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Abstract

Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-

mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and 

directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate 

map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like 

phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit 

anatomical and functional characteristics of native endothelial cells. We show that the 

transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac 

fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post 

infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway 

in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and 

improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-

transition contributes to neovascularization of the injured heart and represents a potential 

therapeutic target for enhancing cardiac repair.

The mammalian heart after acute injury heals primarily by fibrosis. Cardiac fibroblasts 

proliferate at the site of injury1 and fibroblast proliferation is accompanied by recruitment of 

endothelial cells. Endothelial cells contribute to neovascularization of the injury region2 and 

promote repair3. A close interaction between fibroblasts and endothelial cells is thought to 

regulate wound healing4. A subset of endothelial cells, by undergoing endothelial-

mesenchymal-transition, generates fibroblasts in the injury region5 and cardiac fibroblasts 

express pro-angiogenic molecules that in turn promote angiogenesis6,7. However cardiac 

fibroblasts are thought to be terminally differentiated cells8,9 and whether they have the 

ability to adopt an endothelial phenotype and directly contribute to neovascularization after 

cardiac injury is not known. Here, we demonstrate that cardiac fibroblasts undergo 

mesenchymal-endothelial-transition (MEndoT) to generate de novo endothelial cells in the 

injured heart and show that MEndoT can be augmented to enhance cardiac repair.

Cardiac fibroblasts adopt an endothelial cell like fate after ischemic cardiac 

injury

We used a genetic fate map strategy to label cardiac fibroblasts, by crossing transgenic mice 

harboring a tamoxifen inducible Cre recombinase driven by fibroblast specific regulatory 

sequence of the alpha2 (type 1) collagen gene (Col1a2CreERT)10–12 with the lineage 

reporter strain (Rosa26RtdTomato)13 to create Col1a2CreERT:Rosa26RtdTomato progeny 

mice. In these mice, administration of tamoxifen results in activation of Cre recombinase 

and cells expressing Col1a2 at the time of tamoxifen administration are irreversibly labeled 

by tdTomato fluorescence. We administered tamoxifen for 10 days to adult 

Col1a2CreERT:R26RtdTomato mice. Five days following cessation of tamoxifen, we 

observed that approximately 55% of all non-myocyte cells exhibited tdTomato fluorescence 
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and greater than 96% and 99% of tdTomato fluorescent cells expressed the cardiac fibroblast 

markers Domain Discoidin Receptor 2 (DDR2) and vimentin (Extended Data Fig. 1a–c). 

Immunofluorescent staining showed that 87±9% and 99±0.5% (mean±S.E.M) of tdTomato 

labeled cells expressed DDR2 and vimentin respectively, supporting flow cytometry data 

(Extended Data Fig. 1d,e). tdTomato cells did not express endothelial markers VECAD and 

CD31 (99.9±0.06% and 99.8±0.02% negative respectively, mean±S.E.M.) (Extended Data 

Fig. 1f,g), did not express the cardiac progenitor marker C-Kit nor markers of smooth 

muscle, macrophages, and lymphatics (Extended Data Fig. 1h–k). Cardiac myocytes did not 

express Cre recombinase as previously shown10. Taken together these data strongly suggest 

that cells exhibiting tdTomato fluorescence in hearts of Col1a2CreERT:R26RtdTomato mice 

are cardiac fibroblasts and do not express canonical markers of other cardiovascular cell 

types.

We subjected Col1a2CreERT:R26RtdTomato mice to ischemia-reperfusion cardiac injury 5 

days following cessation of tamoxifen injection. By day 3 post-injury, 35±3% (mean

±S.E.M) of labeled cardiac fibroblasts in the region of injury expressed the endothelial 

specific marker VECAD, while in sham injured animals only rare labeled cells expressed 

VECAD (<0.3%) (Fig. 1a–c). Approximately 24±4%, 44±4% and 35±3% (mean±S.E.M) of 

labeled cardiac fibroblasts also expressed other endothelial markers such as endothelial 

nitric oxide synthase (eNOS) and the endothelial tight junctional proteins Claudin 514 and 

Occludin14 respectively (Fig. 1a–c). MEndoT was most pronounced in the injury border 

zone significantly decreasing in regions remote from the infarct. (Fig. 1c). The fraction of 

cardiac fibroblasts expressing VECAD increased between 1 and 3 days post-injury and 

remained similar at 3, 7 and 14 days (Fig. 1d). The fraction of tdTomato positive cells 

expressing VECAD in sham injured animals at 3, 7 and 14 days was 0.3±0.1%, 1.4±1.4% 

and 0.6±0.4% (mean±S.E.M., p>0.05, one way Anova) demonstrating no temporal 

difference in the fraction of tdTomato labeled cells expressing VECAD following sham 

injury.

As fibroblasts lie in close apposition to endothelial cells and pericytes, we performed super-

resolution microscopy to validate our observations with confocal microscopy. Stimulated 

emission deletion (STED) microscopy is a form of super-resolution microscopy that 

provides an average lateral resolution of 30–40nm compared to confocal microscopy that 

provides an average lateral resolution of 250nm15. Using STED we observed that tdTomato 

cells after injury express VECAD and can be distinguished from closely apposed endothelial 

cells not expressing tdTomato label (Fig. 1e). STED microscopy also demonstrated that 

tdTomato cells did not express pericyte markers NG2 or CD146 (Extended Data Fig. 1l,m).

We next investigated whether fibroblast derived endothelial cells incorporate into capillaries 

in the infarct border zone. We perfused Col1a2CreERT:R26RtdTomato mice with a 

fluorescent lipophilic dye DiO that labels endothelial cell membranes and has been used to 

identify the vasculature of solid organs including the heart16. In both longitudinal (Fig. 1f,g) 

and transverse sections of capillaries (Fig. 1h) in the injury border zone, we observed 

endothelial cells bearing the fibroblast label to line the lumen of the blood vessel but the 

contribution was minimal in sham injured animals (Fig 1f). Luminal DiO+ tdTomato+ cells 

expressed VECAD (Extended Data Fig. 2a) thus confirming the endothelial phenotype. 
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Luminal surface area occupied by fibroblast derived endothelial cells peaked at 7 days post-

injury and remained similar at 14 days (Fig. 1i). Endothelial cells are known to take up 

acetylated LDL (AcLDL)17. We systemically injected Col1a2CreERT:R26RtdTomato mice 3 

days after cardiac injury with fluorescent labeled AcLDL and observed that, 41±8% (mean

±S.E.M) of fibroblast derived endothelial cells took up AcLDL demonstrating their 

functional similarity to native endothelial cells (Fig. 1j).

A subset of cardiac fibroblasts after cardiac injury become myofibroblasts and express α-

smooth muscle actin (αSMA)18,19. We stained for αSMA and showed that 3 days after 

injury, 11±3% (mean±S.E.M.) of labeled cardiac fibroblasts in the injured region expressed 

αSMA but very few labeled cells co-expressed αSMA and VECAD, suggesting that cardiac 

fibroblasts undergoing MEndoT are distinct from myofibroblasts (Extended Data Fig. 2b–f).

