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We evaluated the importance of tumor cell selection for generating gene signatures in nonesmall cell
lung cancer. Tumor and nontumor tissue from macroscopically dissected (Macro) surgical specimens (31
pairs from 32 subjects) was homogenized, extracted, amplified, and hybridized to microarrays. Adjacent
scout sections were histologically mapped; sets of approximately 1000 tumor cells and nontumor cells
(alveolar or bronchial) were procured by laser capture microdissection (LCM). Within histological strata,
LCM and Macro specimens exhibited approximately 67% to 80% nonoverlap in differentially expressed
(DE) genes. In a representative subset, LCM uniquely identified 300 DE genes in tumor versus nontumor
specimens, largely attributable to cell selection; 382 DE genes were common to Macro, Macro with
preamplification, and LCM platforms. RT-qPCR validation in a 33-gene subset was confirmatory
(r Z 0.789 to 0.964, P Z 0.0013 to 0.0028). Pathway analysis of LCM data suggested alterations in
known cancer pathways (cell growth, death, movement, cycle, and signaling components), among
others (eg, immune, inflammatory). A unique nine-gene LCM signature had higher tumorenontumor
discriminatory accuracy (100%) than the corresponding Macro signature (87%). Comparison with Cancer
Genome Atlas data sets (based on homogenized Macro tissue) revealed both substantial overlap and
important differences from LCM specimen results. Thus, cell selection via LCM enhances expression
profiling precision, and confirms both known and under-appreciated lung cancer genes and pathways.
(Am J Pathol 2014, 184: 2868e2884; http://dx.doi.org/10.1016/j.ajpath.2014.06.028)
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Cancers are complex, even within traditional histopatholog-
ical strata. Most lung tumors have supporting stromal cells,
including infiltrating inflammatory cells, fibroblasts, and
neovasculature. In nonmalignant lung, perhaps an even
higher degree of cellular heterogeneity is present; normal
lung has more than 42 identifiable cell types. The non-
epithelial components, in both carcinomas and paired adja-
cent nonmalignant tissues, almost certainly contribute to the
transcriptomes generated with traditional tissue-block ho-
mogenization. Thus, depending on the individual tumor
characteristics, these other nonmalignant and nonepithelial
cell types might contribute a very substantial fraction of the
transcriptome that has been reported from studies with tissue-
mincing homogenization. Of the handful of transcriptome
studies of refined cell capture including microdissection for
procurement of a verifiably enriched malignant cell fraction
in lung cancers1e3 or focused on coupled platforms,4 most
stigative Pathology.
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are limited by quite small sample size and/or nonpaired tumor
and nontumor samples.
We hypothesized that lung cancer signature precision could

be augmented by enhanced cell selection using laser capture
microdissection (LCM) of morphologically malignant cells.
Reduced contamination of tumor cells by admixed supporting
stroma, combined with paired nonmalignant [ie, nontumor
(NT)] lung parenchymal epithelium, alveolar (NTa) or
bronchial (NTb), should help refine the features of the tran-
scriptome unique to lung cancer.We thereforemicrodissected
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Lung Cancer Transcriptomes from LCM
pairs of nonesmall cell lung cancers (T) and their far-adjacent
NT tissue. In parallel, we also performed conventional
macroscopic tissue-block homogenization (hereafter referred
to as Macro) on the same tissue samples for comparison
purposes. In addition, microaliquots of Macro T and NT lung
sample extracts in a subset were preamplified using a LCM
sample preamplification procedure, to control for bias
inherent to the preamplification process itself.

Materials and Methods

Patient Recruitment and Sample Collection

The study population comprised 32 consenting individuals
undergoing resectional surgery for clinically suspected
nonesmall cell lung cancer (NSCLC) under a protocol5

approved by the local institutional review boards.
Lung tissue resection samples were visually divided into T

and NT (far-adjacent to remote) in a room adjacent to the
operating room and used for preparing frozen sections. The
samples were snap-frozen in liquid isopentane within 15
minutes of surgical resection and were stored in a tissue bank
(in liquid nitrogen at �180�C) until analysis. The assigned
clinical surgical pathologist confirmed the diagnosis of lung
cancer in all cases, per clinical routine, and classified the
samples as adenocarcinoma, squamous cell carcinoma, or
mixed adenosquamous NSCLC, according to the 1999
World Health Organization histological classification of lung
and pleural tumors6 and recent updates.7,8 In addition, all 32
selected cases were independently reviewed again by two
other pathologists (J.L. and C.Z.), each masked to prior his-
tological diagnosis, clinical, and transcriptome data.

Tissue Accession Sets

A set of 31 paired and 2 individual unpaired samples of
macroscopic homogenized NSCLC T and NT (alveolar
predominant) tissue were selected for bulk macroscopic tis-
sue sampling and microarray analyses: 19 TeNT adenocar-
cinoma pairs and 1 nonpaired adenocarcinoma sample; 10
TeNT squamous cell carcinoma pairs and 1 nonpaired
squamous cell carcinoma sample; and 2 TeNT pairs of
adenocarcinomaesquamous cell carcinoma. Of these, 17
TeNT pairs (with alveolar cells selected for NT) and 9 un-
paired samples that underwent LCM met RNA quality
criteria for microarray analyses: 7 pairs and 7 nonpaired
samples of adenocarcinomas; 8 pairs and 1 nonpaired sample
of squamous-cell carcinoma; and 2 pairs and 1 nonpaired
sample of mixed adenosquamous carcinoma. Additionally,
NTb samples were microdissected from six specimens.

RNA Isolation from Macro Tissue Samples

Approximately 50 to 80 mg of snap-frozen lung tissue was
added to a tube containing 1 mL of extraction buffer and
was completely homogenized. Further total RNA extraction
The American Journal of Pathology - ajp.amjpathol.org
procedures were performed using an RNeasy mini kit (Qia-
gen, Valencia, CA) according to the manufacturer’s recom-
mendations, including an optional 30 minutes DNase I
treatment. Total RNAwas quantified using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA), and quality was confirmed on an Agilent 2100 bio-
analyzer (Agilent Technologies, Santa Clara, CA). An RNA
integrity number (RIN) of 7 was considered the threshold for
proceeding.

Preparation of Macro Homogenized Samples for
Microarray

Approximately 100 ng total RNA was amplified using an
Ambion WT expression kit (Life Technologies, Carlsbad,
CA) according to the manufacturer’s instructions; 5.5 mg of
amplification product was labeled with an Affymetrix (Santa
Clara, CA) WT terminal labeling kit and then hybridized to
Affymetrix HG Gene 1.0ST chips using Affymetrix hy-
bridization and wash and stain kits according to the manu-
facturer’s instructions.

LCM

For every paired (T and NT) tissue block obtained from
each resection subject, a pathologist (J.L. and C.Z.)
assessed a digitized hematoxylin and eosinestained
(scout) slide to determine and outline tumor nests, thereby
mapping the section and directing the laser capture
microscopist toward irrefutably high tumor cell content on
the adjacent frozen sections. The same procedure was used
for the NT block. Distinguishing tumor cells from two
different types of NT lung tissue compartments [ie, NTa or
NTb epithelium] could be achieved with confidence in
these snap-frozen samples.

Once the hematoxylin and eosinestained scout section
was mapped, we accessed corresponding adjacent frozen
lung tissue (T or NT) and re-embedded it in cold Tissue-Tek
OCT optimal cutting temperature medium (Sakura Finetek
USA, Torrance, CA). Three sections (12 mmol/L thick) from
each frozen T and NT block were cut in a cryostat at �25�C
and placed on nuclease-free and human nucleic acidefree
membrane slides (Leica Microsystems, Wetzlar, Germany).
The sections were stored at �80�C until use or were
immediately stained with a rapid hematoxylin and eosin
ethanol-based staining protocol.5,9 Within 30 minutes of air
drying, the slide was placed on the LCM stage of a Leica AS
LMD instrument for microdissection. The desired cells
(either alveolar or bronchial, separately) were micro-
dissected into the cap of 200-mL PCR tubes filled with 20
mL RLT/b-mercaptoethanol buffer (Qiagen). This procedure
was repeated on the next slide until a total of 1000 cells of
interest had been captured for that case. The number of
(adjacent) slides used per case to reach this 1000-cell
threshold varied from 1 to 3, because tumor proportion
varied across samples and donors.
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RNA Extraction of LCM Samples and Preamplification
for Microarray

LCM-derived RNA samples for preamplification were iso-
lated from 1000 cells using an RNeasy micro kit (Qiagen),
including the optional DNase treatment, according to the
manufacturer’s instructions. Total RNA was quantified and
quality was determined using the same techniques as for the
macroscopic samples. Two-thirds of LCM samples met the
RIN Z 7 threshold for proceeding. Because of the low
initial RNA template inherent to LCM-scale specimens,
RNA preamplifications were performed. We used an
Ovation Pico WTA whole-transcriptome amplification
(NuGEN, San Carlos, CA) system according to the manu-
facturer’s recommendations, followed by an additional
amplification step using a NuGEN exon module. One
nanogram of total RNA was used as input for Pico ampli-
fication; the resulting 4 mg of amplified cDNA was then
used for NuGEN Pico exon module amplification. cDNA
amplification products were fragmented and labeled with
biotin using a NuGEN FL module and hybridized to Affy-
metrix HG Gene 1.0 ST arrays using an Affymetrix hy-
bridization control kit and were washed and stained using an
Affymetrix wash and stain kit, identically to the macro-
scopic homogenized samples, according to the manufac-
turer’s recommendations.

