive effects [34,35], or shifts in the distribution and abundance of

aquatic organisms [36–38]. Some of the effects of climate change

may be buffered in thermally heterogeneous stream systems with

high levels of groundwater influence [28,39]; however, little

information exists linking predicted water temperatures to thermal

requirements of aquatic organisms in these systems [40,41].

Climate change is frequently listed as a threat to groundwater-

dependent biota, but direct quantification of potential effects is less

common [42,43]. Efforts to predict climate change effects on

thermal conditions in streams at a regional scale often do not

include predictive variables that specifically account for ground-

water influence, especially at fine-spatial scales, which can result in

models with limited inference for heavily groundwater influenced

systems [7,9,44]. Because of the importance of groundwater

influenced systems, it is important to quantify their dynamics and

how they might respond to a changing climate so that managers

tasked with protecting biodiversity in the face of climate change

proceed effectively [45,46].

Our goal was to develop an approach that could be used to

model water temperature in groundwater dominated lotic systems

that are of high conservation importance and do not conform with

coarse-scale temperature modeling approaches. Further, we

wished to explain thermal heterogeneity within a mainstem river

system heavily influenced by groundwater inputs and predict how

biota of high conservation concern may respond. To achieve these

goals, we addressed four main objectives: 1) document longitudinal

variation in stream temperature at the warmest and coldest times

of the year, 2) create a spatially-explicit temperature model based

on empirical data to predict daily average temperature, 3) apply

the predictive model to forecast the effects of two climate change

scenarios on water temperature, and 4) link predicted water

temperatures based on climate change simulations to three aquatic

organisms of concern to conservation and management but that

have different temperature requirements.

Methods

Study Location
Our study occurred within the Ozark National Scenic River-

ways (ONSR), which is a National Park Service Unit located in

south-central Missouri, USA (37u N, 91u W) on the Ozark Plateau

[47]. The park encompasses approximately 32,700 hectares,

creating a narrow corridor along 215 km of the Current River

and its largest tributary, the Jacks Fork River (Figure 1). The

Current River is a southerly flowing stream which enters the

ONSR as a 4th order [48] stream and reaches 6th order upon its

exit, whereas the Jacks Fork River is an eastern flowing 5th order

stream within the ONSR. Average (range) wetted channel width in

the Current River was 47.6 m (17.5 – 127.3 m) and 26.3 m (122

49 m) in the Jacks Fork (J. Westhoff, unpublished data). The

deepest pools in the Current and Jacks Fork Rivers rarely exceed 5

and 3 m, respectively (J. Westhoff, unpublished data). Substrate

composition in the river channel was generally dominated by

coarse chert gravel or large boulders associated with bluff pools or

high gradient reaches [49]. The riparian zone was dominated by

deciduous forest and was mostly intact along the entirety of the

river contained with the ONSR. The overall catchment was

primarily forested with 14% of the catchment in cleared land, only

2% of which is on areas with . 7u slopes [50].

The ONSR is characterized by deep valleys overlaying karst

topography, which creates many caves and springs. Big Spring,

one of the largest springs in the world, is located on the Current

River and has an estimated annual mean discharge of 12.6 m3/sec

[47]. Many other large springs exist along the Current and Jacks

Fork Rivers (Appendix S1) and groundwater sources account for

over 90% of the total discharge within the ONSR [47].

Throughout the remainder of the manuscript, the acronym

‘‘ONSR’’ will refer only to the mainstem Current and Jacks Fork

Rivers within the park. Field research for this study was completed

under permit OZAR-2011-SCI-0007 from the United States

National Park Service.

Data Collection
Longitudinal temperature surveys were conducted by boat

during winter (Jan 18 – Feb 23, 2012) and summer (July 30 – Aug

15, 2012) over the entire ONSR. Temperatures were obtained

over multiple days during daylight hours and in different sections

of the ONSR from 10 – 25 km long each day, depending on river

access locations. For the winter survey, temperature was recorded

using an Aqua Troll 100 (In-Situ Inc., Fort Collins, CO; accuracy

60.1uC) by recording temperature approximately 10 cm below

the water surface every 30 seconds while moving in a downstream

direction. Temperature values were spatially linked using a GPS

(Archer Field PC with Hemisphere GPSXF101, Juniper Systems

Inc., Logan UT) with time settings synced to the Aqua Troll 100

device to record UTM coordinates every 30 seconds. During

summer, water temperatures were taken 10 cm below the water

surface every 250 m along the ONSR using an YSI 550A (YSI

Inc., Yellow Springs, OH; accuracy 60.3uC) and linked with

UTM coordinates.

Longitudinal surveys conducted in the winter and summer

captured spatial variation in temperature over the entire ONSR,

whereas temporal variation in temperature was captured using

stationary temperature loggers (HOBO Pendant, Onset Computer

Corp., Cape Cod, MA; accuracy 60.53uC). Loggers were installed

at 26 locations throughout the ONSR and were generally located

within a few hundred meters of an established river access location

or just above and below major groundwater inputs (Figure 1 and

Appendix S2). The average (6 Std. Dev) distance between loggers

was 9.3 6 5.6 km. Temperature logger installation and removal

dates varied, but 25 loggers recorded data every 30 minutes

throughout calendar year 2012 (Appendix S2).

Longitudinal Water Temperature Variation Analysis
The use of three different temperature recording devices

necessitated correction of temperature readings. Laboratory

derived correction factors resulted in the addition of 0.1uC and

1.0uC to raw temperature values for the Aqua Troll 100 and YSI

550A, respectively, to achieve standardization with the HOBO

Pendant loggers. Longitudinal temperature survey data were

collected at various times of day and on different days, which

required correction of values and standardization to the same

moment in time for valid comparisons. Therefore, we used data

collected from stationary temperature loggers to address issues of

both temporal and spatial standardization. We collected informa-

tion on the closest upstream and downstream temperature loggers

for each longitudinal survey point, the distance to those loggers,

and the temperature of those loggers at the time the survey point

occurred. The distances from the survey point to each logger were

used to create a weight for the logger specific to each survey point

based on inverse distance weighting (IDW), where a factor of 22

was used for the exponent [51]. The difference in temperature

between expected and observed values based on interpolation of
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temperature logger values was termed the spatial correction factor