We next determined whether substantial recombination in endothelial cells (i.e. leaky 

promoter elements) could potentially confound our findings. Stochastic induction of Cre can 

occur after cardiac injury20. We injected Col1a2CreERT:R26RtdTomato animals with vehicle 

(corn oil) instead of tamoxifen and observed rare labeled cardiac fibroblasts (<0.07% at 3 

and 7 days) after ischemic injury demonstrating that injury alone did not lead to significant 

Cre activation (Extended Data Fig. 3a–c).

Endothelial cells are known to undergo endothelial-mesenchymal-transition (EndMT) and 

adopt a fibroblast phenotype after cardiac injury5. We investigated whether endothelial cells 

undergoing EndMT would exhibit tdTomato fluorescence and be mistakenly included in our 

analysis. We performed immunofluorescent staining for Col1 and observed that 

approximately 6±1% (mean±S.E.M.) of endothelial cells after injury expressed Col1 but 

none of these cells exhibited tdTomato fluorescence (Extended Data Fig. 3d). Conversely 

tdTomato labeled cells in the injury region that expressed VECAD did not stain for Col1 

(Extended Data Fig. 3e). Next, we crossed Col1a2CreERT:R26RtdTomato mice with the 

Col1-GFP transgenic mice, which have GFP expression directly driven by the Col1a1 

promoter. GFP expression thus serves as a useful real-time reporter of Col1 expression21,22. 

Progeny mice (Col1a2CreERT:R26RtdTomato:Col1-GFP) were administered tamoxifen and 

subjected to ischemic myocardial injury. At 3 days post-injury, tdTomato labeled cells that 

expressed VECAD did not exhibit GFP fluorescence (Extended Data Fig. 4a). 

Approximately 3±1% (mean±S.E.M.) of VECAD positive cells were GFP positive but with 

the exception of rare cells, VECAD+GFP+ cells did not exhibit tdTomato fluorescence 

(Extended Fig. 4b).

Immunofluorescent staining for Cre protein in Col1a2CreERT:R26RtdTomato mice hearts 

after injury demonstrated that tdTomato+VECAD+ cells did not express Cre (Extended Data 

Fig 4c–i) consistent with the earlier observation that that these cells do not express type 1 

Collagen. In the absence of tamoxifen, tdTomato cells expressing Col1a2 would be expected 

to have Cre in their cytoplasm. In hearts of Col1a2CreERT:R26RtdTomato:Col1-GFP mice 

tdTomato labeled cells that expressed type 1 collagen (GFP positive) exhibited cytoplasmic 

but not nuclear Cre staining. (Extended Data Fig. 4j–m). Taken together, these observations 

demonstrate the fidelity of the Cre driver and argue against a “leaky” Cre as the basis for our 

findings.
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Next we investigated whether Col1a2 expressing endothelial progenitors in the heart or bone 

marrow could have been labeled during administration of tamoxifen and subsequently 

generated tdTomato+ endothelial cells. We analyzed the heart and bone marrow but 

observed less than 0.5% of tdTomato cells in the heart (Extended Data Fig. 5a,b) or bone 

marrow (Extended Data Fig. 5c–f) to express endothelial progenitor markers (CD133 CD34 

and Flk1)23. Bone marrow derived mesenchymal stem cells did not exhibit tdTomato 

fluorescence with the exception of rare cells (Extended Data Fig. 5g). Collectively, these 

observations suggest that substantial labeling of endothelial progenitors did not occur 

making them an unlikely source of tdTomato+ endothelial cells.

Finally, we subjected FSP1Cre:R26RtdTomato mice to ischemic cardiac injury to confirm 

MEndoT with another Cre driver. The FSP1Cre has been used to track cardiac fibroblast 

after in vivo reprogramming8,9. By day 3 post injury, 31±4% and 23±5% of tdTomato 

labeled cells in the injury region expressed the endothelial markers isolectin and VECAD 

compared to 2±1% and 4±1% in sham injured animals (Extended Data Fig. 6a–c) 

confirming MEndoT observations made using the Col1a2CreERT driver.

p53 mediates MEndoT ex vivo

We next investigated the mechanisms regulating MEndoT and hypothesized that cellular 

stress after cardiac injury plays a role in MEndoT. p53 is an important cellular stress 

response gene24, modulates reprogramming25 and regulates epithelial-mesenchymal-

transition26. We observed that 37% of tdTomato labeled cardiac fibroblasts expressed p53 at 

3 days post injury. In contrast, rare labeled cells expressed p53 in the sham injured heart 

(Fig. 2a,b). p53 expression in labeled fibroblasts peaked at 7 days after cardiac injury (Fig. 

2c). By day 7 after injury, approximately 91±7% (mean±S.E.M.) of tdTomato labeled cells 

expressing p53 co-expressed VECAD (Fig. 2d), demonstrating a strong association between 

p53 and VECAD expression in tdTomato labeled cells.

To determine whether p53 plays a regulatory role in MEndoT, we first established an ex vivo 

model. Cells subjected to types of cellular stress ex vivo, such as serum deprivation, 

upregulate p53 levels27,28. We subjected cardiac fibroblasts to serum starvation and 

observed increased p53 levels by Western Blotting (Extended Data Fig. 7a,b). We next 

seeded labeled cardiac fibroblasts (99% purity by flow cytometry), on matrigel (a mixture of 

basement membrane proteins that facilitates capillary tube formation) and subjected them to 

serum starvation. In contrast to control fibroblasts (Fig. 2e,g) serum starved fibroblasts 

formed capillary tube like structures, expressed VECAD (Fig. 2f) and took up AcLDL (Fig. 

2h), consistent with adoption of an endothelial cell like phenotype.

Using gain and loss of function approaches, we determined whether p53 affects serum 

starvation induced MEndoT (Fig. 2i–o). Serum deprivation induced cardiac fibroblasts to 

form tubes on matrigel (Fig. 2i,j) but addition of Pifithrin-α, an inhibitor of p5329 decreased 

tube formation by 67% (Fig. 2k,n). Pifithrin-α did not have an effect on serum fed cardiac 

fibroblasts (Extended Data Fig. 7c,d). Next, we generated mice specifically deficient in 

fibroblast p53 by crossing Col1a2CreERT:R26RtdTomato mice with mice having both p53 

alleles floxed30. Progeny mice (Col1a2CreERT:R26RtdTomato:p53fl/fl), 8 weeks old, were 
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injected with tamoxifen to delete p53 and label Col1a2 expressing p53 deficient cells 

(tdTomato+). Cardiac fibroblasts were subsequently harvested and subjected to serum 

starvation. The absence of p53 decreased capillary tube formation on matrigel by 95% (Fig. 