Microaliquots of homogenized macroscopic lung T and
NT sample extracts were preamplified in a subset of eight
TeNT paired samples, using the same procedure as for
LCM of the same samples. Because the preamplification
was requisite to LCM interrogation with expression micro-
arrays (because of low initial template concentrations typical
of these samples), its use for small aliquots of homogenized
materials served as a control for preamplification. This
allowed direct comparison of TeNT transcript differences
attributable to LCM-related cell selection versus the pre-
amplification process itself.
Quality Control of Microarray Results Using Affymetrix
Expression Console Software

For the entire set of microarray samples, the raw array data
were imported into Affymetrix Expression Console version
1.1, a software package that permits visualization, quality
control, and normalization of the data. Quality control re-
sults included array images, line graphs of labeling and
hybridization controls, signal box plots, and histograms
before and after normalization for all hybridizations, as well
as a heat map for Spearman rank correlation between all
pairs of hybridizations. Problematic arrays were visually
inspected using images, graphs, and plots as above. The
gene expression measures for all arrays that passed quality
control were normalized by the robust multiarray analysis
(RMA) approach in the Affymetrix Expression Console
software package.
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Microarray Analysis

Ranking of genes by degree of differential expression was
performed using the Bioconductor limma package version
2.14 (http://www.bioconductor.org) and in-house code
developed in the R statistical language (http://www.r-project.
org). Selection of significantly different gene expression
profiles between the two experimental conditions was based
on the empirical Bayes moderated t-statistic. The Benjaminie
Hochberg method was applied to correct for multiple
testing.10 Significant genes were identified by adjusted P �
0.05 and fold change (FC) in mean expression of FC � j2j.

Power

For LCM samples (all three histologies), overall T versus
NT tests were performed on 47 microarray chips (of which 6
were for NTb), leaving 41 chips treated as paired sample
TeNTa comparisons (with one sample missing). The sam-
ple size provided 99% power to detect a difference of 1.0
log2 unit, which is the mean difference in log2 intensity of
mean differential (ie, twofold) mRNA expression between T
and NT for each pair. This permitted distinguishing between
the null hypothesis (mean of 0.0) and the alternative hy-
pothesis (mean of 1.0) with an estimated standard deviation
of 1.0 and with a significance level of a Z 0.05. If we
enlarge the effect size (the difference) to 1.5 log2 units, the
power increases to 100%. For the adenocarcinoma paired
TeNT subsets, the 11 LCM pairs yielded 85% power to
detect the same difference (1.0 log2 units Z twofold), and
99% if the effect size is increased to 1.5 log2 units (three-
fold). For squamous cell carcinoma, the nine LCM pairs
yielded 75% power for effect size of 1.0, and 97% for effect
size of 1.5. These calculations assume paired samples
(TeNT) and a P value of 0.05.

Confirmation of Microarray Results by RT-qPCR

Quantitative real-time RT-PCR (RT-qPCR) for the most
dysregulated macroscopic block-derived genes was per-
formedwith Power SYBRGreen PCRmastermix in a 96-well
optical plate using an ABI 7500 real-time PCR system (all
from Life Technologies, Carlsbad, CA). A primer pair for
each gene was designed with online Primer3 software version
3.0 (https://www.broadinstitute.org/genome_software/other/
primer3.html) based on the published sequences (http://
www.ncbi.nlm.nih.gov/genbank). The RT-qPCR was per-
formed in technical duplicates for each sample. Additional
double-distilled water blank and RNA without reverse tran-
scriptase samples served as negative controls for each tran-
script run. Melting analysis for one additional cycle was
performed. Where necessary, an RNA-specific strategy that
avoids contaminating genomic DNA amplification and false
positives was used.11 After the reaction, all PCR products
underwent additional confirmatory electrophoresis on an
agaroseeethidium bromide gel and were visualized under UV
ajp.amjpathol.org - The American Journal of Pathology

http://www.bioconductor.org
http://www.r-project.org
http://www.r-project.org
https://www.broadinstitute.org/genome_software/other/primer3.html
https://www.broadinstitute.org/genome_software/other/primer3.html
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
http://ajp.amjpathol.org


Figure 1 Representative images of frozen-section specimens undergoing laser capture microdissection (LCM). The target areas are outlined with black or
red laser track marks. Tumors (T) for LCM were histologically characterized by consensus of two pathologists. The precise areas to be laser-captured from each
tissue section were designated by a pathologist (J.L. and C.Z.) on each scout image, and laboratory personnel followed standard protocols for LCM. For tissue
scans and microscopy of nontumor (NT) alveolar areas (NTa; left column), parenchymal inflammation was common. Typical nonmalignant bronchial mucosa
(NTb; middle column) is outlined for microdissection. The two tumor specimens (T; right column) are squamous cell carcinoma (top row) and adenocar-
cinoma (bottom row).

Lung Cancer Transcriptomes from LCM
light. Spearman correlationwas performedwith the samemost
dysregulated transcripts as detected by expression microarray.
Tumor Classification Signature

To evaluate the performance of the respective gene signa-
ture for correct classification of the T versus NT status, a 1:1
split to training and test samples was effected, individually
for Macro samples, and then for LCM samples, separately.
An initial training set signature, selected on the basis of
misclassification error and the number of probe sets in the
model during leave-one-out cross-validation, was derived
from the microarray expression patterns. A three-step
strategy was performed, similar to that reported previ-
ously.12 First, probe sets were ranked by degrees of differ-
ential expression using the Bioconductor limma package
and in-house R code. Second, the Pearson correlation co-
efficient of the expression for each of the top 3000 probe
sets with T versus NT status was calculated. In all, 174
probe sets were found to be significantly associated with T
versus NT status [P < 0.01, adjusted for false discovery rate
(FDR)]. Third, all 174 probe sets were used to fit a Lasso
regularized generalized linear model, using Bioconductor
lmnet. Training and test sets were matched on all relevant
clinical variables (ie, age, sex, cumulative smoking dose,
smoking status, and histology); the training set therefore
derived from a split sample of subjects (training and test),
which were statistically indistinguishable. Data were
expressed as the area under curve (AUC), with sensitivity
The American Journal of Pathology - ajp.amjpathol.org
plotted against 1 � specificity, from null (0.5) to perfect
(1.0) discrimination.
Comparison with the TCGA Reference Data Set

We compared our LCM and Macro transcriptome findings
with those derived from the Cancer Genome Atlas (TCGA)
(https://tcga-data.nci.nih.gov/tcga, last accessed April 9,
2014) for lung adenocarcinoma T versus NT comparisons.
TCGA describes only macroscopic (ie, non-LCM) findings.
Because there were no microarray-based data on TeNT pairs
available in TCGA adenocarcinoma studies, TCGA macro-
scopic pairs interrogated by next-generation sequencing
(RNA sequencing or RNA-seq) were used for this compari-
son. To avoid batch-to-batch variability, batch 144 alone was
used, because it was the largest (n Z 15 adenocarcinoma T
pairs from 15 donors, all stage I or II) from a single institution
and sequencing platform. The normalized RNA-seq gene
level data for batch 144 was downloaded from the TCGA
data portal. A total of 15 pairs of matched TeNT samples
were included into the analysis. Any gene with more than
10% zero readings across these samples was excluded from
analysis. Among the remaining 16,159 genes and 30 sam-
ples, the smallest nonzero normalized count was 0.7184. We
then used half of that (0.7184/2 Z 0.3592) as the limit of
detection, to replace the few zero read counts and to allow
computational transformation more easily. After log trans-
formation, moderated t-testing was performed for to the
RNA-seq data, using the Bioconductor limma package and
2871
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Figure 2 Heat maps demonstrate
technical feasibility of microarray-based
transcriptomeanalysesonLCMsamples.A:
Heat map of differentially expressed (DE)
gene transcripts from LCM T versus NT lung
specimens. A total of 850 genes with
adjusted P value < 0.05 and log2 fold
change (FC) of �1.0 were used for this
comparison. B: A similar heat map differ-
entiates LCM adenocarcinomas from LCM
squamous cell carcinomas. A total of 651
genes with adjusted P < 0.05 and log2
FC� 1.0 were used for this comparison.

Lin et al
in-house R code. The genes were ranked by Benjaminie
Hochberg adjusted P values and FC.

Pathway Analysis

Gene ontology, canonical pathway, and functional network
analyses were performed by using Ingenuity Pathways
Analysis (IPA) software tools (Qiagen Silicon Valley,
Redwood City, CA). The lists of significantly differentially
expressed genes identified in gene expression analysis
(adjusted P < 0.05), including Affymetrix probe set
identifiers and the corresponding FC values, were uploaded
into the IPA analysis tool. These genes were further filtered
in IPA by the criterion of FC � 2 before use for pathway
and network analyses. Each probe set identifier was then
mapped to its corresponding gene in the Ingenuity Path-
ways Knowledge Base database. A ratio of the number of
genes from the gene list that map to a certain pathway
divided by the total number of genes that map to that
pathway was calculated. Fisher’s exact test was used to
estimate the probability that the association between the
gene list and a certain pathway is due to random chance. In
the case of functional analysis, where a set of N molecules
is queried as to whether there is enrichment of molecules
with a particular (pathway) annotation, Fisher’s exact test
is computationally less expensive than other plausible ap-
proaches, such as permutation strategies. IPA analyses are
reported using the BenjaminieHochberg multiple testing
adjusted P value.
Results

Donor and Tissue Characteristics

Clinicodemographic characteristics of the 32 donors for this
lung cancer study are summarized in Supplemental Table S1.
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All subjects had a lung cancer diagnosis; by virtue of surgical
candidacy and lobe resections, the diagnoses were confirmed
pathologically as clinical stages I to II. Typical scout slide
images, including representative margins outlined for
microdissection, are shown in Figure 1.

