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SUMMARY

Glioblastoma (GBM) is a primary brain cancer with an extremely poor prognosis. GBM tumors contain heterogeneous cellular compo-
nents, including a small subpopulation of tumor cells termed glioma stem cells (GSCs). GSCs are characterized as chemotherapy- and
radiotherapy-resistant cells with prominent tumorigenic ability. Studies in Drosophila cancer models demonstrated that interclonal co-
operation and signaling from apoptotic clones provokes aggressive growth of neighboring tumorigenic clones, via compensatory pro-
liferation or apoptosis induced proliferation. Mechanistically, these aggressive tumors depend on activation of Jun-N-terminal kinase
(upstream of c-JUN), and DrosophilaWnt (Wg) in the apoptotic clones. Consistent with these nonmammalian studies, data from several
mammalian studies have shown that c-JUN andWnt are hyperactivated in aggressive tumors (including GBM). However, it remains elu-
sive whether compensatory proliferation is an evolutionarily conserved mechanism in cancers. In the present report, we summarize re-
cent studies in Drosophila models and mammalian models (e.g., xenografts of human cancer cells into small animals) to elucidate the
intercellular interactions between the apoptosis-prone cancer cells (e.g., non-GSCs) and the hyperproliferative cancer cells (e.g., GSCs).
These evolving investigations will yield insights about molecular signaling interactions in the context of post-therapeutic phenotypic
changes in human cancers. Furthermore, these studies are likely to revise our understanding of the genetic changes and post-
therapeutic cell-cell interactions, which is a vital area of cancer biology with wide applications to many cancer types in humans.
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INTRODUCTION

Glioblastoma (GBM) is the most frequent and lethal form of
primary brain cancer, with current therapy, such as surgery and
radio- and/or chemotherapy, providingonlypalliation.Amonghet-
erogeneous GBM cells, glioma stem cells (GSCs) are operationally
defined as a subpopulation that is relatively resistant to chemo-
and radiotherapywithprominent tumorigenic ability. Recent stud-
ies, however, have raised questions whether therapy should be
aimed only toward GSCs among the various tumor cells.
Recently, a series of elegant studies in Drosophilamosaic can-

cer models in epithelial imaginal discs has demonstrated inter-
clonal cooperation via cell-to-cell signals between apoptotic
clones and their neighboring tumorigenic clones [1–4]. In these
Drosophila cancers, mosaic clones with activation of apoptosis
signals and tumorigenic signals upregulated Drosophila Jun-
N-terminal kinase (dJNK) (and an upstream regulator of c-JUN)
[5, 6], Drosophila Casp 9 (I. Waghmare, S. Verghese, A. Roebke
et al., manuscript in preparation), and Wg (Drosophila Wnt1
homolog) (I. Waghmare, S. Verghese, A. Roebke et al., manu-
script in preparation). To study these molecular signals in a sys-
tem more relevant to human GBM, the Drosophila glioma model

was recently established in several laboratories, including ours, us-
ing the genetic combinations known to induce competitive and/or
compensatory interactions [7–9]. Thismodel has enabled us to de-
termine interclonal signaling events between dying cells and sur-
viving cells in brain cancers in vivo. Furthermore, our recent
published data of the patient-derived GBM models suggest that
irradiation-induced apoptosis of human non-GSCs upregulates at
least some of the complementary genes (c-JUN, JNK, and Wnt),
in addition to the oncogenic binding partner of c-JUN, maternal
embryonic leucine-zipper kinase [10]. Collectively, these mam-
malian and nonmammalian data indicate that intercellular coop-
eration between the clonal populations of the tumor cells could
be an evolutionarily conserved mechanism. These studies also
suggest the presence of an interclonal molecular mechanism
for “tumor tissue repair” in human cancers.
Current therapies, including irradiation and chemotherapy, will

subsequently fail in virtually all patients with GBM. The concept
that dying cancer cells activate the proliferation of remaining can-
cer cellswould shed light onanovelmechanism forpost-treatment
tumor evolution into amore therapy resistant phenotype. If this
hypothesis is true and most of the cancer cells dying of thera-
peutic insult are non-GSCs, a paradigm shift in the field could
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occur, highlighted by the refined understanding of the postir-
radiation molecular events in non-GSCs as a potentially vital
therapeutic target in GBM. In addition, this novel concept
has potential effects on broad areas of cancer biology and pa-
tient care.