2l,n). We subsequently investigated whether activation of p53 signaling enhanced serum 

deprivation induced MEndoT. Cardiac fibroblasts subjected to serum starvation were treated 

with the small molecule RITA (Reactivation of p53 and Induction of Tumor Apoptosis) that 

inhibits ubiquitin mediated p53 degradation and enhances p53 signaling31. RITA enhanced 

tube formation by 50% (Fig. 2m,n). RITA also increased tube formation in serum fed 

cardiac fibroblasts but to a lesser degree (Extended Data Fig. 7c,d). Following serum 

deprivation, qPCR demonstrated 4–20 fold increased expression of endothelial specific 

genes but treatment with Pifithrin-α or the genetic deletion of p53 in cardiac fibroblasts 

significantly blunted induction of endothelial gene expression (Fig. 2o). Conversely, 

treatment of serum starved cardiac fibroblasts with RITA significantly increased expression 

of endothelial specific genes by 3–7 fold (Fig. 2o). Interestingly, over-expressing p53 in 

wild type cardiac fibroblasts grown under serum fed conditions did not induce expression of 

VECAD or other endothelial specific genes suggesting that enhancing p53 signaling in the 

absence of serum starvation is not sufficient to induce MEndoT.

We next performed chromatin immunoprecipitation (ChIP) for p53 on serum starved cardiac 

fibroblasts and observed that p53 directly binds to promoter regions of endothelial specific 

genes and the endothelial transcription factors HoxA932 and HoxD333 that are known to 

play an important role for endothelial differentiation (Fig. 2p). Gene expression of HoxA9 

and HoxD3 was also increased in cardiac fibroblasts by 6.53±1.74 and 7.18±1.16 fold 

respectively after serum starvation (mean±S.E.M., p<0.05 compared to cardiac fibroblasts in 

10% serum). Although an indirect effect of p53 cannot be excluded, these observations 

suggest that p53 at least in this model initiates an endothelial gene expression program by 

directly inducing transcription of endothelial specific genes.

Using this ex vivo model, we next asked whether MEndoT was reversible. Transforming 

growth factor β(TGFβ) enhances EndMT5 and TGFβ added to cardiac fibroblasts at the 

onset of serum starvation prevented tube formation (Extended Data Fig. 8a,b) and induction 

of VECAD expression (0.98±0.03 fold change in VECAD with TGFβ, mean± S.E.M. 

p>0.05, n=3). Moreover, when TGFβ was added to serum starved cardiac fibroblasts after 

they had already formed tubes, it led to 99% regression of tube formation (Extended Data 

Fig. 8c,d,g). A similar effect was observed with adding back serum (Extended Fig. 8e,f,g). 

VECAD expression also decreased by 56.4±2.4% (mean±S.E.M. p<0.05, n=3). Addition of 

Pifithrin-α to serum starved cardiac fibroblasts that had already formed tubes demonstrated 

significant disruption of formed tubes compared to PBS treated controls (Extended Fig. 8h–
n). These observations suggest that p53 is required for maintaining the endothelial 

phenotype of the fibroblast derived endothelial like cell. Notably, the fraction of fibroblast 

derived endothelial cells was maintained at 14 days after cardiac injury in vivo (Fig. 1d, Fig. 

2c) despite declining p53 levels suggestive of other factors stabilizing the endothelial 

phenotype.
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p53 mediates MEndoT in the injured heart

To determine whether p53 mediates MEndoT in vivo, we subjected 

Col1a2CreERT:R26RtdTomato:p53fl/fl mice to ischemic cardiac injury 5 days following 

cessation of tamoxifen. Mice with intact p53 exhibited 6±0.64 fold increase (mean±S.E.M.) 

in cardiac fibroblast p53 levels 3 days after cardiac injury, but in mice with fibroblast 

specific p53 deletion [referred to as Col1a2CreERT:R26RtdTomato:p53CKO (conditional 

knock out)], the mean p53 expression in border zone cardiac fibroblasts failed to increase 

significantly (Fig. 3a–c). The degree of MEndoT at 3 days post-injury in 

Col1a2CreERT:R26RtdTomato:p53CKO animals decreased by 57% (Fig. 3d–f) and was 

associated with a decrease in capillary density in the injury region (Fig. 3g). Increase in 

vessel density in the injured heart is a critical post-ischemic repair mechanism. Diminished 

neovascularization can lead to rapid decline in cardiac function after cardiac injury and is 

associated with worsened scarring34. Echocardiography on hearts of mice 7 days after 

cardiac injury showed significant worsening of cardiac function in p53CKO mice (Fig. 3h,i). 

Masson Trichrome staining demonstrated a greater amount of collagen deposition in the 

hearts of Col1a2CreERT:R26RtdTomato:p53CKO animals (Fig. 3j,k). The degree of 

inflammatory infiltrate measured by the number of CD68 expressing macrophages was also 

significantly higher in the Col1a2CreERT:R26RtdTomato:p53CKO animals (Extended Data 

Fig. 9a,b,d). These observations demonstrate that p53 is necessary for MEndoT to occur 

after ischemic cardiac injury and that disruption of MEndoT is associated with diminished 

post-injury vascularity and cardiac function.

We next looked at mechanisms inducing p53 expression in cardiac fibroblasts. C-terminal 

phosphorylation of Histone H2A family member X (γH2AX) is a DNA damage response 

pathway upstream of p53, is activated by hypoxic endothelial cells and shown to play a 

critical role in endothelial cell proliferation and hypoxic neovascularization35. We observed 

that 90% of tdTomato cells that up-regulated p53 co-expressed γH2AX suggesting that the 

γH2AX pathway is strongly associated with p53 expression in fibroblasts undergoing 

MEndoT (Extended Data Fig. 10a–c).

Stimulation of p53 pathway enhances MEndoT after acute ischemic cardiac 

injury

We investigated whether stimulation of p53 signaling after cardiac injury enhances MEndoT 

after acute ischemic cardiac injury. Col1a2CreERT:R26RtdTomato animals injected with 

RITA daily for 3 days after cardiac injury exhibited significantly increased p53 expression 

in labeled fibroblasts (13±0.8 fold in RITA injected animals versus 6 fold increase in PBS 

injected animals) (Fig. 4a–c). RITA significantly enhanced the degree of MEndoT (Fig. 4d–

f) and enhanced MEndoT was associated with a 26% increase in endothelial cells in the 

injury border zone (Fig. 4g). Increased neovascularization can lead to decreased collagen 

deposition and rapid improvement in post-injury cardiac function3. The area of collagen 

deposition 7 days after cardiac injury, decreased by 57% in RITA injected animals (Fig. 