Microarray Analysis from Macro Homogenized Tissues

Representative heat maps for LCM samples are presented
in Figure 2. Gene expression analysis of Macro samples
identified a large number of DE genes (adjusted P > 0.05,
FC > 2) for both adenocarcinoma and squamous cell
carcinomas, compared with the paired NT lung tissue. The
20 most up-regulated and the 20 most down-regulated
genes (in terms of FC, given adjusted P < 0.05) in all
NSCLC histologies combined are listed in Table 1. The
full data set is available at Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo, accession number
GSE31552). The 20 most up-regulated and the 20 most
down-regulated genes for adenocarcinoma are listed in
Table 2; those for squamous cell carcinoma are listed in
Table 3. The five most up-regulated genes for the Macro T
specimens, all three histologies (Table 1), were SPP1,
TMPRSS4, MMP12, GPX2, and MMP1; the five most
down-regulated genes were FABP4, SLC6A4, AGER,
TMEM100, and GKN2.

Microarray Analysis from LCM Epithelia

The 20 most up-regulated and the 20 most down-regulated
genes for the 41 LCM samples are listed in Tables 1, 2, and 3
(for combined histologies, adenocarcinoma, and squa-
mous cell carcinoma, respectively). Gene expression anal-
ysis from LCM samples identified many unique TeNT DE
genes (approximately 20% to 33% nonoverlap), compared
with Macro specimens (Tables 1, 2, and 3), for both the
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Genes Differentially Expressed (T versus NT) in Macro and LCM Samples of NSCLC, All Three Histologies Combined

Macro LCM

Gene FC* Padjusted
y Gene FC* Padjusted

y

Up-regulated (all histologies)
SPP1 9.1 7.82 � 10�10 SPINK1z 7.0 1.97 � 10�2

TMPRSS4 6 2.31 � 10�10 AKR1C2z 5.8 7.14 � 10�3

MMP12 5.7 2.25 � 10�7 CENPF 5.0 2.20 � 10�4

GPX2z 4.7 6.98 � 10�6 TOP2Az 4.6 2.93 � 10�4

MMP1 4.4 2.87 � 10�6 CP 4.4 4.42 � 10�2

AFAP1 4.1 8.77 � 10�8 DSG2 4.2 1.34 � 10�5

SPINK1z 3.8 3.24 � 10�4 SNORA73A 4.2 1.80 � 10�3

AKR1B10 3.5 1.64 � 10�4 BIRC5 4.0 1.21 � 10�3

CST1 3.5 2.23 � 10�6 TP63 4.0 1.09 � 10�2

TOP2Az 3.5 9.62 � 10�9 ANLNz 3.9 2.35 � 10�4

AKR1C2z 3.4 3.59 � 10�4 DSP 3.9 3.86 � 10�3

CYP24A1 3.4 1.75 � 10�4 OCIAD2 3.9 2.19 � 10�4

CKMT1A 3.3 3.14 � 10�7 NQO1 3.8 3.61 � 10�3

CKMT1A 3.3 3.14 � 10�7 TPX2 3.5 5.10 � 10�4

MMP13 3.3 1.15 � 10�4 CKS1B 3.5 1.56 � 10�4

ANLNz 3.2 1.69 � 10�7 DSC3 3.5 1.49 � 10�2

FERMT1 3.2 2.07 � 10�9 BAIAP2L1 3.4 2.47 � 10�5

SLC2A1 3.1 2.73 � 10�7 GPX2z 3.4 2.70 � 10�2

SLC7A11 3.1 1.72 � 10�6 LRIG3 3.4 1.31 � 10�3

ANKRD22 3 4.06 � 10�8 DSG3 3.4 3.67 � 10�2

Down-regulated (all histologies)
FABP4z 0.12 4.10 � 10�10 SFTPCz 0.02 2.21 � 10�9

SLC6A4 0.16 5.56 � 10�8 HBB 0.05 1.62 � 10�8

AGER 0.17 2.99 � 10�9 MRC1 0.06 4.02 � 10�8

AGER 0.17 2.59 � 10�9 MRC1 0.06 4.02 � 10�8

AGER 0.18 1.93 � 10�9 FABP4z 0.07 5.11 � 10�8

TMEM100 0.19 2.07 � 10�9 PECAM1 0.08 4.97 � 10�8

GKN2 0.20 8.62 � 10�7 GMFG 0.09 6.40 � 10�8

CPB2 0.21 2.53 � 10�7 A2M 0.10 5.10 � 10�7

FCN3 0.22 1.74 � 10�8 FMO2x 0.11 5.11 � 10�8

FIGF 0.22 1.08 � 10�6 LDB2 0.11 2.21 � 10�9

WIF1 0.22 1.70 � 10�6 ABI3BP 0.11 4.02 � 10�8

SFTPCz 0.22 3.18 � 10�5 AQP4 0.12 4.21 � 10�6

ANKRD1 0.23 1.24 � 10�7 CALCRL 0.12 1.14 � 10�6

ADH1B 0.23 3.50 � 10�6 ANKRD1 0.13 5.90 � 10�7

RTKN2 0.24 3.42 � 10�10 LRRK2 0.13 1.94 � 10�4

CLDN18 0.24 8.95 � 10�7 PTPRB 0.13 5.17 � 10�7

ST8SIA6 0.25 1.22 � 10�10 HBA1 0.14 6.08 � 10�8

FHL1 0.25 3.20 � 10�9 HBA1 0.14 6.08 � 10�8

TCF21 0.26 1.17 � 10�8 MSR1 0.14 1.39 � 10�6

PKHD1L1 0.26 4.10 � 10�10 EPAS1 0.14 4.97 � 10�8

Macro: n Z 32 T, n Z 32 NT, n Z 31 pairs. LCM: n Z 21 T, n Z 20 NT, n Z 17 pairs. Repeated gene names indicate redundant probe sets.
*Fold change (FC) reflects the ratio of transcript levels in T versus NT alveolar, by microarray.
yBenjaminieHochberg false-discovery rate (FDR)eadjusted significance.
zGenes common to both Macro and LCM signatures.
xFMO2 for a functional protein is reclassified as FMO4 (flavin containing monooxygenase 4).

Lung Cancer Transcriptomes from LCM
adenocarcinoma and squamous cell carcinoma histological
subgroups (Figures 3 and 4).

The five most up-regulated genes for the LCM speci-
mens (with preamplification), all tumor histologies com-
bined, were SPINK1, AKR1C2, CENPF, TOP2A, and CP;
the five most down-regulated were SFTPC, HBB, MRC1,
FABP4, and PECAM1. There was no overlap for the five
most up-regulated or down-regulated (and only modest
The American Journal of Pathology - ajp.amjpathol.org
overlap for the full set of 40 dysregulated genes) between
the two tissue-sampling platforms (ie, Macro homogenized
and LCM) (Table 1). Comparisons of T and NT to the six
LCM NTb samples are listed in Supplemental Tables S2
and S3.

Thegenesmost up-regulatedgenes inLCM,prioritizedbyFC
and for adenocarcinoma and squamous cell carcinoma histol-
ogies combined, included CENPF (mechanics of centrosome
2873
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Table 2 Genes Differentially Expressed in Adenocarcinoma (T versus NT) in Macro and LCM Samples