(SCF) and was calculated with the following equation,

SCF~TSi
{

(U � TUi
)z(D � TDi

)

UzD
;

Where Tsi was the temperature recorded at survey point i, U was

the weight of the closest upstream logger to point i, D was the

weight of the closest downstream logger to point i, Tui was the

temperature recorded at the closest upstream logger at the time

when temperature was recorded at survey point i, and Tdi was the

temperature recorded at the closest downstream logger at the time

when temperature was recorded at survey point i.
Next, to standardize all the measured temperature readings to a

single point in time, the weighting process was repeated using the

extreme (either minimum or maximum, depending on season of

survey) temperature values for the two loggers closest to the survey

point. The mode of the coldest day and time observed (January 14,

2012 at 0830 hours) and the mode of the warmest day and time

observed (July 25, 2012 at 1700 hours) were selected from the 25

stationary logger datasets and the values for those days served as

the values to which all others would be standardized. This

weighting provided a predicted high or low temperature value for

that survey point location which was then added to the spatial

correction factor. These final values represented temporally and

spatially corrected temperature values for every survey point for

the coldest and warmest time of the year. If a major groundwater

feature entered the system, the IDW methodology varied in that

the nearest logger may not have been used (e.g., a point just

downstream of a major spring would have none of its weight based

on a logger above the spring).

Figure 1. Location of the Ozark National Scenic Riverways (Jacks Fork and Current Rivers). Triangles indicate locations of stationary
temperature loggers deployed for the entirety of 2012, with locations mentioned in the text noted by abbreviations (Tan Vat, TV; Cedar Grove, CG;
Big Spring Downstream, BGD; Buck Hollow, BH; Rymers, RY; Bay Creek, BC, and Keatons, KE). Hollow circles surrounding a point indicate the locations
of major springs referenced in the text (Welch Spring, WS; Pulltite Spring, PS; Blue Spring Current, BSC; Big Spring, BG; Blue Spring Jacks Fork, BSJ; and
Alley Spring, AS).
doi:10.1371/journal.pone.0111438.g001

Climate Change and Groundwater Streams

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e111438



Relation of Spring Magnitude to Spring Influence
Each spring in a system contributes a different percentage of

discharge to the total river discharge [47] and affects the water

temperature for various distances downstream [47,52]. This

relationship between spring discharge and distance from spring

is complex, especially when considered in conjunction with other

spatially varying factors that affect water temperature [5].

Knowledge of individual thermal contribution from a given spring

to the river was investigated based on observed longitudinal

temperature variation. We selected nine springs that contributed

at least 5% of the river discharge and used information obtained

from our summer maximum and winter minimum estimates to

determine the relationship between spring magnitude (M) and

spring influence (I). Spring magnitude was defined as the discharge

of the spring divided by the discharge of the river at its confluence

with the spring and calculated with data from Mugel et al. [47].

Spring influence was calculated for summer (SIMax) and winter

calculated winter (SIMin) conditions using the corrected temper-

ature values described in the previous section (maximum or

minimum corrected temperatures) following the equations;

SIMax~
(US{DS )

(US{G)
;

and

SIMin~
(DW {UW )

(G{UW )
;

where US is the temperature upstream of a given spring in the

summer, UW is the temperature upstream of a given spring in the

winter, DS is the temperature downstream of a given spring in the

summer, DW is the temperature downstream of a given spring in

the winter, and G is the temperature of the spring water (14uC was

used in our analysis). This allowed us to display the spring

influence relative to how much temperature change was possible

given the difference between river temperature and groundwater

temperature. Spring influence values of 0 indicated no influence

and a value of 1 indicated complete spring influence. Linear

regression was used to determine the relationship between spring

magnitude and spring influence for both summer and winter

conditions.

Predictive Water Temperature Modeling
We used multiple regression to create a predictive water

temperature model for the main stem Jacks Fork and Current

Rivers within the ONSR. We chose a statistical approach because

of data availability and concerns about addressing the spatial

variation caused by groundwater influence. Statistical models are

based on correlations among water temperature, air temperature,

and other factors and often have less comprehensive data

requirements than deterministic models [6,53–55]. Deterministic

models rely on the physical properties of water and heat exchange

and require large amounts of meteorological and hydrological data

[56,57].

Because the system was greatly influenced by groundwater, we

standardized all air and water temperatures based on the average

temperature of groundwater entering the system. Our approach

follows the equilibrium temperature concept described by

Mohseni & Stefan [37] which identified the point in time when

no heat is transferred between air and water; however, we instead

focused on heat transfer between groundwater and river water.

Instead of estimating heat flux using data on radiation, evapora-

tion, and other physical properties of heat exchange in water, we

assumed a constant groundwater temperature of 14uC and

subtracted that value from observed air and water temperature

values to create a linear transformation of the response of water

temperature to any groundwater input. Discharge was not

included as a predictor in the model, but was controlled for by

removing any observations from days when discharge exceeded

the 75% percentile of records for the closest USGS gage station.

We accounted for spatial influences on water temperature by

creating a spatial influence factor (SIF). Numerous spatial drivers

of water temperature (e.g., stream size, land use, riparian coverage)

were accounted for using the SIF, but the relative effects of any

one driver were unknown. However, the primary spatial driver in

this system captured by the SIF was groundwater influence. The

SIF was calculated based on results from the longitudinal

temperature survey conducted in the summer of 2012 and the

resulting spatial correction values. The corrected temperature at

each survey point along the longitudinal transect was subtracted

from the warmest temperature that occurred in the ONSR

(31.9uC). Resulting values were then divided by the greatest

observed difference in temperature between any two points in the

system (13.7uC) to standardize them for the ONSR. Resulting

values ranged from 0 (no spring influence) to 1 (greatest spring

influence). We determined the SIF values for every river reach in

the Jacks Fork and Current Rivers to determine the composition of

SIF values within the ONSR. The SIF value differs from the

spring influence value because it incorporates all spatial drivers of

water temperature and can be determined for any location on the

river, not just below a spring.