4h,i). Echocardiography demonstrated significantly improved cardiac function in RITA 

injected animals compared to PBS injected control animals (Fig. 4j,k).
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Consistent with greater vascularity and better cardiac function, the inflammatory infiltrate 

was substantially reduced in RITA injected animals (Extended Fig. 9a,c,d). As RITA 

increases p53, we also looked at deleterious effects of increased p53 such as apoptosis. We 

subjected Col1a2CreERT:R26RtdTomato animals to cardiac injury and consistent with 

published reports, did not observe increased p53 expression in myocytes after injury 

(Extended Data Fig. 9e,f) 36. In RITA treated animals 3 days after injury there was not a 

significant increase in p53 expressing TUNEL stained nuclei compared to PBS injected 

controls (Extended Data Fig. 9g).

To demonstrate that increased MEndoT after administration of RITA was p53 dependent in 

cardiac fibroblasts, we injected RITA to Col1a2CreERT:R26RtdTomato:p53CKO mice and 

observed that RITA failed to significantly enhance MEndoT. The degree of MEndoT was 

not statistically different from that observed in PBS treated 

Col1a2CreERT:R26RtdTomato:p53CKO mice (Extended Data Fig. 9h,i). These observations 

suggest that RITA predominantly enhances MEndoT by activating p53 in cardiac 

fibroblasts.

Discussion

Our report suggests that cardiac fibroblasts possess a degree of native cellular plasticity that 

enables them to adopt endothelial cell like fates after cardiac injury. Recruitment and 

proliferation of endothelial cells in the ischemic heart is a critical cardiac repair response. 

Our data points to the fibroblast as a novel and robust source of endothelial cell generation 

in the injured heart. Mesenchymal-endothelial-transition, a hitherto unreported biological 

phenomenon appears to play an important physiological role in cardiac repair, as disruption 

of MEndoT worsened post-infarct vascularity and cardiac function. Teleologically, MEndoT 

provides the heart an efficient strategy to rapidly increase neovascularization in the injured 

region. The use of a small molecule to augment MEndoT and increase neovascularization 

after injury suggests that MEndoT may represent a therapeutic target for enhancing 

vascularity and repair of ischemic tissues.

METHODS

Animal care and use

All animal studies were approved by the Institutional Animal Care and Use Committee at 

the University of North Carolina, Chapel Hill and the University of California, Los Angeles.

Generation of transgenic and conditional knockout mice

Collagen1a2-CreERT:R26RtdTomato mouse lines were obtained by crossing Collagen1a2-

CreERT mice with lineage reporter R26RtdTomato mice. To obtain Collagen1a2-

CreERT:R26RtdTomato:p53 CKO mice, Collagen1a2-CreERT:R26RtdTomato mice were 

crossed to p53fl/fl mice and backcrossed to generate Collagen1a2-

CreERT:R26RtdTomato:p53fl/fl mice. Col1a2CreERT:R26RtdTomato mice were crossed with 

Col1GFP mice to create progeny Col1a2CreERT:R26RtdTomato :Col1GFP mice. FSP1Cre 

mice were crossed with the R26RtdTomato mice to create FSP1Cre:R26RtdTomato mice. 

Tamoxifen (1mg) (Sigma) was injected intra-peritoneally for 10 days to induce Cre-
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mediated recombination in Col1a2CreERT mice. 5 days following cessation of tamoxifen 

animals were subjected to ischemic cardiac injury. All mice were on a C57B/6 background.

Murine cardiac injury model

All animal protocols were approved by the Institutional Animal Care and Use Committees at 

the University of North Carolina, Chapel Hill and at the University of California, Los 

Angeles. Animals (both male and female), 8–10 weeks old, were randomly allocated to 

sham or ischemia-reperfusion cardiac injury. Investigators performing surgeries and cardiac 

function studies were blinded to mouse genotype or treatment. Mice were initially 

anesthetized with 3% isoflurane, maintained at 2% isoflurane, and intubated using a Harvard 

Rodent Volume-Cycled Ventilator. Myocardial injury was induced by 30 minute ligation of 

the left anterior descending (LAD) coronary artery followed by reperfusion. Sham injury 

was performed in the same manner, with a ligature passed under the LAD, but the LAD was 

not ligated. No animals were excluded from analysis unless the animals died during the 

surgical procedure. At 1, 2, 3, 7, or 14 days after injury, the mice were anesthetized with 

pentobarbital (45mg/kg) and the left ventricle was perfused with 5ml PBS followed by 2ml 

4% PFA. For RITA treated mice, RITA (Millipore) was administered intraperitoneally at 

0.3mg/kg once daily for 3 days beginning 24 hours after injury. For AcLDL staining, 1μg 

fluorescent labeled AcLDL (Invitrogen) per gram body weight was injected via a catheter 

inserted in the jugular vein and hearts harvested as described 4 hours later. For DiO staining, 

DiO was prepared as described16 and 2ml of 120μg/ml DiO perfused prior to PFA 

perfusion16.

After perfusion, the heart was further fixed for 1 hour in 4% PFA at 4°C and after 1 hour the 

PFA was replaced with fresh 4% PFA and incubated at 4°C for another 3 hours. At the end 

of 4 hours, the hearts were sucrose embedded overnight in a 30% sucrose solution (MP 

Biochemicals) and then frozen in OCT (Tissue-Tek). 7μm sections were prepared in a 

longitudinal or transverse orientation. Group size was estimated based on previously 

observed mortality rates following surgery.

Echocardiography

Echocardiography was performed in conscious mice. The hair over the anterior chest was 

removed by a depilation cream and warmed Aquasonic gel applied over the thorax. Mice 

were held firmly by hand for the duration of the procedure (approximately 5 to 10 minutes) 

and conditioned daily for the procedure starting 3 days prior to the procedure. The probe 

was positioned over the chest in a parasternal position. Parasternal long axis B-mode and M-

mode images are recorded. Measurements and analysis were then performed as described10. 

The echocardiographer was blinded to the genotype and treatment of the animal being 

examined.

Immunohistochemistry and histology, confocal imaging and quantitation, super-resolution 
microscopy

Immunofluorescent staining on frozen sections (7μm) was performed using primary 

antibodies to VECAD (Catalog#ab33168, Abcam), eNOS (Catalog#ab66127, Abcam), 

Claudin 5(Catalog#ab53765, Abcam), Occludin (Catalog#ab31721, Abcam), gamma 
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H2AX(Catalog#ab2893, Abcam), p53 (Catalog#ab31333 & ab26, Abcam), Col1 

(Catalog#ab6308, Abcam), Podoplanin(Catalog#ab11936, Abcam), alpha-SMA 

(Catalog#ab5694, Abcam), CD68(Catalog#ab125212, Abcam), CD146 (Catalog#ab75769, 

Abcam), Cre (Catalog#BIOT-106L & PRB-106P,Covance), Troponin(Catalog#SC-8121, 

Santa Cruz), NG2 (Catalog# AB5320, EMD Millipore) and associated APC or Fluorescein 

conjugated secondary antibodies (Abcam, Millipore, Invitrogen) as per manufacturer 

instructions. Labeled sections were imaged using a Leica SP2 AOBS Upright Laser 

Scanning Confocal Microscope (Leica Microsystems). 5 independent images for each area 

(i.e. injury border zone, remote from injury, sham) were obtained and used for quantitative 

analysis. Colocalization analysis of confocal images was performed using Image J software 

(NIH). MEndoT percentages were derived by counting the number of dually labeled cells 

and dividing by the number of tdTomato positive cells. Quantitation of vascular area derived 

from fibroblasts was performed using the JACoP Image J plugin37. p53 expression levels in 

tdTomato positive cells were determined using the JACoP Image J plugin and expressed as a 

Manders coefficient normalized to p53 levels in sham injury38. In each case, 5 independent 

images from each area were analyzed from sections prepared from each mouse. For super-

resolution microscopy, a custom made Stimulation Emission Depletion Super-resolution 

microscope was used. This microscope has a confocal channel for tdTomato and an 

ATTO647 flurophore super-resolution channel that was used for VECAD, NG2 or CD146 

visualization. Masson-Trichrome staining was performed on heart sections as described10.