Macro LCM

Gene FC* Padjusted
y Gene FC* Padjusted

y

Up-regulated (adenocarcinoma)
SPP1z 11.4 7.76 � 10�9 SPINK1z 38.3 3.25 � 10�3

SPINK1z 6.7 2.59 � 10�4 CP 15.9 4.31 � 10�3

AFAP1z 6.4 5.41 � 10�7 OCIAD2 6.9 4.64 � 10�6

TMPRSS4 5.3 1.51 � 10�6 SNORA73A 6.8 5.97 � 10�4

MUC21 4.5 2.66 � 10�5 AGR2z 6.6 4.44 � 10�4

MUC21 4.4 3.02 � 10�5 GOLM1 4.5 4.88 � 10�3

MUC21 4.2 1.94 � 10�5 LRIG3 4.5 2.58 � 10�2

MMP12 4.2 2.41 � 10�4 SPP1z 4.2 4.78 � 10�2

CEACAM5 3.8 1.65 � 10�3 NQO1 4.2 8.22 � 10�3

ANKRD22 3.5 6.85 � 10�7 BAIAP2L1 3.8 6.67 � 10�4

CST1 3.5 2.28 � 10�4 EHF 3.8 3.81 � 10�5

MMP1 3.4 3.13 � 10�3 FRK 3.4 2.78 � 10�3

CXCL13 3.3 1.31 � 10�4 SLC44A4 3.4 9.27 � 10�4

AGR2z 3.1 1.04 � 10�5 SLC44A4 3.4 9.27 � 10�4

GREM1 3.1 6.71 � 10�4 SLC44A4 3.4 9.27 � 10�4

COL10A1 3.1 2.81 � 10�5 SLC41A2 3.4 2.14 � 10�3

MUC5B 3.1 2.54 � 10�3 MUC1 3.3 8.90 � 10�4

ABCC3 3.0 2.66 � 10�9 LOC151009 3.3 8.78 � 10�3

GCNT3 2.9 7.86 � 10�6 AFAP1z 3.3 2.63 � 10�2

GLB1L3 2.9 2.53 � 10�3 HOOK1 3.2 4.50 � 10�5

Down-regulated (adenocarcinoma)
SLC6A4 0.10 4.54 � 10�8 SFTPC 0.02 2.11 � 10�9

FABP4z 0.11 1.09 � 10�8 HBB 0.05 1.89 � 10�6

TMEM100z 0.14 1.59 � 10�9 FABP4z 0.05 2.52 � 10�8

ANKRD1z 0.18 4.27 � 10�7 PECAM1 0.07 1.26 � 10�7

AGER 0.18 8.08 � 10�8 CAV1 0.07 2.11 � 10�9

AGER 0.19 5.85 � 10�8 ANKRD1z 0.07 4.14 � 10�9

AGER 0.19 5.06 � 10�8 MRC1 0.07 1.47 � 10�4

RTKN2z 0.19 5.13 � 10�9 MRC1 0.07 1.47 � 10�4

FCN3 0.20 7.74 � 10�8 CALCRL 0.07 1.05 � 10�5

GKN2 0.21 7.97 � 10�5 LDB2 0.09 8.70 � 10�9

CPB2 0.22 2.69 � 10�5 FMO2 0.09 2.21 � 10�5

WIF1 0.23 7.71 � 10�5 CRYAB 0.09 1.47 � 10�6

NCKAP5 (alias NAP5) 0.23 7.79 � 10�10 GMFG 0.10 9.69 � 10�5

PKHD1L1 0.24 4.25 � 10�9 LPHN2 0.10 3.66 � 10�6

ACADL 0.24 3.67 � 10�8 ABI3BP 0.10 2.74 � 10�8

CD36 0.25 1.80 � 10�6 RTKN2z 0.10 1.18 � 10�6

FIGF 0.25 7.59 � 10�6 CD36 0.10 6.40 � 10�4

IGSF10 0.25 3.29 � 10�9 TMEM100z 0.11 1.25 � 10�7

GPM6A 0.25 4.72 � 10�10 PTPRB 0.11 1.54 � 10�7

EDNRB 0.25 2.75 � 10�9 DCN 0.12 1.31 � 10�4

Macro: n Z 17 T, n Z 18 NT, n Z 17 pairs. LCM: n Z 11 T, n Z 10 NT, n Z 7 pairs. Repeated gene names indicate redundant probe sets.
*Fold change (FC) reflects the ratio of transcript levels in T versus NT alveolar, by microarray.
yBenjaminieHochberg FDR-adjusted significance.
zGenes common to both Macro and LCM signatures.

Lin et al
migration in mitosis), TOP2A (chromatin condensation and
mitosis), and DSG2 (desmosomal protein). Genes up-regulated
in both LCM and Macro homogenized samples, all three his-
tologies, were SPINK1 (alias TATI; encoding a protease inhib-
itor), AKR1C2 (encoding an aldo-keto reductase), and ANLN
(putatively involved in PI3K/AKT signaling). The genes most
up-regulated only in adenocarcinomaLCMspecimens (Table 2)
included CP (metal-binding function), OCIAD2 (function un-
known); SNORA73A (function unknown),GOLM1 (encoding a
2874
Golgi apparatus protein), LRIG3 (involved in EGFR signaling);
and GPX2 (antioxidant enzyme glutathione peroxidone). Both
Macro homogenized and LCM adenocarcinoma specimens
exhibited up-regulation of SPINK1, AFAP1 (actin filament
associated protein 1), AGR2 (function unknown), and SPP1
(osteopontin; tumor invasion).
Down-regulated genes unique to LCM, for all three histol-

ogies combined and prioritized by FC, included MRC1
(involved in DNA replication, S phase checkpoint); AQP4
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Genes Differentially Expressed in Squamous Cell Carcinoma (T versus NT) in Macro and LCM Samples

Macro LCM

Gene FC* Padjusted
y Gene FC* Padjusted

y

Up-regulated (squamous cell carcinoma)
DSG3z 11.2 2.12 � 10�2 TP63z 12.2 2.75 � 10�2

GPX2 10.2 8.36 � 10�3 DSG3z 12.0 3.46 � 10�2

AKR1C2 9.7 1.35 � 10�3 DSC3z 11.0 3.01 � 10�2

SERPINB5 9.3 8.99 � 10�3 BIRC5 8.7 2.75 � 10�2

DSC3z 9.0 3.09 � 10�2 CENPF 8.7 3.96 � 10�2

AKR1B10 7.9 1.83 � 10�2 TOP2A 8.6 3.39 � 10�2

MMP12 7.6 2.42 � 10�2 DSP 8.5 2.64 � 10�2

KRT5z 7.6 3.21 � 10�2 KRT6Az 8.1 4.14 � 10�2

KRT6Az 7.2 2.42 � 10�2 KRT5z 7.6 3.15 � 10�2

SPRR2A 6.9 4.10 � 10�2 ANLN 7.3 2.75 � 10�2

KRT6Cz 6.4 2.48 � 10�2 KRT6Cz 6.6 4.14 � 10�2

SPP1 6.3 3.65 � 10�2 TPX2 6.4 3.02 � 10�2

TMPRSS4 6.2 1.56 � 10�2 ASPM 6.3 3.13 � 10�2

KRT6B 6.1 2.73 � 10�2 SNORD26 6.1 4.86 � 10�2

ADH7 6.0 2.34 � 10�2 FAM83B 6.1 2.75 � 10�2

CKMT1A 5.7 8.36 � 10�3 GPR87 5.8 3.95 � 10�2

CKMT1A 5.7 8.36 � 10�3 S100A2 5.7 4.59 � 10�2

UCHL1 5.5 8.36 � 10�3 VSNL1 5.6 4.19 � 10�2

TP63z 5.3 2.60 � 10�2 CDC6 5.6 2.71 � 10�2

PTPRZ1 5.3 1.94 � 10�2 DAPL1 5.6 4.12 � 10�2

Down-regulated (squamous cell carcinoma)
FABP4 0.18 3.47 � 10�2 SFTPC 0.03 3.57 � 10�2

AGER 0.19 3.3 � 10�2 C4BPA 0.05 7.07 � 10�3

AGER 0.20 3.3 � 10�2 SLC34A2 0.06 3.42 � 10�2

AGER 0.21 3.21 � 10�2 IGJ 0.06 2.92 � 10�2

CLDN18 0.23 3.65 � 10�2 HBB 0.06 3.02 � 10�2

VEPH1 0.23 2.11 � 10�2 MRC1 0.07 2.49 � 10�2

TCF21 0.23 3.05 � 10�2 MRC1 0.07 2.49 � 10�2

MAMDC2 0.24 3.58 � 10�2 SFTPA2 0.07 2.16 � 10�2

PEBP4 0.25 4.44 � 10�2 SFTPA2 0.07 2.16 � 10�2

CLIC5 0.26 2.76 � 10�2 LRRK2 0.08 4.20 � 10�2

ST8SIA6 0.26 1.83 � 10�2 STEAP4 0.08 1.78 � 10�2

FHL1 0.26 3.70 � 10�2 A2M 0.08 3.03 � 10�2

ITGA8 0.27 4.07 � 10�2 CYP2B7P (previously
CYP2B7P1)

0.08 1.78 � 10�2

CCDC141 0.28 2.40 � 10�2 SFTPB 0.10 2.38 � 10�2

ANGPTL1 0.29 1.75 � 10�2 GPR116 0.11 2.92 � 10�2

BMP5 0.29 3.01 � 10�2 GMFG 0.11 2.75 � 10�2

EMCN 0.29 2.86 � 10�2 SCGB3A2 0.11 3.16 � 10�2

CHRDL1 0.30 3.07 � 10�2 PDK4 0.11 2.10 � 10�2

NECAB1 0.30 3.31 � 10�2 HBA1 0.11 3.61 � 10�2

HSD17B6 0.30 3.60 � 10�2 HBA1 0.11 3.61 � 10�2

Macro: n Z 13 T, n Z 12 NT, n Z 12 pairs. LCM: n Z 9 T, n Z 8 NT, n Z 8 pairs. Repeated gene names indicate redundant probe sets.
*Fold change (FC) reflects the ratio of transcript levels in T versus NT alveolar, by microarray.
yBenjaminieHochberg FDR-adjusted significance.
zGenes common to both Macro and LCM signatures.