CLINICAL HURDLE OF GBM THERAPIES—GENERATION OF
REFRACTORY TUMORS

GBM is highly aggressive and therapy resistant [11–13]. Conse-
quently, in developed countries, including the United States, vir-
tually all patients die of recurrent tumors and not of newly
diagnosed de novo tumors. Some patients will respond relatively
well to first-line chemo- and radiotherapy regimens but then do
not survive subsequent recurrence owing to the lack of a thera-
peutic response of the recurrent tumors to the standard of care
therapies.Howrecurrent tumors gain, or are selected for, therapy
resistance remains largely unknown. Although emerging evi-
dence indicates that therapy resistance is, at least in part, medi-
ated by GSCs and development of effective GBM therapies
appears to require effective targetingofGSCs, recent studieshave
raised questions whether GSCs are the only therapeutic target in
GBM. For example, at least in an experimental setting, non-GSCs
acquire stem cell characteristics when challenged in glucose-
deprived condition [14]. This finding has led to the possibility that
the elimination of existing GSCsmight not be sufficient to control
GBM tumors.
In the clinical setting, we often see patientswith GBM return-

ing to the clinics during, or shortly after, irradiation because of
rapidly regrowing therapy-refractory tumors. The preferential
upregulation of the DNA damage repair genes in GSCs has been
reported as a causal mechanism for their radioresistance [10].
To extend these findings, we recently demonstrated that GSCs
that have overcome a radiation insult undergo phenotypic and
genetic changes intomesenchymal-like cells that are evenmore
radioresistant [15].We found that recurrent GBM samples tend
to contain more radioresistant mesenchymal-type GSCs than
naı̈ve tumors, which might be associated with the difficulty in
treating recurrent tumors. It has been convincingly proven that
GSCs are one, if not the exclusive, critical therapeutic target.
Nonetheless, the investigation of isolated GSCs from heteroge-
neous tumor cellsmight not be clinically and physiologically rel-
evant, because these oncogenic stemcells are tightly supported
by the tumor microenvironment composed of various cell types,
includingnon-GSCs.However, the intercellular signals betweenhet-
erogeneous tumor cells caused by therapeutic insult are largely
unknown.

INTERCLONAL COOPERATION IN CANCER: LESSONS FROM
DROSOPHILA CANCER MODELS

Human tumors display a large degree of genetic and phenotypic
heterogeneity, partially owing to chromosomal instability in can-
cer cells [16, 17]. Complex signaling interactions between cancer
cells and their microenvironment and the cooperation or compe-
tition between heterogeneous cancer clones contribute to tumor-
igenesis andmalignant transformation. Given these complexities,
Drosophila has proved to be an excellent, if not the perfect,
model for cancer studies, not only because of its rich history
as a genetic model and the conservation of genetic and cell

biological processes from flies to humans, but also because of
the arsenal of genetic tools and techniques available for study
in flies [2, 18–20]. Similar to human cancers, Drosophila cancers
can invade and breach the extracellular matrix, recruit stromal
cells, and metastasize to other organs [2, 21–23]. Although the
Drosophila model lacks an adaptive immune response, fibro-
blasts, and theother vascular cells required to studyangiogenesis,
the Drosophila models enable studies of very early oncogenic
events that pertain to cell-cell signaling and cell-matrix interac-
tions to track the clonal origin of cancers in vivo in awhole animal
model [24]. Tracking these early molecular changes has proved
challenging in vertebrate experimental models such as mice
and in human clinical patients.
Improved experimental designs have allowed fly biologists to