Fibroblast isolation and culture

Cardiac fibroblasts were isolated from the explanted hearts of euthanized uninjured mice. 

The hearts were explanted and washed 3 times with 1X HBSS (Gibco). The heart was 

minced into approximately 1mm2 sized pieces and digested using 10ml of a 0.1% Trypsin 

solution (Gibco) with 50U/ml Collagenase II (Worthington)39. 5 sequential digestions were 

performed at 37°C, the cells collected and passed through a 40μM strainer and plated in 

IMDM, 1X Penicillin/Streptomycin, 10% FBS for 1 hour at 37°C. After 1 hour the medium 

was changed to F12K 1X Penicillin/Streptomycin, 10% FBS (Gibco), 10ng/ml leukemia 

inhibitory factor (LIF) (Millipore) and 10ng/ml basic Fibroblast growth factor (bFGF) 

(Millipore). Cells were maintained under these conditions until they became confluent in 7–

10 days.

Matrigel tube formation and LDL uptake assay

6×104 fibroblasts per cm2 were cultured overnight at 37°C, 5% CO2 on Growth Factor 

Reduced Matrigel Basement Membrane Matrix (BD) coated wells of Nunc Lab-Tek II CC2 

chamber slides (Thermo). Serum starved or unstarved cells were cultured in IMDM, 1X 

Penicillin/Streptomycin or IMDM, 1X Penicillin/Streptomycin, 10% fetal bovine serum 

(Gibco), respectively. Pifithrin-α 100μM (P4359, Sigma) or RITA 0.1μM (506149, EMD 

Chemicals) were added to the cells cultured with the above culture medium. Acetylated 

LDL (Invitrogen) uptake was performed as described40.

Flow cytometry

Flow cytometric analysis for cell surface markers, were done using antibodies CD31-APC 

(Catalog#17-0311, eBioScience), CD34-FITC (Catalog#11-0341, eBiosience), CD133-FITC 
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(Catalog#11-1331, eBioscience), Flk1-APC (Catalog#17-5821, eBioscience), VECAD-APC 

(Catalog#17-1441, eBioscience), CD45-APC(Catalog#103111, Biolegend), ckit APC 

(Catalog#561074,BD Bioscience), DDR2 (Catalog#SC-7555,Santa Cruz) and Vimentin 

(Catalog#Ab1620, Millipore). For Vimentin and DDR2, a secondary APC conjugated anti-

goat antibody was used (Catalog#SC3860, Santa Cruz). Cultured cardiac fibroblasts were 

dissociated using accutase (Innovative Cell Technologies, Inc.,) and immunostained in 

FACS buffer (0.1% BSA PBS ) at 1 × 106/ml for 20–30 minutes at 4°C, followed by 

washing twice with FACS buffer and subsequently analyzed in Beckman-Coulter (Dako) 

CyAn ADP. Data obtained was analyzed and represented using Flowjo software.

Quantitative RT-PCR

RNA was isolated from cardiac fibroblasts cultured in the presence or absence of serum 

(IMDM, 1X Penicillin/Streptomycin, +/− 10% FBS), or in medium without serum and 

containing either 100μM Pifithrin-α or 0.1μM RITA, grown for 48 hours at 37°C, 5% CO2. 

RNA isolation and reverse transcription was performed using the SV Total RNA Isolation 

Kit and the Reverse Transcription System (Promega). qPCR was performed using the 

SensiMix SYBR and Fluorescein Kit (Quantace) on an iQ5 thermal cycler (BioRad).

Western blot

Protein was harvested from cardiac fibroblasts cultured in the presence or absence of serum 

(IMDM, 1X Penicillin/Streptomycin, +/− 10% FBS) for 48 hours at 37°C, 5% CO2. 

Concentration normalized protein was prepared with SDS loading buffer and run on a 12X 

Mini-Protean TGX gel (BioRad) at 300V for 25 min. The protein was transferred from the 

gel to a nitrocellulose membrane using the Trans-Blot Turbo System (BioRad). After 

blocking with TBST+3% cold fish gelatin, the membrane was probed using primary 

antibodies to p53 (Catalog#ab31333, Abcam) and alpha Tubulin (Catalog#T6199, Sigma), 

washed with TBST, and labeled using fluorescently conjugated secondary antibodies (LI-

COR Biosciences). After washing with TBST, the membrane was visualized on an Odyssey 

scanner (LI-COR Biosciences). Densitometry analysis was performed using the Gel 

Analyzer unit of ImageJ software (NIH).

Chromatin Immunoprecipitation (ChIP)

Cardiac fibroblasts (30×106) were fixed in 1% formaldehyde, lysed in lysis buffer (50 mM 

Tris-HCl pH 8, 10 mM EDTA, 1% SDS, protease inhibitor cocktail Set I CALBIOCHEM) 

and sonicated using a EpiShear™ Multi-Sample Sonicator (Active Motif), leading to 

fragments between 300 and 1000 bp. ChIP was performed using a commercially available 

ChIP-IT High Sensitivity Kit (Active Motif) according to manufacturer’s instructions. DNA-

bound protein was immunoprecipitated using an anti-p53 antibody (Catalog#ab31333, 

Abcam) and anti IgG (Catalog#SC-2025, Santa Cruz) as a negative control. The DNA 

recovered was analyzed by quantitative real time-PCR using different primers sets that 

amplified the promoter region of Hoxa9, Hoxd3, CLDNS, Nos3 and negative control genes:

HoxA9 (1): (5′-TAAACTGCTCAGGCCATGCT -3′) sense / (5′-

CAGCCTGGACCCACTGAAAG -3′) antisense
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HoxD3 (1): (5′-TGCCTCAGTGTATTTCTCCCC -3′) sense / (5′-

ATGGATAACAGTGCCCGGTG -3′) antisense

Claudin 5: (5′-CTCCGGAAGCCAACTTGGAG -3′) sense / (5′-

GGACCCAGTGTGTCTAACCC -3′) antisense

eNOS: (5′-GGGACAGCCAGAAAATGGGA -3′) sense / (5′-

ACTGCTGTCGGTCTCTTTGT -3′) antisense

Primers for p53 binding were designed using the SABiosciences’ proprietary database 

(DECODE, DECipherment Of DNA Elements). Available from: http://

www.sabiosciences.com/chipqpcrsearch PCR was performed with equal amounts of specific 

antibody immunoprecipitated sample, control (IgG) and Input. Values were normalized to 

input measurements and enrichment was calculated using the comparative Delta-DeltaCt 

(ΔΔCt) method. Data shown correspond to one representative assay (i.e. 3 PCRs) from a 

total of 3 independent assays each run with different sets of treated cells.