Lung Cancer Transcriptomes from LCM
(water channel involved in tumor progression);PTPRB (protein
phosphatase with cancer association); and MSR1 (macrophage
tumor microenvironment). For both platforms and both histol-
ogies, the down-regulated genes with some literature available
were SFTPC (alveolar type II cell marker, involved in adeno-
carcinoma progression), FABP4 (fatty acid binding; relation to
cancer unclear), andANKRD1 (function unclear; not previously
studied in lung cancer). Uniquely in LCM adenocarcinoma
The American Journal of Pathology - ajp.amjpathol.org
specimens, we observed tumor down-regulation in SFTPC,
PECAM1 (suspected angiogenesis), CAV1 (scaffolding, links
integrins to RaseERK), andMRC1. The following genes were
down-regulated in both LCMandMacro homogenizedNSCLC
tumors: FABP4, ANKRD1, CD36 (linked to thrombospondin
and angiogenesis), TMEM100 (member of the TGFB super-
family, downstream of BMP/ALK1), and RTKN2 (rhotekin 2;
regulates NFkB pathway).
2875
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Figure 3 Validation of adenocarcinoma-specific (A) and squamous cell carcinomaespecific (B) DE transcripts in Macro versus LCM specimens. A: The
analysis revealed 177 T versus NT DE transcripts in common between the Macro and LCM platforms (approximately 27%), shown in the Venn diagram. Validation
of T versus NT microarray-based differential expression by quantitative real-time RT-PCR (RT-qPCR) in Macro and LCM specimens. PCR-based assays of top
microarray hits were evaluated using RNA-specific RT-qPCR on the same adenocarcinoma sample, as described under Materials and Methods, are shown in the
graphs. The values for Macro tissue sets were concordant (ie, in the same direction, up-regulated or down-regulated) with LCM microarray values (Table 2) for
the selected top microarray hits. Such concordance was also found with RT-qPCR validation, although of course the actual lists of the most dysregulated genes
differed between Macro and LCM specimens. B: The analysis revealed 98 TeNT DE transcripts in common (approximately 23%) between the Macro and LCM
platforms (shown in Venn diagram). Validation of squamous cell carcinoma T versus NT microarray-based differential expression by RT-qPCR in Macro and LCM
specimens is shown in the graphs. Assays of top microarray hits were evaluated using an RNA-specific RT-qPCR on the same sample, as described under
Materials and Methods. The values for Macro tissue sets were concordant with LCM microarray values (Tables 1, 2, and 3) for the selected top microarray hits.
Such concordance was largely true of the LCM RT-qPCR validation for LCM microarray top hits, the two exceptions being TOP2A and BIRC5, which were up-
regulated on the microarray but down-regulated in the RT-qPCR. Also, TP63 was up-regulated only 1.6-fold, albeit in the same qualitative direction as the
microarray data. Again, the actual lists of the most dysregulated genes differed between Macro and LCM specimens. Data are expressed as mean FC (T versus
NT) values, scaled to RNA-specific amplification of a housekeeping gene (GAPDH ) (A) or to parallel RNA-specific amplification of a housekeeping transcript (b-
actin) (B) not confounded by pseudogenes.

Lin et al
Controlling for Preamplification Bias Inherent to Small
Samples, such as the LCM Platform

A subgroup of eight representative sample pairs was
selected for comparison of tissue-sampling platform versus
amplification platform (Figure 5). We identified 1349 DE
genes overall for Macro samples and 728 DE genes overall
for MacroePico control samples. The overlap of 572 DE
genes between conventional Macro (without amplification)
and MacroePico (with amplification) represents 78.6%
concordance; as a corollary, there exists 21.4% discordance
between these two tissue-sampling platforms that is attrib-
utable to the preamplification procedure itself. Similarly,
430/728 (59.1%) of MacroePico DE genes were also found
in LCM samples (which were also subject to Pico pre-
amplification); this implies that 40.9% of the DE genes are
2876
attributable to the LCM histological selection process itself.
Thus, the percentage of unique TeNT DE genes attributable
to amplification (21.4%) is significantly less than those
attributable to LCM cell selection (40.9%, P < 0.001).
Direct comparison of the gene lists for the three tissue-
sampling platforms identified an overlap of 382 genes that
were differentially expressed regardless of sampling or
amplification technique (Figure 5), and 672 additional genes
were found byMacro sampling only. The full list of 382 genes
from these eight samples is available at Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo, accession num-
ber GSE31552).
We also noted that the preamplification protocol micro-

arrays (LCM and MacroePico) tended, with some excep-
tions, to be associated with a wider dynamic FC range,
whether considering nonemicrodissected or microdissected
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Correlation of differential gene expression comparing RT-qPCR
with expression cDNA microarray for Macro (A) and LCM (B) samples.
Spearman correlation indicates a strong relationship between the two
gene-expression platforms for both types of tissue (Macro: r Z 0.789,
P Z 0.0013; LCM: r Z 0.964, P Z 0.0028). Each point represents one
representative gene in replicate queried by one platform in the Macro (A) or
LCM (B) tissue setting.

Lung Cancer Transcriptomes from LCM
material (Supplemental Table S4). LCMePico material ten-
ded to exhibit the widest dynamic range on these expression
microarrays for down-regulated genes. TheMacroePico data
generally indicated that the preamplification was a minor
contributor to the range expansion of TeNT differential
expression. Rather, cell selection and/ormicrodissection itself
appeared to be the major contributor to the differences in
tissue signatures between Macro conventional and LCM
samples; this was particularly notable in down-regulated
T genes.
Figure 5 Differentially expressed genes for different sample prepara-
tion procedures, from a representative subset of eight tumorenontumor
pairs for which all three tissue-sampling platform types were available:
macroscopiceconventional homogenized (Macro), macroscopiceconven-
tional homogenized small aliquot undergoing Pico preamplification (Mac-
roePico) controls, and LCM samples also undergoing Pico preamplification
(LCM). The corresponding gene lists, including overlap lists, are available
from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo; acces-
sion number GSE31552).
RT-qPCR Validation

In general, the RNA-specific RT-qPCR data from 33
selected transcripts (Tables 4 and 5) support the microarray
data for the most up-regulated or down-regulated genes,
from both the Macro sample sets (13 adenocarcinoma and
11 squamous cell carcinoma) and the LCM sample sets (6
adenocarcinoma and 8 squamous cell carcinoma). The
transcripts identified as up-regulated in the microarray were
identified as up-regulated by RT-qPCR (Figure 3). Two of
the 16 tested gene transcripts in LCM samples (12.5%) were
exceptions; in squamous cell carcinoma samples uniquely,
both TOP2A and BIRC5 were up-regulated in microarrays,
but down-regulated in the RT-qPCR assays. A strong cor-
relation of differential gene expression between RT-qPCR
and cDNA microarray data was observed in both Macro
The American Journal of Pathology - ajp.amjpathol.org
and LCM samples (Figure 4). Spearman correlation indi-
cated a strong relationship between the two gene-expression
platforms (RT-qPCR and microarray) for both types of tis-
sue sampling (Macro: r Z 0.789, P Z 0.0013; LCM:
r Z 0.964, P Z 0.0028, respectively) (Figure 4).

LCM NT Alveolar versus NT Bronchial Microarray
Comparison

Both the T versus NTa and T versus NTb comparisons, as
well as the direct comparison of microdissected NTa with
microdissected NTb, revealed marked differences between
the two normal lung compartments (Supplemental Tables S2
and S3). This was reflected in the overall comparisons [his-
tologies combined T versus NT (alveolar versus bronchial)]
(Supplemental Table S2). Under stratification by tumor his-
tology (such as squamous cell carcinoma compared with
NTb, because squamous cell carcinoma is thought to arise
from the bronchi) (Supplemental Table S2), marked T versus
NT differences in DE persisted, depending on the nature of
the comparison tissue (alveolar or bronchial). Direct NTa
versus NTb comparisons were also performed (Supplemental
Table S3).

Tumor Classification Signature

To evaluate the performance of the respective gene signature
for correct classification of the T versus NT status of a given
2877
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Table 4 PCR Primers for Confirmation of the Most Dysregulated
Genes from Macro Samples