recapitulate oncogenic cooperation in flies to study the cell-to-
cell signaling events in tumors of “clonal” origin caused by multi-
ple genetic alterations using the epithelial imaginal discs as
a model system [2, 4, 6, 25, 26]. Studies in Drosophila revealed
that pathways regulating cell proliferation and apoptosis are
central to the cell-cell interactions. Surgical ablation or irradia-
tion was used in the initial studies to test the tissue response; in
both cases, the cells responded by inducing cell proliferation to
restore tissue homeostasis after cytotoxic insults [27–30]. Addi-
tional analysis revealed that cells undergoing apoptosis become
metabolically active and release signals (mitogenic or toxic) to
their microenvironment [31] that drive different intercellular
behaviors. Several cell-cell interactions were identified by
studying the interclonal interactions in flies (e.g., cell competi-
tion and compensatory proliferation). Cell competition is a ho-
meostatic mechanism in which cells sense a damaged cell and
eliminate it by activating cell death [32–34]. This is followed
by compensatory proliferation in which the neighboring normal
cells reactivate proliferation and thereby restore the tissue size
[35–38] in response to apoptosis of the damaged cell. Recently,
the concept of “supercompetition” was recognized as another
cell behavior in whichmutant cells grow evenmore aggressively
when their apoptosis has been blocked and actively eliminate
normal cells [39–42]. Apoptosis appears to drive the cell prolif-
eration of surviving cells in all these interactions, and tissue ho-
meostasis is disrupted if these phenomena are blocked.
However, the molecular nature of the intercellular signal and
how cell interactions contribute to oncogenic cooperation re-
main elusive and are an area of intensive study in flies. It is likely
that most, if not all, of these cellular events are evolutionarily
conserved. Assuming a few surviving human cancer cells remain
after radiation therapy, it would be interesting to known how
they behave adjacent to a large pool of cancer cells undergoing
therapy-induced apoptosis.

ROLE OF PARACRINE SIGNALING FROM APOPTOTIC CELLS IN
TUMOR GROWTH AND PROGRESSION

Some of the earliest models of interclonal cooperation were gen-
erated by overexpression of oncogenic Ras (RasV12) in cells mu-
tant for the apical-basal polarity gene scribble (scrib) in eye
imaginal discs of flies [25] using a powerful technique termed
mosaic analysis with a repressible cell marker (MARCM) [43].
The initial studies revealed several important characteristics of
oncogenic cooperation in clonal cancers. Cells with loss of scrib
were outcompeted by their neighboring cells, suggesting that
the scrib mutant cells were less fit than normal clones.
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Overexpression of oncogenic Ras alone resulted inmild hyperpla-
sia without creating malignant cancers. In contrast, in the pheno-
type of flies carrying both, the overexpression of oncogenic Ras
and scrib mutation (twin clones of RasV12 plus scrib2/2) was re-
markable [25]. This genetic combination caused a dramatic
growth of cells that showed increased proliferation and de-
creased apoptosis, mimicking human cancer lesions in terms of
depicting increased mitotic rate, reduced differentiation, and
increased metastatic potential. In addition, this oncogenic coop-
eration resulted in decreased adhesion (as seen by the down-
regulation of cyclin E) and degradation of basement membrane
(as seen by the loss of collagenase IV), leading to formation of
large eye cancers that were capable of metastasizing to other
organs. Later models showed that overexpression of Ras and
the loss of scrib in neighboring cells can also lead to oncogenic co-
operation [1]. This combinationmimics a condition in human can-
cers, which often show multiple genetic lesions that promote
oncogenic cooperation between activated oncogenes and
mutated tumor suppressor genes. These two cell populations
actively cooperate via signaling interactions that promote
changes in cell behaviors, leading to tumors that canmetastasize.
Another interesting aspect was that later during tumor growth,
the interclonal tumors were comprised almost exclusively of
RasV12 overexpressing cells, and the scrib2/2 cells had been pro-
gressively eliminated from the eye cancer. Wu et al. established
that scrib2/2 cells were required for initial tumor formation and
that the apoptotic signal induced to eliminate the scrib2/2 cells
was critical in the interclonal interactions between the RasV12

and scrib2/2populations to formaggressively growingmetastatic
tumors.