Air temperature is a strong predictor of water temperature in

lotic systems, but generally performs best when considered as a

moving average as opposed to an instantaneous value congruent

with the water temperature reading [58]. Thus, we used five day

average daily air temperature (AirTemp) where the average daily

air temperatures on the day of the reading and the four previous

days were averaged using weighting factors. Daily air temperatures

were averaged by multiplying the average temperature on the day

of the observation by 0.3, the prior day by 0.3, the next previous

day by 0.2, and the other two previous days by 0.1. All air

temperature data were from the Round Spring weather station

which was centrally located in the ONSR and within 70 km of the

furthest location on the river to which the model applies.

Finally, we accounted for seasonal effects on water temperature

with a metric (Season) based on climate normals and how they

related to groundwater temperature. Climate normals [59] were

obtained from the West Plains, MO weather station (40 – 80 km

southwest of ONSR) as opposed to the Round Springs weather

station because the data record had fewer missing values and a

longer record. The average daily air temperature value for each

calendar day was subtracted from 14uC; thus, the metric had a

value of zero when air temperatures were equal to groundwater

temperatures (Mid April and Mid October). Days with average

temperatures above 14uC had negative values and days below

14uC had positive values, which mimicked the effect of ground-

water input on the ambient water temperatures. The interaction

between season and the SIF was of interest because multiplying the

SIF by the groundwater influence resulted in season values that

were essentially weighted by the amount of spring influence

(Figure 2). This interaction accounted for both the direction and

magnitude of the effect of groundwater influence at a given air

temperature.

Temperature data from each of 25 temperature loggers were

summarized by determining the average daily water temperature

for each calendar day of 2012. Those values were standardized to
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groundwater temperature (as described above) and served as the

response variable in our models. Data from all logger locations

over all days in 2012 were compiled into one dataset and records

were removed if discharge exceeded the 75% quartile during that

day at that location, or if data were corrupt or missing. From the

reduced dataset, 10% of the records were randomly selected to

serve as training data for the models.

We used multiple regression techniques to develop a temper-

ature model that predicted daily average water temperatures

throughout the ONSR. Combinations of predictor variables were

used to create six candidate models, which were compared based

on their Akaike Information Criterion (AIC) values to select the

best model (Table 1). These candidate models were chosen to

examine the explanatory power of each of the variables by itself,

and in combination. Model parameter estimates and intercepts

were used along with the data withheld from the model creation

set (90% of total observations) to validate the final model. All

analyses were done in SAS 9.3 (Cary, NC).

Climate Change Simulations and Predicted Biotic
Implications

Simulated air temperature values for a central location within

the ONSR were obtained from dynamically downscaled climate

simulations [60] and incorporated into our predictive temperature

model. Air temperature data (2-m above surface) were obtained

from the downscaled versions of the MPI ECHAM5 (EH5) and

GENMOM climate simulations [60]. These models were chosen

because they provided data at a 15-km grid scale and to show a

range of potential conditions within the A2 emissions scenario

[60]. Air temperature estimates were averaged for each day of the

year across five years (e.g., 2040 – 2044) for four time steps of

1995, 2040, 2060, and 2080. We calculated 5-day moving

averages of the simulated air temperature values as outlined

above, and substituted those values in our predictive model of

average daily temperature in place of the AirTemp variable. We

did not incorporate predicted changes in precipitation, discharge,

or groundwater temperature based on climate simulations in our

model. All other model inputs were identical to the original

predictive temperature model.

We summarized forecasted results by applying ecologically

important thermal criteria for three aquatic species that occur in

the ONSR. Smallmouth bass Micropterus dolomieu and large-

mouth bass Micropterus salmoides are competitors [61], econom-

ically important sportfish [62], and possess different thermal

tolerances and optimal growth temperatures (Table 2). The Ozark

hellbender Cryptobranchus alleganiensis bishopi is a rare species of

salamander listed by the United States Endangered Species Act.

Temperatures at which these organisms no longer exhibit growth

due either to cold or warm water temperatures, along with the

optimal temperature range for growth, and the range for potential

growth (Table 2) were used in our models. The number of days

per year with average daily temperature within these ranges (final

predicted water temperatures were rounded to the nearest whole

digit) was summed for each simulated climate change scenario and

across the range of spatial influence factor values. These

biologically relevant temperature estimations allowed us to

examine potential change in thermal suitability and bioenergetic

response associated with climate change while accounting for

spatial heterogeneity of stream temperatures.

Results

The greatest annual temperature variability (2.2 – 32.0uC)

within the ONSR occurred at the upstream most location on the

Jacks Fork River (Buck Hollow; Figure 1, Appendix S3), which is a

location with very little groundwater influence. The lowest annual

water temperature variation occurred at a site (Tan Vat) with a

high degree of groundwater on the Current River, where water

temperature ranged from 8.4 to 20.5uC. Alley Spring was the only

location influenced entirely by groundwater with a temperature

Figure 2. Simulated values of the interaction term when spring
influence is multiplied by season influence under six levels of
spring influence (0, 0.2. 0.4. 0.6, 0.8, and 1; 0 = no spring
influence, 1 = heavy spring influence). Results are displayed by
unadjusted air temperature for clarity, but air temperature values used
in calculations were subtracted from 14uC.
doi:10.1371/journal.pone.0111438.g002

Table 1. Candidate models used in multiple regression modeling to predict average daily water temperature in the Current and
Jack’s Fork Rivers, Missouri.

Model Number Model Structure AIC wi

1 b0 + b1(AirTemp) 1245.2 0

2 b0 + b1(Season) 1470.0 0

3 b0 + b1(SIF) 2823.6 0

4 b0 + b1(Season) + b2(SIF) + b3(Season*SIF) 807.7 0

5 b0 + b1(AirTemp) + b2(Season) + b3(SIF) 879.0 0

6 b0 + b1(AirTemp) + b2(Season) + b3(SIF) + b4(Season*SIF) 2329.2 1

The variable AirTemp represents a five-day weighted moving average air temperature. The variable Season represents a value based on climate normal air temperatures,
and the variable SIF (spatial influence factor) represents a spatial variation in water temperature caused by groundwater and other factors. b0 represents intercept and
b1 represents slope. Akaike Information Criterion (AIC) values and model weights (wi) are displayed for each candidate model.
doi:10.1371/journal.pone.0111438.t001
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logger and ranged from 13.4 to 15.7uC with an average annual

temperature (6 standard deviation) of 14.260.4uC. Overall,

average annual temperature ranged from 14.2uC (Tan Vat) to

17uC (Rymers and Bay Creek) within the ONSR (Figure 1,

Appendix S3).