Primer name Sequence

AGER Forward: 50-GATGGTGTGCCCTTGCCCCTTCC-30

Reverse: 50-GATCCTCCCACAGAGCCTGCAGTTG-30

AKR1B10-UR Forward: 50-TGTTCAACTAGGATCAGAATATCACA-30

AKR1C2-UR Forward: 50-TGTGGATGGTGACACAGAGG-30

ANKRD22 Forward: 50-GCTGCCTGAGCTGCTGGAAA-30

Reverse: 50-GCTGCTTGGCAGATGGGCTCA-30

AQP4l Forward: 50-GGAATTTCTGGCCATGCTTA-30

Reverse: 50-AGACTTGGCGATGCTGATCT-30

b-Actin Forward: 50-ACAGAGCCTCGCCTTTGCCG-30

Reverse: 50-CATCACGCCCTGGTGCCTGG-30

b-Actin UR Forward: 50-TATTTTGAATGATGAGCCTTCGT-30

CEACAM5 Forward: 50-GGTGCATCCCCTGGCAGA-30

Reverse: 50-GGTTGCCATCCACTCTTTCA-30

CYP24A Forward: 50-ACCCAGGTGTTGGGATCCAGTGA-30

Reverse: 50-AGCTCTGCTAATCGGCGACCA-30

CYP24A1 Forward: 50-ACCCAAAGGAACAGTGCTCATGCT-30

Reverse: 50-TGCGGACAATCCAACAAAGAGCCA-30

DSC3-UR Forward: 50-GCCAGAATGCTTGGATATGAA-30

DSG3 Forward: 50-CGACCGGGAGGAAACTCCAAGC-30

Forward-2: 50-AGCTGCTAGCTTGCTCTCGGTCA-30

Reverse: 50-GTGCCTCAAACTCACTGGTGATGA-30

Reverse-2: 50-TCATCACCAGTGAGTTTGAGGCAC-30

FABP4 Forward: 50-GAAGTAGGAGTGGGCTTTGCCACC-30

Reverse: 50-GCACATGTACCAGGACACCCCC-30

GAPDH-U Forward: 50-AGCCCCAGCAAGAGCACAA-30

HHIP Forward: 50-GCGGATGAGTTTTGCTTTTA-30

Reverse: 50-AGCCATCCCCACTATGC-30

KRT6a Forward: 50-CCTTCATCGACAAGGTGCGGT-30

Reverse: 50-CACCAGGTCCTGCATGCCTCTG-30

MMP1 Forward: 50-GGGAGATCATCGGGACAACTC-30

Reverse: 50-GGGCCTGGTTGAAAAGCAT-30

MMP12 Forward: 50-TGCTGATGACATACGTGGCA-30

Reverse: 50-AGGATTTGGCAAGCGTTGG-30

Muc21 Forward: 50-CTTCCCATAGTGCATCTACTGC-30

Reverse: 50-AGGGACAGGCTGTTTCTCAC-30

NAP5 Forward: 50-GGGAAGAACCTCAGGAAAAGGCAAT-30

Reverse: 50-TGGGGGTTCAAGTAACACTTTTCGC-30

RTKN2 Forward: 50-GCCGACTAGTTGCCCAGCCA-30

Reverse: 50-TGCCCGGATTCTGGTTTCCTTGT-30

RTKN2-UR Forward: 50-GGAGAAAATACTAATGCTGACACG-30

SERPINB5-UR Forward: 50-GTGTTGCAGGTTCATGGATT-30

SPINK1 Forward: 50-ACTCCCTGGGAAGAGAGGCCAAAT-30

Reverse: 50-GGCCTCGCGGTGACCTGATG-30

SPP1 Forward: 50-ACAGCCAGGACTCCATTGA-30

Reverse: 50-TCAGGTCTGCGAAACTTCTTAG-30

TMPRSS4 Forward: 50-CCGATGTGTTCAACTGGAAG-30

Reverse: 50-GAGAAAGTGAGTGGGAACTG-30

UR60 Reverse: 50-AACGAGACGACGACGGACTTT-30

WI Forward: 50-CAGTGCCTCACAAGGCATCAGTTGT-30

WIF1 Reverse: 50-CTCCATTTCGGCACCCGCCT-30

Universal reverse PCR primer (UR), amplification with the Spivack Lab-
oratory’s RNA-specific RT-qPCR strategy with tagged primer to avoid inad-
vertent genomic DNA pseudogene amplification.13

Table 5 Primers for Confirmation of the Most Dysregulated
Genes from LCM Samples

Gene Primer sequence

Adenocarcinoma
CEACAM5 Forward: 50-GGTGCATCCCCTGGCAGA-30

Reverse: 50-GGTTGCCATCCACTCTTTCA-30

FABP4* Forward: 50-AGAGCATAAGCCAAGGGAC-30

HBB* Forward: 50-GCTGCCTATCAGAAAGTGG-30

SFTPC* Forward: 50-CCAACGGGAAAGGAAACG-30

SPINK1 Forward: 50-ACTCCCTGGGAAGAGAGGCCAAAT-30

Reverse: 50-GGCCTCGCGGTGACCTGATG-30

SPP1 Forward: 50-ACAGCCAGGACTCCATTGA-30

Reverse: 50-TCAGGTCTGCGAAACTTCTTAG-30

TOP2A* Forward: 50-TCTGAGTCTGAATCTCCCAAAG-30

Squamous cell carcinoma
BIRC5* Forward: 50-GTTGGAGTGGAGTCTGGGA-30

HBA1* Forward: 50-TTTCAGACAGCAGCAGAGCAA-30

HBB* Forward: 50-GCTGCCTATCAGAAAGTGG-30

SCGB3A2* Forward: 50-GAAGAAACTGCTGGAGGC-30

SFTPC* Forward: 50-CCAACGGGAAAGGAAACG-30

TOP2A* Forward: 50-TCTGAGTCTGAATCTCCCAAAG-30

TP63* Forward: 50-GGGAGCCAGAAGCCAATC-30

*Amplified with reverse primer UR60 (Table 4).

Lin et al
lung tissue, the expression patterns from an initial training set
of TeNT pairs (all three histologies) were generated. The
best models for Macro homogenized and for LCM samples
are listed (Tables 6 and 7, respectively). In the Macro sam-
ples, the cross-validation misclassification rate in the best
2878
training set (entailing eight genes) was approximately 10%.
For the LCM samples, a minimum of nine genes were
necessary to attain the lowest misclassification rate (<5%)
during initial cross-validation, establishing a training set.
Subsequently, the training signatures for LCM samples ob-
tained from 14 donors yielding 20 LCM samples (10 paired T
and 10 NT alveolar tissues) were used to predict the T versus
NT status of the test set of 20 independent LCM samples (10
T and 10 NT) from a separate set of 13 subjects with clini-
cally matched characteristics. All relevant clinical variables
(ie, age, sex, cumulative smoking dose, smoking status, and
histology) were statistically similar between training and test
sets for both Macro homogenized and LCM specimen donors
(P > 0.05 for each variable).
We then tested the performance of the respective signa-

tures in the test set classification (receiver operating char-
acteristics) analyses. The predictive value of an eight-gene
Macro homogenized training set signature (Table 6) in
identifying tissue as a tumor in the separate test set of Macro
homogenized sample pairs was very good (AUC Z 0.871).
Applied to a separate LCM test set of matched donor sample
pairs, the predictive value of the LCM training set-derived
nine-gene signature identifying tissue as a tumor (Table 7)
was outstanding (AUC Z 1.00), suggesting that a micro-
dissected expression microarray signature from clinically
matched subjects is more reproducible than that for Macro
samples.
We also obtained an eight-gene LCM signature specific to

the adenocarcinoma subtype on a training set, by similar
methods (Supplemental Table S5). However, there were too
few adenocarcinoma LCM cases to validate this discrimi-
nant signature in a separate test set.
ajp.amjpathol.org - The American Journal of Pathology
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Table 6 Eight-Gene Signature for Macro Specimens

Gene Name or description (Homo sapiens genes)

ITGA5 Integrin, alpha 5 (fibronectin receptor, alpha polypeptide), mRNA
FUT2 Fucosyltransferase 2 (secretor status included), transcript variant 1, mRNA
CNRIP1 Cannabinoid receptor interacting protein 1, transcript variant CRIP1a, mRNA
TMEM74B (previously C20orf46) Transmembrane protein 74B; Transmembrane protein C20orf46 gene:ENSG00000125895
CBR3 Carbonyl reductase 3, mRNA
JAKMIP2 Janus kinase and microtubule interacting protein 2, mRNA
NUPL2 Nucleoporin like 2, mRNA
FRMD3 FERM domain containing 3, mRNA

Lung Cancer Transcriptomes from LCM
Comparison with the TCGA Reference Data Set

The TCGA RNA-seq downloaded raw data from batch
144 were analyzed to rank gene transcripts for adenocarci-
noma TeNT paired tissue (Macro) from the same donor
(Supplemental Table S6). These RNA-seq data were queried
for T versus NT discrimination of individual transcripts and
were ranked by FC (given BenjaminieHochberg adjusted
P value of <0.05), yielding approximately 7000 significant
genes that were tumor discriminant. Some concordance of
our microarray-based data with this set of TCGA-defined
genes was apparent. Of the most up-regulated genes in the
present study (18 Macro and 18 LCM, excluding redundant
probe sets), 17 Macro and 16 LCM transcripts exhibited
>90% nonzero readings also in the TCGA RNA-seq batch
144 data set; of these, 13 Macro and 10 LCM tumor
differential transcripts remained statistically significant
(adjusted P < 0.05). Within these 13 and 10 significantly
up-regulated overlapping genes (detected by both RNA-seq
and cDNA microarray), 5/13 (38.5%) Macro genes and 2/10
(20%) LCM genes also ranked in the top 100 in RNA-seq
data. For the most down-regulated genes, 18 Macro and
19 LCM transcripts and 17 Macro and 19 LCM genes
exhibited more than 90% nonzero readings and remained
statistically significant in TCGA RNA-seq batch 144 data.
Within these TCGA significant genes, 14/17 (82.4%) Macro
genes and 6/19 (31.6%) LCM genes ranked in the top 100 in
RNA-seq data. The concordance in the qualitative direction
of FC (up- or down-regulated) between the present data and
data from TCGA is further highlighted by the finding that
68/69 such overlapping genes (ie, the most highly differ-
entially expressed genes found also in RNA-seq data and
Table 7 Nine-Gene Signature for LCM Lung Specimens, All Three Histo

Gene Name or description (Homo sapiens gene

DDR2 Discoidin domain receptor tyrosine kinas
MMRN2 Multimerin 2, mRNA
C11orf80 Chromosome 11 open reading frame 80,
SLCO2B1 Solute carrier organic anion transporter f
RPS20P27 Ribosomal protein S20 pseudogene 27, m
OVCH1 Ovochymase 1, mRNA
IRF8 Interferon regulatory factor 8, mRNA
SLC26A2 Solute carrier family 26 (sulfate transpor
ACKR4 (previously CCRL1) Atypical chemokine receptor 4; chemokin
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showing more than 90% nonzero readings) were altered in
the same direction; the one exception was SLC44A4.