As a downstream target of the RasV12 and scrib2/2 signaling
axis, the JNK pathway has emerged as a key molecular player
for the paracrine signal that promotes both intraclonal [6, 25]
and interclonal [1] interactions [44]. JNK-mediated apoptosis is
responsible for eliminating scrib2/2 cells. In turn, expression of
oncogenic Ras prevents cells from JNK-mediated apoptosis and
promotes paradoxical tumor growth by activating the Fos-
mediated transcriptional activation of matrix metalloprotease 1
[5, 25, 45, 46]. Therefore, JNKmight play context-dependent roles
as both a tumor suppressor and an oncogene [47]. In its role as an
oncogene, JNK activates the cytokines of the JAK-STAT pathway,
and the JNK-mediated JAK-STAT signaling axis might promote on-
cogenic Ras-mediated tumor growth. In other scenarios (e.g., by
activation of oncogenic Ras after tissue damage [1]), JNK might
activate components of the Drosophila innate immune response
via activation of the tumor necrosis factor (TNF) family protein
Eiger in circulating hemocytes (cells of theDrosophila immune re-
sponse) [47]. These interactions resemble the effects of chronic
inflammation in human cancers, in which TNF is secreted by both
the tumor cells and the associated immune cells [48]. In addition,
JNK interacts with the Hippo pathway through a variety of cell-
cell interactions, including cell competition, compensatory prolif-
eration, and supercompetition, which form another key signaling
axis promoting tumor growth [49–51]. JNK cooperates with
oncogenic Ras to inactivate the Hippo pathway, leading to upreg-
ulation of its targets Unpaired (an interleukin-6 homolog)
and Wingless (a Wnt homolog) [52] (I. Waghmare, S. Verghese,
A. Roebke et al., manuscript in preparation). The apoptosis caused
by radiation also involves activation of JNK-mediated Hippo in-
activation, leading to compensatory responses. Thus, tumor

Figure1. Drosophilagliomamodels to study cell-cell signaling interactions. Comparisonsofovergrowthandglial cell numbers in thedorsal lobe
ofDrosophila larval brain frommature third instar larvae are shown for the followinggenotypes:wild-type (A),w; repo-Gal4[4.3]UAS-mCD8:GFP
repo-flp5/yw;1/1; FRT82B Tub-Gal80/ UAS RasV12 FRT82B scrib2 (B, C),UASAkt (D), and yw/UAS Akt;1/UAS RasV12; repo-Gal4 UASGFP/1 (E, F).
All samples were stained for antibody against the glial-specific marker Repo (red). The samples in (A, B, D, E) show the surface view, and (C, F)
show the medial view through the dorsal lobe of the brain. The glioma in (B, C) were generated using the MARCM approach, resulting in
positively marked clones (green fluorescent protein expressing) of glial cells that are mutant for the tumor suppressor gene scribble and simul-
taneously overexpress oncogenic Ras. The glioma in (E, F)were induced by misexpression of oncogenic Ras and Akt in the glial cells using repo-
Gal4. Note that both approaches causeoverrepresentation of the glial cells specifically and causeovergrowth in thedorsal brain lobes compared
with the normal wild-type controls. All images were scanned at identical magnification. Magnification, 340. Abbreviation: MARCM, mosaic
analysis with a repressible cell marker.
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cells appear to co-opt mechanisms previously described for tis-
sue remodeling, regeneration, and wound healing—other con-
texts in which cell proliferation is reactivated in response to
paracrine signaling from cells undergoing apoptosis. Overall,
theDrosophila cancermodels recapitulate important cell-cell sig-
naling interactions in the clonal tumors and have proved very in-
formative for studying pathways involved in cancer growth and
progression. These initial findings obtained from the Drosophila
cancer models must be carefully validated in mammalian cancer
models and clinical tumor samples.

OTHER PATHWAYS IN DROSOPHILA TUMORIGENESIS

In addition to activated Ras and loss of apical-basal polarity genes
such as scrib, many other pathways, including lethal giant larva
and discs large, have been studied for their role in tumorigenesis
andmetastasis inDrosophila. Prominent among these is the study
of invasive growth caused by the Notch pathway. Similar to onco-
genic Ras, Notch signaling can synergize with JNK to promote
tumorigenesis and invasive behavior in Drosophila eye and wing
cancer models [6, 53]. Recent studies have suggested that epige-
netic silencing (Polycombgroup silencers)mechanisms could play
a role in activated Notch mediated tumorigenesis [54]. Similarly,
several components of the endosomal or endocytic sorting
machinery are known to cause metastatic eye cancers in flies in
a context-dependent manner through upregulation of Notch,
JNK, JAK-STAT, and Yorkie activity [55–57]. The proliferative
effects of oncogenic cooperation could be limited to the mutant
cells (cell autonomous) or affect the normal cells adjacent to the
mutant cells (non–cell autonomous) [58].Mitochondrial dysfunc-
tion was recently shown to cooperate with oncogenic Ras to