Statistical analysis

Statistical analysis was performed using GraphPad software (Prizm) using Student’s t-test (2 

tailed), one-way or two-way ANOVA with Bonferroni post test-analysis as appropriate. 

Welch’s correction was used if variances between groups were significantly different. A p-

value of < 0.05 was considered statistically significant. Graphs present the mean value ± 

standard error of the mean (SEM).
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Extended Data

Extended Figure 1. Phenotypic characterization of tdTomato labeled cells in hearts of 
Col1a2CreERT:R26RtdTomato mice
(a–c) Hearts were digested to obtain a non-myocyte population and subjected to flow 

cytometry to determine expression of (b) DDR2 and (c) vimentin. (a) serves as a control 

with no primary antibody added (number in each quadrant represents fraction of total 

population of cells). (d,e) Immunofluorescent staining on sham injured hearts of 

Col1a2CreERT:R26RtdTomato mice to determine expression of (d) DDR2 (green) and (e) 
Vimentin (green) in tdTomato labeled cells (red) with merged image (right, arrowheads 

point to tdTomato labeled cells staining for DDR2 or vimentin. Scale bar: 10μm. (f–h) Non-
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myocyte cells from the heart were subjected to flow cytometry to determine expression of 

(f) VECAD (g) CD31 or (h) c-Kit (number in each quadrant represents fraction of total 

population of cells) (i–k) Immunofluorescent staining for (i) alpha-smooth muscle actin (j) 
CD68 or (k) podoplanin was performed on frozen heart sections prepared from 8 week old 

sham injured Col1a2CreERT:R26RtdTomato mice following tamoxifen injections and 

colocalization analysis performed to determine the number of labeled cardiac fibroblasts 

expressing alpha-smooth muscle actin (99.4% negative for alpha-SMA, 1500 cells 

examined), CD68 (100% negative for CD68, 1000 cells examined) or podoplanin 

(arrowheads). Scale bar: i–k: 10μm. (l,m) STED super-resolution microscopy demonstrating 

tdTomato labeled cells (arrows) not expressing (l) NG2 (green, arrows, STED channel) or 

(m) CD146 (green, arrows, STED channel). Scale bar: 10μm.
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Extended Figure 2. Expression of VECAD in fibroblast derived endothelial cells that take up 
DiO and expression of alpha-smooth muscle actin and VECAD in tdTomato labeled cells
(a) Col1a2CreERT:R26RtdTomato mice were subjected to ischemic injury, injected with DiO 

7 days after cardiac injury and then harvested. High magnification of a wall of a blood 

vessel in the injured region demonstrates luminal cells staining for DiO (green, arrowheads), 

VECAD (blue, arrowheads), tdTomato (red, arrowheads) and merged image demonstrating 

colocalization of all three fluorophores (filled arrowheads); unfilled arrowhead points to 

VECAD+DiO+ cell that does not bear the tdTomato label. Scale bar: 10μm.

(b–f) Expression of alpha-smooth muscle actin and VECAD in tdTomato labeled cells 
(b–e) Tamoxifen injected Col1a2CreERT:R26RtdTomato mice underwent ischemia 

reperfusion injury and hearts were harvested 3 days after injury and immunofluorescent 
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staining performed for alpha-smooth muscle actin and VECAD. Section shows (b) 
tdTomato labeled cardiac fibroblasts (c) VECAD (d) alpha smooth muscle actin expressing 

cells and (e) merged image showing colocalization of fluorophores. Arrowheads show 

labeled cardiac fibroblasts expressing alpha smooth muscle actin and arrow shows a labeled 

cardiac fibroblast expressing VECAD but not smooth muscle actin. Scale bar: b–e: 10μm (f) 
Fraction of labeled cardiac fibroblasts that are alpha-smooth muscle actin+ and VECAD+ or 

VECAD- (mean±S.E.M., *p<0.05, n=3).
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Extended Figure 3. tdTomato expression in hearts of vehicle injected 
Col1a2CreERT:R26RtdTomato mice and immunostaining for Col1 and VECAD in tamoxifen 
injected Col1a2CreERT:R26RtdTomato mice after cardiac injury
(a–c) Oil injected Col1a2CreERT:R26RtdTomato mice underwent ischemia reperfusion injury 

and 3 days after injury, hearts were harvested and sectioned. Area of injury (demarcated by 

white lines) was stained with (a) Alexa488 labeled wheat germ agglutinin (WGA, stains cell 

membranes) (b) rare tdTomato expressing cells in same field (arrowhead) and (c) merged 

image showing the presence of rare labeled cells in the injury region (arrowhead) (28 

labeled cells out of 38,000 cells counted (0.07%), n=3 animals). Scale bar: 100 μm. (d,e) 
Col1a2Cre:R26RtdTomato (injected with tamoxifen as described in text) were subjected to 

ischemic cardiac injury and hearts harvested 3 days post injury and stained for Col1 and 

VECAD (d) Region of injury demonstrating a VECAD expressing cell (blue, arrow) 

staining positive for Col1 (green) but negative for the tdTomato label (merged arrow). 

Arrowheads in merged panel show tdTomato labeled cells expressing VECAD but not Col1. 

Scale bar: 10μm (e) tdTomato labeled cells expressing VECAD (arrowheads) that do not 

stain for Col1 (green) with merged image showing tdTomato+VECAD+ cells not staining 

with the Col1 antibody. Out of 225 cells counted (n=3 animals), we did not observe a single 

tdTomato+VECAD+ cell to stain for Col1. Conversely, not a single VECAD+Col1+ cell 

exhibited tdTomato fluorescence. Scale bar: 10μm.
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Extended Figure 4. VECAD and Cre immunostaining in heart sections of 
Col1a2Cre:R26RtdTomato:Col1GFP mice 3 days after injury
(a,b) Col1a2Cre:R26RtdTomato:Col1GFP mice were subjected to ischemic cardiac injury and 

hearts harvested at 3 days post injury and stained for VECAD (a) tdTomato labeled cells 

(red, arrowheads) expressing VECAD (blue, arrowheads) but not GFP (green), with merged 

image demonstrating co-localization of tdTomato and VECAD but not GFP (arrowheads). 