Ingenuity Pathway Analysis of DE Genes

Genes with significant difference in expression level be-
tween T and paired NT samples were classified into key
pathways, based on their biological role into key pathways,
using IPA. In this fashion, we analyzed the entire set of
significantly dysregulated genes (adjusted P < 0.05 and
either FC > 2.0 for up-regulated genes or FC < 0.5 for
down-regulated genes), from LCM and Macro data sets
stratified by tumor histology. The most significant pathways
represented in the gene signatures established by comparing
paired TeNT tissue are listed in Supplemental Table S7.
Both LCM and Macro data sets were found to be enriched
significantly in genes belonging to similar pathways,
although individual genes in each list variously differed or
overlapped (Supplemental Table S7).

For Macro homogenized T (both NSCLC histologies)
versus NT (alveolar) samples, the cancer disease associa-
tions were strong. The component pathways (Benjaminie
Hochberg adjusted) included cell movement (adjusted P Z
3.55 � 10�9); cell growth and proliferation (adjusted
P Z 5.22 � 10�8); and cell cycle progression (adjusted
P Z 1.70 � 10�2) (Supplemental Table S7).

For LCM T (both NSCLC histologies) versus NTa sam-
ples, the cancer disease associations were stronger. The
component pathways included cell growth and proliferation
(adjusted P Z 2.20 � 10�17), cell cycle progression
(adjusted P Z 2.59 � 10�11), and apoptosis (adjusted
P Z 7.53 � 10�13) (Supplemental Table S7), as well as
logies Combined

s)

e 2; Migration-inducing gene 16 protein mRNA, complete cds

mRNA
amily, member 2B1, transcript variant 2, mRNA
RNA (cDNA clone IMAGE:5549882)

ter), member 2, mRNA
e (C-C motif) receptor-like 1 (CCRL1), transcript variant 1, mRNA
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cell-to-cell signaling and interaction, among others (data not
shown). The LCM data set also uniquely revealed many
pathways and genes not previously well recognized in lung
cancer biology, including immune functions active in allo-
graft rejection, cytotoxic T-lymphocyteemediated apoptosis
of target cells, antigen presentation pathway, hematological
system development, and tissue morphology (data not
shown). A local cancer network from TeNT DE compari-
sons is presented for Macro specimens in Supplemental
Figure S1A and for LCM specimens in Supplemental
Figure S1B. The results differ substantially. Additionally,
although recognizable cancer elements and nodes such as
cyclin D, CDK, MSH6, eNO1, RAR, RXR, FOS, VDR, and
VEGF are apparent, the role of many other elements (eg,
immunological function) (Supplemental Figure S2) that
exhibit differential expression and network connections
have not been well described, particularly not in the lung
cancer literature.

Effects of Smoking Status

In exploratory analysis, we found that, among LCM sam-
ples, TeNT DE genes varied somewhat across smoking
status categories (current, former, never), (Supplemental
Table S8). Within the power limits of this pilot explor-
atory subgroup analysis, where n varied from approximately
8 TeNT pairs for current smokers, to approximately 10
TeNT pairs for former smokers, and approximately 3
TeNT pairs for never smokers, it appears that current and
former smokers differ in the vast majority of genes impli-
cated in the tumors. However, these smoking data are un-
stable; numbers were too low in these smoking strata to
discern the true effect of smoking on T-unique expression
signatures.

Discussion

Homogenization of Cell Types Mixes Transcriptomes

We have shown that the transcriptomes of morphologically
defined, selected lung T and NT cells differ substantially
from those of the corresponding homogenized lung tissue
sets. This finding holds even with control for the pre-
amplification required to interrogate the transcriptome of
these sets of approximately 1000 microdissected cell. A
major implication of this finding is that many or most of the
published lung cancerederived transcriptomes likely contain
the confounding factor of cellular heterogeneity. Thus, it
seems that many previous studies are necessarily non-
replicable, because the cellular admixing differs from sample
to sample.14e17

To determine the effect of cell selection by LCM on
transcriptomes, distinct from that of the preamplification
step, we performed a separate set of expression microarray
experiments. In a common and representative subset of eight
TeNT pairs of samples, comparison of LCM with
2880
MacroePico preamplified samples revealed the TeNT DE
differences attributable to the LCM cell selection process
itself (approximately two-thirds), rather than to the pre-
amplification process (approximately one third) inherent to
small-sample amplification, as measured by differences
between Macro (conventional homogenized tissue coupled
with a conventional Affymetrix cRNA amplification proto-
col) to MacroePico preamplified samples. Thus, although
the comparison of LCM with Macro in the entire sample set
entails components of both cell selectionespecific and
preamplification-specific factors, cell selection appears to be
the predominant factor.
Both the most dysregulated LCM sampleederived genes

in a given histological stratum (eg, adenocarcinoma) and the
composite tumor classifying signatures in the present study
are quite different from those reported in the literature.
We believe that this is likely attributable to the virtues of
cell selection. If the LCM is accurate, one would expect a
resemblance to the few microdissected lung cancer tran-
scriptomes procured in the past. Among available studies, the
most directly comparable intrasubject T versus NT tran-
scriptome comparisons have been much smaller in scale and
have used unmatched T versus NT tissues and/or have used
an older microarray platform.1e3,18,19 Our present results are
consistent with the findings of Klee et al,1 who evaluated the
effect of preamplification in a highly detailed manner and
demonstrated that in their study the preamplification step had
a relatively modest effect onmost components of the T versus
NT DE signatures. Consistently, cell selection appeared to be
crucial for determining these differential transcriptomes of
cancer. Consonant with our lists of the 20 most up-regulated
and the 20 most down-regulated genes in adenocarcinomas,
they also picked out SPINK1, SPP1, and NQO1, as the most
over-expressed genes.1 The consistency and reproducibility
of the results in both studies is further reassuring.
Although a larger-scale study of airway transcriptomes has

been performed, the epithelial bronchial brushings were
limited to nonmalignant bronchial epithelium among lung
cancer cases versus noncancer controls, and no transcriptomes
from tumors themselves were assessed.20 Also, the LCM cell
selection process procures both bronchial and alveolar cells,
within the confines of some LCM imprecision, as opposed to
the >90% purity of the bronchial brushings. Finally, the pre-
amplification process required for the 103 cells procurable by
LCM is not required for bronchial brushings, which typically
yield 105 to 106 cells per sample.
Although there has not been a previous definitive study of

expression in LCM tissues directly comparing paired T and
NT samples, a large study by Selamat et al4 used manually
microdissected adenocarcinoma T and adjacent NT tissue,
albeit in a highly integrative fashion across clinical and
mutational subtypes. Rather than providing pure tran-
scriptome reporting, the authors reported largely integrative
genomic-transcriptomic, findings filtered mostly by DNA
methylation changes.4 Similarly, although genomic alter-
ations such as copy number variations in adenocarcinomas21
ajp.amjpathol.org - The American Journal of Pathology
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and mutational profiling22e24 have been reported in macro-
scopic tissues, few devoted modern-platform transcriptome
studies have been conducted,25 and certainly none with the
precision conferred by LCM in the present study.

In terms of comparison with larger public consortium da-
tabases, we have been unable tofind a primary TCGAanalysis
devoted to T versusNTdiscriminant expression for LCM; as a
rule, there are no consistent LCM TeNT paired specimens
interrogated in TCGA. We therefore took the initiative of
analyzing a representative RNA-seq data set (batch 144,
adenocarcinoma, macroscopic) ourselves (Supplemental
Table S8). The TCGA data based on macroscopic TeNT
tissue indicated significant overlap of TeNT discriminant
RNA-seqedetected transcripts with the microarray-based
data on macroscopic tissue, but less of an overlap with the
LCM results. For the 20 most up-regulated transcripts, 13
Macro and 10 LCM were significantly overlapping, and of
these approximately 5/13 (38.5%) Macro and 2/10 (20%)
LCM ranked among the top 100 TeNT discriminant tran-
scripts in RNA-seq data. For the down-regulated transcripts,
14/17 (82.4%) from microarray expression interrogation of
Macro samples overlapped with those from comparable
RNA-seq TCGA macroscopic samples; this overlap was
again less evident for the LCM samples, where 6/19 (31.6%)
ranked among the top 100 in TCGA RNA-seq data. These
findings highlight the differences between macroscopic and
LCM specimenebased signatures, as well as the RNA-
seqebased detection inherent to most of the TCGA data.
Overall, these macroscopic versus LCM-based differences
are based on both the preamplification steps required for
LCM-based transcriptome assay and especially on cell se-
lection itself.

Because paired Macro and LMC squamous cell carcinoma
samples were available from only six donors, we cannot
adequately comment on the comparability of findings to
those of the TCGA, but other impressively comprehensive
squamous cell carcinoma data are again notably based on
homogenized tumor tissue.26,27 This TCGA effort suggested
several expression and somatic alteration subtypes, charac-
terized by 3q24 localization, gene expression (KEAP1,
NFE2L2, PTEN, RB1, NF1, CDKN2A expression, which
were not apparent in our limited data set and chromosome
number instability (as well as mutation or copy number
variation which we did not study).