cause nonautonomous cancers. In this phenomenon, mitochon-
drial dysfunction induces apoptosis in cells that then signal to the
neighboring cells, which form cancers that overproliferate and
show invasive properties [58]. Drosophila cancer models have
also been developed to study specific pathways (e.g., Notch,
Wnt/Wg pathway) involved in the maintenance of adult stem
cells [59–61]. The stem cell niches and their interactions with
neighboringmitotic cells iswell studied in flies for adult stemcells
(e.g., follicle stem cells in the ovaries, neural stem cells in the
brain) [59–61]. Other cancer models studied in Drosophila larvae
include Drosophila cancers generated in the larval central ner-
vous system that cause glioma by the expansion of glial cells from
overexpression of endothelial growth factor receptor (EGFR)-Ras,
PI3K, and other tyrosine kinase receptors (e.g., EGFR, platelet-
derived growth factor receptor, fibroblast growth factor recep-
tor) [9, 62] or neoplastic brain tumors due to an increase in the
population of neuroblasts resulting from the defects in asymmet-
ric cell division by the loss of tumor suppressor genes such as
lethal (3) malignant brain tumor (l(3)mbt), brain tumor (brat),
scrib, prospero (pros) [63].

COMPENSATORY PROLIFERATION OF SURVIVING CANCER CELLS
INDUCED BY DYING CANCER CELLS—CAUSAL FOR REPOPULATION
OF CANCER CELLS AT RECURRENCE?

The molecular mechanisms that induce intercellular signals lead-
ing to compensatory proliferation remain elusive. Nonetheless,
taking advantage of several genetic mosaic models inDrosophila,
the nature of some signals underlying these interactions is begin-
ning to emerge [4, 19, 20]. In general, apoptotic clones are unable
to induce effector caspases (termed “undead cells”) and continue

Figure 2. The MARCM approach allows tracking of glioma of clonal origin. We established a system to positively mark clones induced specif-
ically in the glial cells in the Drosophila brain using the MARCM approach. This system drives the expression of transgenes (e.g., UAS GFP, UAS
RasV12) specifically in the glial cells and also causes recombination specifically in the glial cells because the expression of the flippase enzyme is
under the control of the repo promoter (repo-flp). (A): Dorsal lobe of wild-type mature third instar larva stained for antibodies to Repo can be
compared with (C): dorsal lobe of repo-Gal4 UAS GFP,which shows the expression of the repo-Gal4 transgene using UAS GFP reporter expres-
sion. Images in (A, C) show that the repo-Gal4 driver is capable of driving transgenes in all glial cells (red in [A]) in the brain. (B, D): Examples of
positively marked clones are shown. Higher magnification images in (B9) and (D9) show the effects of clones early (day 5) and later (day 7) in
development. Magnification, 340 (A, C, B9, D9),320 (B, D). Abbreviation: MARCM, mosaic analysis with a repressible cell marker.
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to secrete proliferation signals (e.g., morphogens such as Wing-
less, transforming growth factor-b, or Hedgehog) to the neigh-
boring oncogenic clones. Recent studies, including our own,
have suggested that the JNK pathway might promote aggressive
proliferation of cells within tumors via compensatory mecha-
nisms [1, 5, 36, 45, 51–53, 64, 65].
An emerging area of research is to investigate whether human

cancers show similar compensatory type signaling interactions.
Recently, a correlative study to theseDrosophila studieswas pub-
lished indicating the presence of intercellular cooperation in hu-
man cancer cells. In that study, Huang et al. presented several
interesting pieces of evidence that surviving humanbreast cancer
cells xenografted in the leg of nudemice receive proliferation sig-
nals from irradiated breast cancer cells and thereby undergo
repopulation of the tumor cells [66]. Collectively, from the results
of theseDrosophilaandhuman studies, it is tempting to speculate
that intercellular signaling between heterogeneous tumor cells
(or with neighboring nontumor cells) in brain tumors might co-
opt the tissue “repair”mechanisms in response to therapeutic in-
sult [67, 68]. Furthermore, taking the cancer stem cell theory into
account, we speculate that dying non–cancer stem cells drive
compensatoryproliferationofcancer stemcells,which isa reason,
at least inpart, for the aggressivenessof recurrent brain tumors. It
is important to elucidate the evolutionarily conserved molecular
mechanisms for intercellular interaction to facilitate tumor cell
survival, proliferation, and therapy resistance.