Scale bar: 10 μm. (b) High magnification of a blood vessel (asterisk) outlined by VECAD 

staining (blue) demonstrating rare cell that colocalizes all three fluorophores (tdTomato

+VECAD+GFP+, white, arrowhead). Arrows point to tdTomato positive cells expressing 

VECAD but not GFP. Scale bar: 10 μm. (c–f) Immunostaining for Cre protein on hearts of 

Col1a2Cre:R26RtdTomato:Col1GFP harvested 3 days following ischemic injury to detect Cre 

expression in the nucleus of tdTomato labeled cells expressing VECAD. (c) TdTomato 

labeled cells in area of injury (arrowheads) expressing (d) VECAD (arrowheads) (e) merged 

image showing co-localization of fluorophores (arrowheads) (f) nuclei stained for DAPI and 

Cre demonstrating absence of any detectable nuclear Cre protein. Scale bar: 10μm (g–i) 
positive control demonstrating section of heart of Wt-1Cre transgenic mouse heart 3 days 

after injury with region of injury stained for (g) DAPI (h) Cre (red) and (i) merged image 
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demonstrating numerous cells in the injury region expressing nuclear Cre (arrowheads). 

Scale bar: 10μm (j–m) Cre immunostaining in tdTomato labeled cells expressing GFP. Area 

in region of injury with (j) nuclei stained for DAPI, (k) tdTomato expression (arrowhead) (l) 
GFP expression (arrowhead) and (m) merged image (DAPI, Cre and GFP) showing Cre 

staining (red channel) localized to the cytoplasm of GFP expressing cell (arrowhead). Scale 

bar: 10μm.

Extended Figure 5. Flow cytometry for endothelial progenitor markers on non-myocyte cells 
harvested from uninjured hearts of Col1a2CreERT:R26RtdTomato mice and bone marrow cells 
isolated from the same animal
(a,b) Hearts of mice were digested, myocytes discarded and the entire non-myocyte 

population without any further selection was subjected to flow cytometry. Expression of 

tdTomato and (a) CD45 and Flk-1 (APC fluorophore) and (b) CD133, CD34 and combined 

expression of CD34 and Flk-1 in non-myocyte population. (c–f) Bone marrow cells were 

isolated from Col1a2CreERT:R26RtdTomato mice and without further culture subjected to 

flow cytometry. Expression of tdTomato and (c) CD45 (d) Flk-1 (e) CD133 (f) CD34 and 

combined expression of Flk1 and CD34 in bone marrow cells (g) Expression of tdTomato in 
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bone marrow derived mesenchymal stem cell colonies (black arrowhead points to rare 

tdTomato positive cell, white arrowheads point to mesenchymal stem cells). Scale bar: 

50μm.

Extended Figure 6. MEndoT in FSP1Cre:R26RtdTomato mice
FSP1Cre:R26RtdTomato mice were subjected to (a) sham or (b) ischemia-reperfusion cardiac 

injury. Hearts were harvested 3 days after injury and stained for endothelial marker VECAD 

or isolectin. Injury region demonstrated tdTomato labeled cells expressing VECAD or 

isolectin (arrowheads, n=4). Scale bar: 10μm. (c) Quantitation of labeled fibroblasts that 

express VECAD or isolectin in sham injured animals and in the injury border zone (mean

±S.E.M., *p<0.01, n=4)
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Extended Figure 7. Effect of serum starvation on p53 levels and effects of Pifithrin-α and RITA 
on tube formation of serum fed cardiac fibroblasts
(a) Western blot for p53 in cardiac fibroblasts subjected to serum starvation for 24, 48 and 

72 hours (representative sample from n=3) (b) densitometric quantitation of Western blot 

(mean±S.E.M., *p<0.05 compared to cells in 10% serum). (c) Effect on tube formation after 

adding Pifithrin-α or RITA to cardiac fibroblasts grown in 10% serum Scale bar: 250μm (d) 
quantitation of tube formation (mean±S.E.M., *p<0.05, n=3)

Ubil et al. Page 21

Nature. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Figure 8. Effect of adding TGFβ to serum starved cardiac fibroblasts, or adding TGFβ, 
serum or Pifithrin-α on tubes that have already formed
(a,b) Tube formation of cardiac fibroblasts subjected to serum starvation in the (a) absence 

or (b) presence of TGFβ. (TGFβ was added at the onset of serum starvation) Scale bar 50μm. 

(c–f) Effect of adding TGFβ or serum to tubes that had already formed. (c,e) twenty four 

hours following serum starvation (after tubes had already formed), PBS was added to tubes 

shown in c and e and photographs taken after another 24 hours. (d,f) After tubes had already 

formed (24 hours of serum starvation), (d) TGFβ or (f) serum was added and photographs 

taken after another 24 hours (note clumping of cells and regression of tubes in d and f). 

Scale bar: c–f: 50μm (g) Effect of adding TGFβ or serum to tubes that had already formed, 

expressed as a percentage decrease in tube length. (h–n) Effect of adding Pifithrin-α to 

serum starved cardiac fibroblasts that had already formed tubes. (h,k) Tube formation in 

cardiac fibroblasts serum starved for 24 hours in the absence of PBS or Pifithrin- α. Scale 

bar: 50μm (i,j) PBS was then added to cardiac fibroblasts shown in (h) and photographs 

were taken after another (i) 24 hours or (j) 48 hours of serum starvation. Scale bar: 50μm (l, 
m) Pifithrin-α was added to cardiac fibroblasts shown in (k) and photographs were taken 

after another (l) 24 hours or (m) 48 hours of serum starvation in the presence of Pifithrin-α. 

Scale bar: 50μm (n) Tube length in (j) and (m) was expressed as a percent change from their 

respective control (h and k) (mean±S.E.M. *p<0.05 compared to control, n=3).
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Extended Figure 9. RITA decreases inflammatory infiltrate after cardiac injury, does not 
increase apoptosis in myocytes and does not enhance MEndoT in 
Col1a2CreERT:R26RtdTomato:p53CKO mice
(a–d) Sections of hearts harvested at 3 days following cardiac injury were stained for the 

monocyte/macrophage marker CD68 (green, arrowheads) in (a) 
Col1a2CreERT:R26RtdTomato, (b) Col1a2CreERT:R26RtdTomato:p53CKO and (c) RITA 

injected Col1a2CreERT:R26RtdTomato Scale bar: 10μm. (d) quantification of the number of 

CD68 cells/high power field in the injury region (mean±S.E.M. *p<0.05 versus 

Col1a2CreERT:R26RtdTomato, ** p<0.05 versus Col1a2CreERT:R26RtdTomato, n=3) (e–g) 
p53 expression in myocytes after cardiac injury and effect of RITA on apoptosis in injury 

region. (e,f) Col1a2CreERT:R26RtdTomato mice were subjected to ischemic cardiac injury, 

hearts harvested at 3 days and sections stained for p53 and cardiomyocyte marker Troponin. 