Longitudinal Water Temperature Variation
Spatial patterns in maximum and minimum temperatures

observed from the longitudinal temperature surveys demonstrated

the influence of groundwater input locations (Figure 3). The

greatest effect of a single spring on the overall river temperature

was observed downstream of Alley Spring on the Jacks Fork River,

where summer maximum temperature decreased by approxi-

mately 10uC and winter minimum temperature increased by

approximately 5uC (Figures 1 and 3). On the Current River,

Welch Spring had the most influence on river temperature based

on the 7uC decrease of maximum temperature and 3uC increase of

minimum temperature (Figures 1 and 3). Other major springs that

had greater than 1uC influence on stream temperature included

Pulltite, Blue (Current), Big, and Blue Springs (Jacks Fork).

Groundwater influence on river temperature directly downstream

of springs was not as substantial in the winter as in the summer.

Equipment malfunctions resulted in a loss of data for approxi-

mately 25 km of the Current River combined over two locations

(River km 66 – 75 and 122 – 138) during the winter of 2012

(Figure 3).

Relation of Spring Magnitude to Spring Influence
Spring influence on main stem river temperature was strongly

related to spring magnitude during both summer (R2 = 0.93,

intercept 6 standard error = 3.2 6 3.3, slope 6 standard

error = 99.1 6 9.9) and winter (R2 = 0.68, intercept 6 standard

error = 5.2 6 8.8, slope 6 standard error = 121.4 6 34.2);

Figure 4). As spring magnitude increased, the influence of

groundwater on river water temperature increased. Intercept

values from the models indicated that a single spring contributing

less than 3% of the total discharge in the summer or 5% in the

winter would have no observable influence on river temperature at

a location beyond 400 m downstream.

Predictive Water Temperature Modeling
We removed 547 temperature logger records (6%) because they

exceeded the 75% quartile of discharge, with 95% of the removed

records occurring between January 1 and March 26th. An

additional 236 records (3%) were removed because they were

corrupt or missing, resulting in 8367 valid records. The

distribution of SIF values was uneven across the ONSR and had

a distance weighted average SIF value of 0.40 (Figure 5).

Approximately 75% of the ONSR had SIF values less than or

equal to 0.50 (Figure 5). No model selection uncertainty existed as

candidate model 6 (all variables and the Season*SIF interaction)

had a model weight of one and indicated that the variables

measured were more important than any single variable alone

(Table 1). The average daily temperature model performed well

based on R-squared (0.98) and RMSE (0.82) values, and

compared favorably to other studies using RMSE as a validation

Table 2. Ecologically important thermal criteria for smallmouth bass (Micropterus dolomieu), largemouth bass (Micropterus
salmoides), and Ozark hellbender (Cryptobranchus alleganiensis bishopi) in the Ozark National Scenic Riverways.

Species Positive growth (6C) Optimal growth (6C) Sources

Smallmouth bass 10227 20224 [52,63]

Largemouth bass 15236 24230 [64–66]

Ozark hellbender 3227 10216 [67], consultation with experts

doi:10.1371/journal.pone.0111438.t002

Figure 3. Maximum (upper dots) and minimum (lower dots) predicted temperatures along the Jacks Fork (left panel) and Current
Rivers (right panel) during the warmest (July 25 at 5 pm) and coldest (January 14 at 8 am) periods of 2012. River distance for the Jacks
Fork starts at the Buck Hollow access (0 km) and ends at the Current River confluence (63 km), with Blue Spring (4 km) and Alley Spring (41 km)
accounting for major variation in temperature. River distance for the Current River starts at the Tan Vat access (0 km) and ends at the Gooseneck
access (170 km), with Welch Spring (20 km), Pulltite Spring (40 km), Blue Spring (97 km), and Big Spring (146 km) accounting for major variation in
temperature. Equipment malfunctions resulted in a loss of data during cold period sampling at two locations on the Current River (black boxes).
doi:10.1371/journal.pone.0111438.g003
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metric [68,69]. The final relationship to predict daily average

water temperature (WaterTemp) was,

WaterTemp~3:60z0:40 AirTempð Þ{0:51 Seasonð Þ

{3:61 SIFð Þz0:66 Season :SIFð Þ

Associated standard error values for the parameter estimates

were 0.05 (Intercept), 0.01 (AirTemp), 0.01 (Season), 0.11 (SIF),

and 0.01 (Season*SIF). We observed high Pearson Correlation

Coefficients between AirTemp and Season (20.89 to 20.91) and

between Season and SIF (0.85). All other Pearson Correlation

Coefficients were below 0.80. None of the predictor variables had

variance inflation factor (VIF) values .10, indicating that

multicollinearity did not produce problems in our regression

coefficients [70].

Model validation indicated the greatest underestimate of

temperature observed was 3.3uC and the greatest overestimate

was 3.4uC. The model predicted 98% of the observations within

2uC and 77% of the observations within 1uC. Estimated values

2uC warmer than observed came primarily (88%) from three sites

(Buck Hollow, Cedar Grove, Tan Vat) and occurred in the

summer (Figure 1). Estimates 2uC cooler than observed came

primarily (82%) from two sites (Keatons and Big Spring

Downstream) and occurred in the fall and winter (Figure 1).