In terms of practicality, LCM is a labor-intensive proce-
dure,28 especially when capturing 1000 cells per lepidic
growth pattern, as well as replicate samples per donor-tissue
type across many donors. LCM is therefore not likely to be
used in routine clinical practice, nor in most research pro-
tocols as manually executed. One potential alternative
approach is the use of automated microdissection formats28

that might allow more routine use of this precision-
enhancing procedure in a variety of settings by permitting
procurement of perhaps up to 105 cells by LCM and thus
avoiding the need for preamplification (which simply is not
feasible manually). It should be noted that some researchers4
The American Journal of Pathology - ajp.amjpathol.org
have used manual microdissection (microscope plus scalpel)
quite successfully and with greater temporal efficiency and
throughput for tissue separation, although precision in this
setting may not be as good as for LCM.

The dynamic range of the up- and down-regulated genes
was compressed in the Macro samples, compared with the
LCM samples, particularly for genes down-regulated in the
present study (as well as in the most comparable study from
the literature1). This finding is not amajor surprise, because of
admixture dilution of the malignant cell transcriptomes with
those of nonmalignant cells in homogenized specimens, but
the degree of quantitative difference between Macro ho-
mogenized and LCM samples may not be fully accounted for
solely by the degree of expected cellular admixture (estimated
as two- to threefold). This implies that the preamplification
procedure for LCM microarray assays has distorted the FC
range for TeNT DE genes. This preamplification effect is
evident for some genes, but not for others. Although
the qualitative identity of the genes on our LCM lists at
Gene Expression Omnibus (http://www.nih.ncbi.nih.gov/
geo, accession number GSE31552) is largely accurate, we
cannot be certain that the quantitative FCs in the LCM data
reflect the precise level of altered regulation, apart from the 33
genes that we have directly validated by RNA-specific RT-
qPCR. In a representative set of transcripts, the micro-
arrayeRT-qPCR correlation was strong (rZ 0.789 to 0.964).

The range of FC values differs for RT-qPCR between
Macro and LCM adenocarcinoma specimens (Figure 3) for
some genes verified in common (SPP, SPINK1, CEACAM,
FABP4), and certainly those entailed distinct gene tran-
scripts among the most dysregulated TeNT genes from the
same resection samples. In summary, we speculate that
these qualitative and quantitative differences within a
given histological stratum (eg, adenocarcinoma) depend
on cell-selection technique (homogenization versus micro-
dissection), and possibly also on unmeasured differences in
surrounding NT tissues.

That the list of TeNT DE genes for the adenocarcinoma
transcriptome differs markedly from that for squamous cell
carcinoma is not a new finding.29 The present study pro-
vides a somewhat more refined list of DE genes in adeno-
carcinoma. For the most part, the most dysregulated DE
genes differed between the two histologies. We compared
the FC values of genes commonly detected by RT-qPCR in
both squamous cell carcinoma and adenocarcinoma tissues.
For Macro samples, six genes detected by RT-qPCR were
common to both squamous cell carcinoma and adenocarci-
noma. The differential expression of five of these genes had a
FC value of <2.5 for the mRNA level in squamous cell car-
cinoma (FCscc) versus adenocarcinoma (FCad): SPP1 (FCscc/
FCad Z 64/31.7 Z 2.0)30,31; MMP1 (FCscc/FCad Z 170.5/
109 Z 1.5)32; WIF1 (FCscc/FCad Z �46/�102 Z 0.45)33;
AGER (FCscc/FCad Z �378/�149 Z 2.5; not previously
reported with lung cancer); FABP4 (FCscc/FCad Z �175/
�181 Z 0.96)34; and TMPRSS4 (FCscc/FCad Z 186/
30.8 Z 6.1).35 For LCM samples, three genes were detected
2881

http://www.nih.ncbi.nih.gov/geo
http://www.nih.ncbi.nih.gov/geo
http://ajp.amjpathol.org


Lin et al
in common by RT-qPCR in squamous cell carcinoma and
adenocarcinoma: TOP2A (FCscc/FCadZ�41/�2.4Z 17.1);
SFTCP (FCscc/FCadZ�194/�4.8Z 40.4); andHBB (FCscc/
FCad Z �89/�14.5 Z 6.1). These three genes were down-
regulated in both squamous cell carcinoma and adenocarci-
noma, but substantially more so in squamous cell carcinoma,
which is consistent with recent reports.31,32,36,37We therefore
speculate that the qualitative and quantitative differences in
gene signatures between adenocarcinoma versus squamous
cell carcinomas, within any one tissue-sampling platform (ie,
within Macro or LCM sample sets) identify truly different
biologies.

In exploratory pilot analysis, the effect of smoking was
tentative but suggestive for differential expression (T versus
NT) between current and former smokers. This is in agree-
ment with previous reports on smoking-sensitive tran-
scriptomes.20,38 Although in the present study there was
certainly inadequate power to address this issue other than as
an exploratory, secondary endpoint, one of the strengths of
our study is that the effects of other inherited and acquired
donor factors were minimized by use of intraindividual
TeNT comparisons.

The transcriptomes of LCM NT tissues of predominantly
NTa versus NTb were also notably different. This was
certainly not a surprise, for these are anatomically and
morphologically different epithelia. Because putative epithelia
of origin for adenocarcinoma and squamous cell carcinoma
differ, T versus NT DE comparisons indicated different genes
up-regulated or down-regulated, depending on the NT
epithelium (alveolar or bronchial) chosen.

Genes and Pathways

In the LCM and Macro homogenized data sets, the collec-
tion of perturbed pathways included previously implicated
pathways, of which the most prominent were cell growth
and proliferation, cell movement, cell death, cell cycle
progression, and cell-to-cell signaling. The IPA analysis of
the LCM data set also uniquely revealed pathways and
genes not previously well recognized in lung cancer
biology, including immune functions. The identification of
such pathways and genes simply emphasizes the principle
that the precision of our knowledge pivots on the precision
of our techniques, including cell-selection efforts.

Notably, the eight- and nine-gene TeNT discriminant
signatures are not made up of the same genes as those on the
top hits lists; this is, we speculate, largely because the latter
are based on FC, not necessarily on integrated tumor
discriminant function in a cohesive statistical sense. As is
known from other discovery settings, the genes with the
most individually pronounced tumor expression or repres-
sion, when placed in combination with other gene tran-
scripts, may not be the most informative for the (cancer)
phenotype in question, perhaps because redundancy and
colinearity or other factors are sifted out in generating the
most informative, multigene cohesive signatures.
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Translational Implications

The existence of a gene signature for lung cancer, derived
from samples substantially enriched for cancer cells, has
translational implications because it allows us to focus
on salient gene signatures that could, for example, be
used diagnostically in ambiguous cases (eg, fine-needle as-
pirates of a solitary pulmonary nodule, in cases where cell
morphology is unclear) or as an early detection tool, perhaps
for targeting measurement of key transcripts or their under-
lying regulatory features in noninvasive specimens,39e41 in
either clinical or broader population settings. Therapeutically,
if verified in animal heterotopic and other tumor models, the
most up-regulated genes could be envisioned as potential
targets for treatment. Because the lists of genes with greatest
differential expression in adenocarcinomas versus squamous
cell carcinomas were generally quite robust and distinct, those
differences may offer insight into the different pathways un-
derlying the etiologies, morphologies, phenotypic tumor bi-
ologies, and therapeutic responses of each histological type.42

Temporal Considerations in Carcinogenesis Studies

The human lung cancer transcriptome likely encompasses
genes that are important for tumor maintenance, as well as
others that may be important for various carcinogenesis pro-
cesses leading up to tumormanifestation.Nonetheless, because
procurement of human lung tissue cannot generally be per-
formed serially over time, but rather is generally a one-time
collection for any given donor, the implications for identifica-
tion of carcinogenic pathways cannot readily be inferred with
certainty from these limited and essentially cross-sectional
data. However, hypotheses can be generated. Further explo-
rations of tumors, premalignant lesions, and adjacent NT tissue
are likely to offer further clues to etiological pathways.41

Considerable work is involved in microdissection, pre-
amplification, and standardization strategies, and this is the
largest lung LCM study reported to date, albeit with sample
size constraints. Sample size for the subset of donors
providing both LCM and Macro specimens limited analysis
(ie, the squamous cell carcinoma and never smoker analyses)
of the microdissected tumor transcriptome. For subanalyses,
including other factors (smoking dose, NT histology spe-
cifics) and interactions (smoking status� histology), a stable
estimate of these factors and signature performance was
precluded. An additional independent data set would be
needed to validate the classifier signature.

Summary

We have shown that cell selection (along with known factors
such as tumor histology and amplification strategy) plays
a role in even the simplest TeNT comparisons at a
transcriptome-wide level. Robustness on replication should
be helpful in sifting for valid gene and pathway hits among
those initially identified in the present study. For tumor
ajp.amjpathol.org - The American Journal of Pathology
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biological inferences, the LCM data reveal both known and
previously unrecognized genes and pathways. Although
LCM data are somewhat concordant with the TCGA data and
with our own data set derived from Macro specimens, the
differences are notable. This suggests the need for studies
exploring next-generation mRNA sequencing assessment of
LCM transcriptomes, at present a technical challenge at
these template levels. Additional validation steps should also
include exploration of premalignant lesions to allow more
direct inferences on human lung carcinogenesis.
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