(e) p53 (green, arrowheads) staining is observed in tdTomato expressing cells (red, 
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arrowheads) but not in cardiomyocytes (blue), merged image shows arrowheads pointing to 

tdTomato labeled cells expressing p53. Scale bar: 10μm. (f) Higher magnification in injury 

region demonstrating tdTomato cells (arrowheads) expressing p53 (merged, yellow, 

arrowheads) but p53 staining is not visible in cardiomyocytes (blue). Scale bar: 10μm. (g) 

TUNEL staining and quantification to determine p53+ apoptotic cells after RITA injection 

(arrowheads point to p53+TUNEL+ cells in Col1a2CreERT:R26RtdTomato mice (left panel) 

and RITA injected Col1a2CreERT:R26RtdTomato mice (right panel), inset shows 

p53+TUNEL+ cell in higher magnification (data shown as mean±S.E.M, ns=not significant, 

n=3). Hearts in both cases were examined 3 days after injury. Scale bar: 10μm. (h,i) Effect 

of RITA on MEndoT in Col1a2CreERT:R26RtdTomato:p53CKO mice after cardiac injury. 

(h) tdTomato labeled cardiac fibroblasts expressing VECAD in 

Col1a2CreERT:R26RtdTomato mice treated with/without RITA, 

Col1a2CreERT:R26RtdTomato:p53CKO mice treated with/without RITA. Scale bar: 10μm. 

(i) Quantitation of the percentage of labeled fibroblasts undergoing MEndoT for each 

treatment group (mean ±S.E.M., *p<0.05, n.s= not significant, n=4 animals/group).
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Extended Figure 10. γH2AX expression in cells expressing p53 after ischemic cardiac injury
Col1a2CreERT:R26RtdTomato mice were subjected to ischemic cardiac injury and 

immunostaining performed for γH2AX and p53. (a) Immunostaining for p53 (green), 

γH2AX (red) and DAPI (blue) in region of injury (arrowheads point to nuclei co-expressing 

γH2AX and p53). Scale bar: 10μm. (b) Immunostaining for p53 (green), γH2AX (blue) and 

tdTomato (red) to determine co-expression of p53 and γH2AX in tdTomato labeled cells. 

Arrowheads point to tdTomato positive cells co-expressing γH2AX and p53. Scale bar: 

10μm. (c) quantitation of the fraction of tdTomato+p53+ cells expressing γH2AX (mean

±S.E.M. *p<0.01, n=3).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cardiac fibroblasts adopt endothelial cell fates after cardiac injury
(a,b) Hearts from Col1a2CreERT:R26RtdTomato immunostained for endothelial markers 

(arrowheads) (c) tdTomato+ fibroblasts(%) expressing endothelial markers (*p<0.05 vs 

sham, † p<0.05 vs injury border zone). (d) Temporal expression of VECAD (* p<0.005 vs 

sham, †p<0.05 vs Day 1 and 2, $ p<0.05 vs Day 1,). (e) STED microscopy demonstrating 

tdTomato+VECAD+ cell (arrowhead; unfilled arrowhead shows tdTomato- endothelial cell) 

(f–h) DiO stained capillary in (f,g) longitudinal section (arrowheads show tdTomato+DiO+ 

cells) or (h) cross-section (cyan arrowheads show DiO stained inner and outer endothelial 

cell membranes, white arrowheads show tdTomato+ endothelial cell; unfilled arrowhead 

shows tdTomato- endothelial cell). Scale bar: 5μm. (i) Luminal surface area occupied by 

fibroblast derived endothelium (* p<0.005 vs sham, † p<0.05 vs Day 3). (j) AcLDL uptake 

by tdTomato+ endothelium (arrowheads). (n=3 animals /group/ time point, All graphs show 

mean±S.E.M., scale bar:10μm unless mentioned)
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Figure 2. Cardiac fibroblasts upregulate p53 after injury and p53 mediates MEndoT ex vivo
(a,b) p53 immunostaining in injured hearts (arrowheads show tdTomato+P53+ cells) (c) 
Temporal p53 expression in labeled fibroblasts (*p<0.05 vs sham, n=3 animals/time point). 

(d) co-expression of p53, VECAD & tdTomato (arrowhead). (e,f) tdTomato+VECAD+ 

tubes and (g,h) AcLDL uptake after serum starvation (arrowheads, n=4). Scale bar: 250μm 

(h, right panel) Confocal image (XZ plane) showing AcLDL internalization (Scale bar: 

20μm) (i–m) Tube formation of cardiac fibroblasts in (i)10% serum or 0% serum with (j) 
PBS (k) 100μM Pifithrin-α, (m) 0.1μM RITA, or (l) p53 deletion (bright field and 

fluorescence overlay). Scale bar: 250μm (n) Quantitation of tube length (** p<0.005 vs 10% 

serum. † p<0.005 and *p<0.05 vs starved cells, n=3). (o) Endothelial gene expression in 

cardiac fibroblasts (* p<0.005 vs 10% serum, † p<0.05 vs PBS, n=8). (p) ChIP with p53 

(*p<0.05). (All graphs show mean±S.E.M., scale bar: 10μm unless mentioned).
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Figure 3. MEndoT after cardiac injury is p53 dependent
(a–c) p53 immunostaining in Col1a2CreERT:R26RtdTomato and 

Col1a2CreERT:R26RtdTomato:p53CKO hearts (arrowheads) and (c) quantification of p53 

expression in labeled fibroblasts (* p<0.005). (d–f) VECAD immunostaining in labeled 

fibroblasts (arrowheads) and (f) Labeled fibroblasts(%) expressing VECAD (* p<0.005). (g) 

Number of endothelial cells/high power field (* p<0.005, n=5 animals) (h,i) Cardiac 

function prior to and 7 days after injury. (*p<0.05, n=9 animals). (j) Masson’s Trichrome 

staining 14 days after injury. (k) Quantitation of fibrosis (* p<0.05). (n=4 animals unless 

mentioned, All graphs show mean±S.E.M., scale bar: 10μm).
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Figure 4. RITA enhances MEndoT after cardiac injury
Hearts from PBS or RITA treated Col1a2CreERT:R26RtdTomato mice (a,b) p53 

immunostaining in labeled fibroblasts (arrowheads) and (c) quantitation of p53 expression (* 

p<0.005). (d–e) VECAD immunostaining in labeled fibroblasts (arrowheads). (f) Labeled 

fibroblasts(%) expressing VECAD (* p<0.05). (g) Endothelial cells/hpf (* p<0.05). (h) 

Masson’s Trichrome staining (blue, arrowheads) near (i) apex, (ii) between mid-ventricle 

and apex and (iii) mid-ventricle (n=14 animals) (i) Quantitation of fibrosis (* p<0.001, n=14 
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animals). (j,k) Cardiac function prior to and 7 days after injury. (* p<0.05, n=8 animals). 

(n=4 animals unless mentioned, All graphs show mean ± S.E.M., scale bar: 10μm).
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