Climate Change Simulations and Predicted Biotic
Implications

Average air temperature increased from the 1995 to 2080 time

steps for all climate simulations (Table 3). The EH5 model

predicted average air temperatures to increase by 2.8uC from 1995

to 2080, whereas the GENMOM model predicted a 2.1uC
increase over the same time period. The average air temperatures

at a given time for the EH5 model were commonly 2uC greater

than those predicted by the GENMOM model. Mean yearly water

temperatures were estimated to increase by 1.1uC from 1995 to

Figure 4. Relationship between spring magnitude (SM) and spring influence (SI) for both winter (triangles) and summer (circles)
observations. Spring magnitude represents the percentage of discharge contributed to the river by the spring. Spring influence represents the
percentage of change in water temperature from the upstream river temperature to groundwater temperature.
doi:10.1371/journal.pone.0111438.g004

Figure 5. Percent of Jacks Fork and Current River distance within the Ozark National Scenic Riverways comprised by each of the
spatial influence factor (SIF) values ranging from 0 to 1, by increments of 0.05.
doi:10.1371/journal.pone.0111438.g005
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2080 based on the EH5 model, versus only 0.8uC for the

GENMOM model (Table 3). Areas that were highly buffered by

groundwater inputs were predicted to have 3.5uC cooler yearly

average temperatures than areas with minor groundwater

influence (Table 3). The 2040 and 2060 simulations were

intermediate between the 1995 and 2080 simulations, so further

discussion of the 2040 and 2060 results was omitted. However,

2040 simulations were similar to 1995 results and noticeable shifts

in temperature became apparent by 2060.

We observed similar trends among our simulated water

temperature results regardless of climate scenario. The number

of positive growth days for smallmouth bass increased with

increasing SIF values (more groundwater) and plateaued near SIF

values of 0.85 for most simulations (Figure 6A). Both climate

models predicted an increase in the number of positive growth

days from 1995 to 2080 for smallmouth bass at locations with SIF

values greater than 0.15, with as many as 39 more days of growth

per year (13% increase) at an SIF value of 0.50 in the EH5

simulation. These patterns were explained by the reduced number

of days too cold for smallmouth bass growth at moderate to high

(.0.15) SIF values and the increased number of days too warm for

growth at low (,0.15) SIF values (Figure 7). The GENMOM

simulations indicated a similar trend to the EH5 simulations, but

there were on average 8% fewer positive growth days across SIF

values above 0.15 predicted for the year 2080 than predicted by

the EH5 simulations. Based on the 1995 simulations, smallmouth

bass were expected to experience the maximum number of

optimal growth days in areas of river with either a 0.25 (EH5) or

0.30 (GENMOM) SIF value (Figure 8A). However, by 2080, both

climate models predicted that those maxima will shift to areas of

the river with greater groundwater influence (0.40 SIF value).

The predicted largemouth bass response to climate change

scenarios was less complex than that of smallmouth bass. The

number of positive growth days for largemouth bass was predicted

to increase from 1995 to 2080 due to fewer cold-limiting days, with

the EH5 model again predicting the largest increase (Figure 6B).

The GENMOM model predicted that the number of positive

growth days for largemouth bass will increase by 2080 from 7 to

37% (11 to 40 days per year), depending on SIF value. The EH5

model predicted large gains (up to 70% more days) in the number

of positive growth days for high SIF value areas and smaller gains

(as low as 3%) for low SIF value areas (Figure 6B). The number of

optimal growth days for largemouth bass may increase by 20 days

(21%) in areas with SIF values of zero to as much as 57 days a year

(317%) in areas with SIF values near 0.3, based on the EH5

simulations for 1995 to 2080 (Figure 8B). The GENMOM

simulations predicted a similar trend, but of lesser magnitude (5

to 33 days of additional optimal growth per year). The EH5 1995

model predictions indicate that in areas where SIF values are 0.15

or less, largemouth bass experience more days of optimal growth

than do smallmouth bass. However, largemouth bass currently

have three more days per year of optimal growth in areas where

SIF = 0.15, and by 2080 that difference will increase to 23 days

per year, which may have implications for interspecific competi-

tion (Figures 8A and B). All simulations indicated that areas with

SIF values above 0.5 would not support any optimal growth days

for largemouth bass due to water temperatures below 24uC.

The large range of temperatures at which hellbenders may

experience positive growth resulted in negative growth days (, 3

or . 27uC) only in low spring influence area (SIF values , 0.15),

and never for more than 48 days (13%) of a given year. The EH5

and GENMOM simulated trends were similar to each other for

forecasted hellbender optimal growth days where both models

predicted increasing optimal growth days with increasing SIF

values (Figure 8C). Both models predicted fewer optimal growth

days in 2080 than in 1995 for locations with either low (,0.25) or

high (.0.85) SIF values, with up to a 20% reduction in optimal

growth days in areas with SIF values of 1 (Figure 8C). The

GENMOM and EH5 models predicted more optimal growth days

in the future for mid-range SIF values (0.25–0.55 and 0.35 – 0.85;

respectively) due to warmer winter temperatures; however, neither

model predicted an increase of more than 27 days.

Discussion

Our study provides a framework to document and predict fine-

scale heterogeneous thermal conditions in lotic systems and

complements other temperature modeling work typically conduct-

ed at larger spatial scales on surface-water systems. Our methods

were based on easily obtainable data and accessible statistical

techniques familiar to many biologists and managers. Character-

ization of thermal heterogeneity in the system allowed us to predict

a probable shift in the spatial location of optimal growth

temperatures available to two competing fish species under two

climate change scenarios that otherwise might not have been

identified by coarse-scale approaches.

Table 3. Summary temperature (uC) values for the Ozark National Scenic Riverways estimated using the MPI ECHAM5 (EH5) and
GENMOM climate simulations at time steps of 1995, 2040, 2060, and 2080.

Simulation Time-step Average Air Temperature
Average Water Temperature
(High SIF, Low SIF)

EH5 1995 12.2 13.3, 16.8

2040 13.0 13.6, 17.1

2060 14.2 14.1, 17.6

2080 15.0 14.4, 17.9

GENMOM 1995 10.9 12.8, 16.3

2040 11.2 12.9, 16.4

2060 12.1 13.2, 16.8

2080 13.0 13.6, 17.1

Low spatial influence factor (SIF) indicates areas with little groundwater influence (SIF = 0) and high SIF indicates areas with high groundwater influence (SIF = 1).
doi:10.1371/journal.pone.0111438.t003
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Temperature modeling approach
Scientists often consider multiple approaches to thermal

modeling of stream networks and are faced with decisions

regarding which predictor variables can and should be used [6].