LIMITATION IN THE CURRENT UNDERSTANDING—DROSOPHILA
AND HUMAN

For innovative genome-wide genetic screens, Drosophila has
proved a useful model organism for the identification of
cancer-related genes in vivo, evidenced by the first identification
of the pathways highly implicated in human cancers, such as the
Hippo pathway, Notch pathway, Hedgehog, and JAK-STAT in flies

[21, 69–71]. Another strength of theDrosophilamodels is themo-
saicmodelswithwhichwecan investigate the interactionsofmul-
tiple clones side-by-sidewithdistinctmutationsofoncogenes and
tumor suppressor genes in situ that induce tumorigenesis [4, 26,
72]. However, similar to other model systems, the Drosophila
models also have limitations. Obvious differences exist between
the physiologic and immune systems of flies and humans. For ex-
ample, the metabolic changes in cancer cells (e.g., glycolysis, glu-
taminolysis, and lipid metabolism) that affect the behavior of
cancer cells cannot be directly compared between the two mod-
els.Drosophila lacks an adaptive immune response; however, the
cellular and humoral aspects of the innate immune response are
conserved in flies [18]. Flies have an open circulatory system;
therefore, angiogenesis cannot bemodeled in flies. Also, histopa-
thology, is a guiding force for staging and grading tumors, cannot
be compared between Drosophila and humans. Another limita-
tion includes investigation of the metastatic behavior of second-
ary tumors in Drosophila tumor models.

CONCLUSION

Recent advances in genetic tools available inDrosophila have just
started to allowus to generate complexDrosophila tumormodels
(e.g., colorectal cancermodel to study tumor progression [73], an
intestinal stem cell tumor model to study paradoxical signaling
between stem cells and neighboring cells [74], and human brain
tumor models, including glioma [7, 62]). Overexpression of PI3K
and oncogenic Ras (or scrib mutant cells overexpressing onco-
genic Ras) specifically in glial cells using the repo-GAL4 in larval
brains is sufficient to cause overproliferation of glial cells, leading
toovergrowthof thebrain lobes (Fig. 1). Furthermore, by combin-
ing the repo-GAL4 system with mosaic techniques, it is now pos-
sible to generate a gliomamodel to study interclonal cooperation
between dying cells and their neighboring oncogenic cells (Fig. 2).
These models will lead us to investigate the paradoxical in vivo

Figure 3. Human and Drosophilamodels of intercellular interactions and their effect on cancer. The cartoon depicts the similarities in cell-cell
signaling interactions that canoccur in humancancer cells (A)or inDrosophila cancermodels (B). (A):The cartoon illustrates howradiation could
produce signals that affect the heterogeneous cancer cells such that the cells that die of radiotherapy (radiation sensitive) produce a signal that
induces proliferation of the surviving (radiation-resistant) cancer cells. (B): A similar interaction occurs in Drosophilamosaic cancer models, in
which dying cells (apoptotic clones induced by the loss of tumor suppressor genes, e.g., scrib2/2) produce signals that can synergize with the
neighboring oncogenic clones (induced by activation of oncogene, e.g., RasV12), to promote growth, progression, and therapy resistance of
cancer cells. Abbreviations: dJNK, Drosophila Jun-N-terminal kinase; Wg, Drosophila Wnt.
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signals from apoptotic cells that likely influence the behavior of
neighboring surviving cancer cells and the interactions between
heterogeneous populations of tumors (Fig. 3). Live imaging of
Drosophila brain cells, including cancer cells by green fluorescent
protein labeling, will further deepen our understanding of cell-to-
cell signaling and cell-matrix interactions. In addition, this system
is amenable to a variety of genetic screens and drug testing to
identify novel anticancer chemotherapeutic agents or pharmaco-
logical compounds that either affect the cell-cell signals or inhibit
the growth of human cancers. We can then translate this knowl-
edge into the development of novel and effective cancer thera-
peutic agents. Successful achievement of the ongoing research
will likely elucidate cancer stem/non-stem cell-specific signaling
crosstalk. Eventually, these studies will lead to the identification
of novel mechanisms for therapy resistance in cancers, one of the
major hurdles for patients whose disease has failed to respond
to current therapies and subsequently die of this devastating
disease.
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