These decisions sometimes result in the exclusion of groundwater

streams from the dataset [7], post-hoc discussion of model

limitations in relation to spatial variation caused by groundwater

inputs [69,71], or no mention of potential groundwater influence

[2,70]. We presented a novel approach to predict river temper-

atures using the spatial influence factor and readily available air

temperature data to account for the combined effects of spatially

important variables (e.g., groundwater input, stream size, amount

of shading, tributary influence). Our modeling methods and the

SIF could be easily adapted to use data from alternative methods

for capturing broad-scale temperature variation data at fine

resolutions such as distributed temperature sensing systems and

thermal infrared imagery [72–76].

Our model indicated that groundwater had a significant effect

on river water temperature and reduced water temperature

variation; however, multiple linear regression models of water

temperature in other streams not influenced by groundwater often

perform well using only air temperature and flow variables [77]. In

a study of Pennsylvania streams, groundwater controlled the

stream-air temperature relationship and reduced the coefficient of

variation in water temperature relative to a stream with less

groundwater influence [78]. More complex responses of ground-

water inputs to river water temperatures were observed during the

summer in a California stream, where a 3.7 km long shallow

spring branch resulted in delivery of water to the stream that was

warmer than the receiving water at night and cooler during the

day [12]. This phenomenon was explained by solar radiation

warming water in the spring branch during the day that did not

arrive to the river until night [12]. The shorter (# 1 km) and

heavily shaded spring branches in the ONSR are likely affected

less by solar radiation and are more consistent with groundwater

temperature when they enter the stream.

We believe the SIF approach could be scaled-up and applied

across any system given concurrent temperature data are available

from multiple locations for its creation. We applied it on two

rivers, but the concept of capturing spatial variation in a single

Figure 6. Predicted number of positive growth days for smallmouth bass Micropterus dolomieu (Panel A) and largemouth bass
Micropterus salmoides (Panel B) in the Ozark National Scenic Riverways displayed by spatial influence factor values for two climate
scenarios (EH5 and GENMOM) during 1995 and 2080.
doi:10.1371/journal.pone.0111438.g006
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metric using empirical data could apply to a system of any size.

Our use of the spatial correction factor to interpolate SIF values

between permanent temperature logger locations was useful for

our objectives, but the SIF could be based solely on stationary

temperature logger data if fine-scale resolution is not required.

The SIF was based only on summer temperature maximums and

although we had information on winter temperature extremes, we

chose to use only the summer values because they showed more

spatial variation. Using a separate SIF based on data from each

season may better account for temporal relations of spatially

important factors. This is especially important if seasonal relations

between spatial factors and water temperature depart significantly

from linearity.

Our temperature modeling approach had several assumptions

and limitations. First, we chose to use a static value for

groundwater temperature of 14uC. The influence of groundwater

inputs may vary regionally based on groundwater temperatures

and may change with future climatic conditions [79]. We observed

a groundwater temperature at Alley Spring of approximately

14.2uC, which is 0.8uC higher than mean annual air temperature

[59]. This was consistent with Mohseni & Stefan [37] who found

that groundwater temperature is 1 – 2uC higher than mean annual

air temperature in a given region. Temporal changes in

groundwater temperature could be incorporated in the model to

improve accuracy. Second, our model did not account for changes

in river discharge and excluded temperature data from high water

events (.75th quartile discharge). Discharge and water tempera-

ture are closely linked and are often both used in predictive

temperature models [80], but without data on runoff water

temperature it would be difficult to reliably predict the effect of

high water events on river temperature. Further, we assumed that

high water events would likely result in acute responses to thermal

conditions by aquatic organisms in the system and would therefore

be less informative related to growth predictions than the static

conditions we modeled. Finally, including multiple years of data to

train and validate the model would incorporate greater seasonal

and yearly variation. All of the data used in this study came from

the calendar year 2012, which was one of the warmest and driest

on record [59]. However, the warmest 5-day average period and

coldest 5-day average period were within the range observed

during the previous 30 years.

Our approach to predicting the effects of future climate on river

temperature and the effects of those temperatures on the biota also

have limitations. We chose to use two downscaled climate models

that represent extremes within the A2 emissions scenario [60].

This approach was intended to display a range in possible

response, but neither model may provide the best approximation

of future air temperatures. Multi-model ensemble approaches have

become common and may provide future climate data that are

more robust to individual model assumptions and more accurately

reflect future conditions [81]. Further, we only used models from

the A2 emissions scenario which predicts a medium-high level of

carbon dioxide emissions relative to other scenarios [82]. Thus,

our simulations are likely intermediate to what might be expected

based on scenarios that differ in global population projections,

carbon emissions, and other factors. We also did not include

predicted changes in groundwater temperature, spring or river

discharge, or precipitation based on climate change scenarios.

Changes in precipitation are predicted and may result in altered

flow regimes and groundwater discharges [83–85]. Reduced

groundwater discharge would be expected to result in warmer

water temperatures in the summer and colder water temperatures

in winter due to less advective heat flux between groundwater and

surface water. Thus, the importance of the SIF variable would be

reduced and water temperatures would likely be driven more by

air temperature. Streams with less groundwater inflow than our

system may experience increased thermal stress from the

synchrony of low flow conditions and high temperatures because

they lack the more static discharge provided by springs [80].

Finally, the air temperature values used in our climate simulations

were based on one, 15-km grid location from within the study

area. Topographic variation and other factors may result in air

temperatures that differ from those we used in both the

temperature model and climate simulations which may affect

model accuracy.

Ecological Relevance of Thermal Heterogeneity
Groundwater inflows, such as those we documented on the

ONSR, exemplify the patchy nature of environmental conditions

in lotic systems [86,87]. Large magnitude springs in the ONSR

altered water temperatures in the stream by up to 10uC during the

warmest part of the year, effectively creating thermal patches

Figure 7. Predicted number of non-growing days for smallmouth bass Micropterus dolomieu in the Ozark National Scenic Riverways
displayed by spatial influence factor values for two climate scenarios (EH5 and GENMOM) during 1995 and 2080. Days ,10uC (too
cold for growth) are displayed in the lower left corner and days .27uC (too warm for growth) are displayed as the top set of lines.
doi:10.1371/journal.pone.0111438.g007
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which may affect the distribution of aquatic biota. For example in

Tennessee, the Barrens topminnow Fundulus julisia is restricted

to patchy environments created by groundwater springs [88].

Further, the physical processes that create patchy environments

are linked to patterns in biocomplexity and may influence

assemblage patterns of aquatic organisms, meta-population

dynamics, and biogeochemical processes [89–91]. Unlike patchy

environments created by hydrodynamic processes, thermal patch-

Figure 8. Predicted number of optimal growth days for smallmouth bass Micropterus dolomieu (Panel A), largemouth bass
Micropterus salmoides (Panel B), and Ozark hellbenders Cryptobranchus alleganiensis bishopi (Panel C) in the Ozark National Scenic
Riverways displayed by spatial influence factor values for two climate scenarios (EH5 and GENMOM) during 1995 and 2080.
doi:10.1371/journal.pone.0111438.g008
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es are dynamic in a seasonally predictable way. Thus, the patches

may disappear during certain times of the year when water

temperature is near groundwater temperature. We observed a

lower magnitude influence of groundwater on river temperatures

in the winter as compared to the summer. This is important for

modeling efforts as we suspect springs that contribute 3%

(summer) or 5% (winter) of total discharge will have minimal

effects on overall river temperatures beyond a few hundred meters.

Our results show that spring magnitude is positively related to

spring influence on river temperature and is the primary spatial

driver of water temperature. Whitledge et al. [52] examined

groundwater influence on river temperature during the summer

and noted a positive relationship between increasing spring

discharge and the distance needed for water temperatures to

warm to mean daily temperatures. They also concluded that

riparian shading was important in Ozark Streams, but that

shading alone did not affect water temperature more than 2uC and

was less important than groundwater influences.

Stream water temperature can be modeled at spatial scales

ranging from 1–10 m patches [19,92] to regional efforts covering

thousands of km [9]. Our modeling efforts focused on a relatively

fine-scale (10 s m grain size – 10 s km extent), which can provide

area managers with detailed information on an entire system of

interest and help identify the extent of potential thermal refugia for

aquatic organisms. Our study did not identify thermal heteroge-

neity at very fine spatial scales (1 210 m2 patches), but upwelling

groundwater at that scale was used as thermal refuge by rainbow

trout Oncorhynchus mykiss in Northwestern United States streams

[19]. Despite the scale of observations, thermal refuges can also

attract individual fish from great distances demonstrating the

influence of groundwater beyond localized populations and single

spatial scales, as evidenced by movements of .40 km by

smallmouth bass (J. Westhoff, unpublished data).

Thermal Heterogeneity and Biotic Response to Climate
Change

Studies on the effects of climate change on fishes and other

aquatic organisms have often focused on species distributional

shifts at coarse spatial scales [36,93–95]. However, less is known

about the potential fine-scale distributional responses by popula-

tions or individuals and it is expected that fish will experience

population-level effects prior to coarse-scale range shifts [96,97].

Our study demonstrated that as the climate warms, smallmouth

bass in groundwater-influenced rivers may need to occupy areas

with greater spring influence to experience the maximum number

of positive or optimal growth days. Failure to shift to optimal

thermal conditions may result in decreased growth, as suggested

for Great Lakes fishes [98]. Stream reaches with little spring-

influence (SIF , 0.4) will become less thermally hospitable to

smallmouth bass, while areas with moderate to high spring-

influence (SIF . 0.4) will become more thermally suitable if air

temperatures increase. We predicted that largemouth bass (a

competitor of smallmouth bass) will also experience more optimal

growth days in the future in areas of the river that were previously

better thermally suited for smallmouth bass. Thus, as temperature

regimes shift spatially, an increased competitive advantage may

occur for species like largemouth bass in areas of low groundwater

influence where resident smallmouth bass may experience more

thermal stress and poorer growing conditions. Evidence for this

already exists as largemouth bass were more successful than

smallmouth bass in relatively warmer Ozarks streams [99]. Zweifel

et al. [66] also predicted a similar trend for these species, but

added that consumption demands for prey will favor largemouth

bass over smallmouth bass in warmer systems. Species that are

normally dominant in an ideal thermal regime can experience

reductions in growth when exposed to subdominant species in

altered thermal regimes as observed in juvenile steelhead

Oncorhynchus mykiss and Sacramento pikeminnow Ptychocheilus
grandis [100]. Other organisms not buffered from climate change

may be similarly tied to a combination of higher energetic costs

from metabolic processes and altered interspecific community

interactions [34]. Thus, aquatic organisms may need to adapt to

changing water temperature or possibly face reduced fitness.

Climate change may have positive effects on certain species if

water temperatures increase the number of days that occur within

the optimal thermal range for a species [101,102]. Pease & Paukert

[33] predicted that smallmouth bass in the midwest US (including

Missouri Ozarks streams) would grow about 6% for every 1uC
increase in water temperature, but will need 27% more food to

reach that level of growth. Ideal growth conditions are maximized

for hellbenders in areas with decreased temperature variability

provided by large groundwater inputs. With warmer temperatures,

the number of days too cold for hellbenders at moderate SIF

values will decrease at a rate faster than the increase in the number

of days that are too warm. This may provide marginal growth

benefits for hellbenders occupying those sections of stream.

However, we did not predict hellbenders in the ONSR to

experience major shifts in distribution nor have significantly fewer

optimal growth days (except in highly groundwater influenced

habitats). Moreover, warmer temperatures may reduce the

production of chytrid fungus Batrachochytrium dendrobatidis
zoospores, which are produced in the greatest quantity at cold

temperatures [103]. However, the thermal ranges we used to

model hellbender response to climate change were not based on

well-established and scientifically tested relationships, but rather

our interpretation of available information. Thus, further study to

refine the thermal ecology of hellbenders may better inform future

models of hellbender response to climate change. .

Our study has implications for how climate change is assessed

for fishes using thermal guilds at coarse-spatial scales. Fish thermal

guilds are often used as a baseline or response variable to predict

fish distributions based on current and future climate conditions

[104,105]. However, stream systems with fine-scale heterogeneous

thermal conditions may allow for species from multiple thermal

guilds to occupy the same short (,10 km) reach of stream. For

instance, following the methods of Wehrly et al. [104] to classify

thermal conditions in streams, we noted three separate thermal

categories (cold-, cool-, and warm-stable) present in the ONSR.

Coarse-scale climate change predictions based on fewer temper-

ature loggers would not likely detect this potential variation and

could misrepresent the effects of climate change on fish

communities.

Conclusions
Understanding the spatial and temporal variation in water

temperature in lotic systems provides an opportunity to better

explore ecological phenomena and predict biotic response to

change. We developed a methodology for assessing thermal

heterogeneity and predicting water temperatures in the present

and future with fine-scale spatial resolution. The SIF metric

allowed us to predict daily average water temperature for over

200 km of stream heavily influenced by groundwater. The

resulting model was then used to predict daily average water

temperature based on future climate simulations. Those results

demonstrated that smallmouth bass will likely need to shift their

distribution closer to springs to experience maximum optimal

growth conditions, largemouth bass will experience improved

growing conditions in all sections of the stream, and hellbender
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salamanders will experience little change except near springs.

Although we demonstrated potential uses of these data with three

species, additional research avenues exist, including combining

temperature predictions with habitat availability to determine

suitability for various aquatic species and communities. We hope

others will build on our results to better refine stream temperature

models in groundwater systems.
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study of the Moisie River (Québec, Canada). Hydrol Processes 21: 21–34.

71. Imholt C, Soulsby C, Malcolm IA, Hrachowitz M, Gibbins CN, et al. (2013)

Influence of scale on thermal characteristics in a large montane river basin.

River Res Appl 29: 403–419.

72. Cherkauer KA, Burges SJ, Handcock RN, Kay JE, Kampf SK, et al. (2005)

Assessing satellite-based and aircraft-based thermal infrared remote sensing for

monitoring Pacific Northwest river temperature. J Am Water Resour As 41:

1149–1159.

73. Madej MA, Currens C, Ozaki V, Yee J, Anderson DG (2006) Assessing

possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus
kisutch) through thermal infrared imaging and in-stream monitoring, Redwood

Creek, California. Can J Fish Aquat Sci 63: 1384–1396.

74. Selker J, van de Giesen N, Westhoff M, Luxemburg W, Parlange M (2006)

Fiber optics opens window on stream dynamics. Geophys Res Lett 33: L24401.

75. Westhoff MC, Savenije HHG, Luxemburg WMJ, Stelling GS, van de Giesen

NC, et al. (2007) A distributed stream temperature model using high resolution

temperature observations. Hydrol Earth Syst Sc 11: 1469–1480.

76. Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent

advances in stream and river temperature research. Hydrol Processes 22: 902–

918.

77. Neumann DW, Rajagopalan B, Zagona EA (2003) Regression model for daily

maximum stream temperature. J Environ Eng-ASCE. 129: 667–674.

78. O’Driscoll MA, DeWalle DR (2006) Stream-air temperature relations to

classify stream-groundwater interactions in a karst setting, central Pennsylva-

nia, USA. J Hydro 329: 140–153.

79. Taylor CA, Stefan HG (2009) Shallow groundwater temperature response to

climate change and urbanization. J Hydro 375: 601–612.

80. Arismendi I, Safeeq M, Johnson SL, Dunham JB, Haggerty R (2013)

Increasing synchrony of high temperature and low flow in western North

American streams: double trouble for coldwater biota? Hydrobiologia 712: 61–

70.

81. Tebaldi C, Knutti R (2007) The use of multi-model ensemble in probabilistic

climate projections. Philos T Roy Soc A 365: 2053–2075.

82. Intergovernmental Panel on Climate Change (2000) Summary for policy-

makers: emissions scenarios. Special report of Working Group III on the

Intergovernmental Panel on Climate Change. 27p.

83. Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on

groundwater recharge and streamflow in a central European low mountain

range. J Hydro 284: 244–252.

84. Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on

river discharge projected by multimodel ensemble. J Hydrometeorol 7: 1076–

1089.

85. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying

groundwater recharge in the grand river watershed (Ontario). J Hydro 338:

237–250.

86. Townsend CR (1989) The patch dynamics concept of stream community

ecology. J N Am Benthol Soc 8: 36–50.

87. Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis:

biocomplexity in river networks across space and time. River Res Appl 22:

123–147.

88. Williams JD, Etnier DA (1982) Description of a new species, Fundulus julisia,

with a redescription of Fundulus albolineatus and a diagnosis of the subgenus

Xenisma (Teleostei: Cyprinodontidae). Occas Pap Mus Nat Hist, University of

Kansas 102: 1–20.

89. Winemiller KO, Taylor DH (1987) Predatory behavior and competition

among laboratory-housed largemouth and smallmouth bass. Am Midl Nat 117:

148–166.

90. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, et al. (2003)

Biogeochemical hot spots and hot moments at the interface of terrestrial and

aquatic systems. Ecosystems 6: 301–312.

91. Tonolla D, Wolter C, Ruhtz T, Tockner K (2012) Linking fish assemblages and

spatiotemporal thermal heterogeneity in a river-floodplain landscape using

high-resolution airborne thermal infrared remote sensing and in-situ measure-

ments. Remote Sens Environ 125: 134–146.

92. Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial

heterogeneity of groundwater-stream water interactions using multiple depth

streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci

10: 849–859.

93. Mohseni O, Stefan HG, Eaton JG (2003) Global warming and potential

changes in fish habitat in U.S.streams. Climate Change 59: 389–409.

94. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate

change on freshwater fisheries. Rev Fish Biol Fisher 17: 581–613.

Climate Change and Groundwater Streams

PLOS ONE | www.plosone.org 14 October 2014 | Volume 9 | Issue 10 | e111438

U. S
U. S
U.S
http://www.ncdc.noaa.gov/
U. S
USA. J
U.S


95. Comte L, Buisson LM, Daufresne M, Grenouillet G (2013) Climate-induced

changes in the distribution of freshwater fish: observed and predicted trends.

Freshwater Biol 58: 625–639.

96. King JR, Shuter BJ, Zimmerman AP (1999) Empirical links between thermal

habitat, fish, and climate change. T Am Fish Soc 128: 656–665.

97. Ayllón D, Nicola GG, Elvira B, Parra I, Almodóvar A (2013) Thermal carrying
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