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ABSTRACT

Motivation: Accurately predicting protein secondary structure and

relative solvent accessibility is important for the study of protein evo-

lution, structure and function and as a component of protein 3D struc-

ture prediction pipelines. Most predictors use a combination of

machine learning and profiles, and thus must be retrained and as-

sessed periodically as the number of available protein sequences

and structures continues to grow.

Results: We present newly trained modular versions of the SSpro and

ACCpro predictors of secondary structure and relative solvent acces-

sibility together with their multi-class variants SSpro8 and ACCpro20.

We introduce a sharp distinction between the use of sequence simi-

larity alone, typically in the form of sequence profiles at the input level,

and the additional use of sequence-based structural similarity, which

uses similarity to sequences in the Protein Data Bank to infer annota-

tions at the output level, and study their relative contributions to

modern predictors. Using sequence similarity alone, SSpro’s accuracy

is between 79 and 80% (79% for ACCpro) and no other predictor

seems to exceed 82%. However, when sequence-based structural

similarity is added, the accuracy of SSpro rises to 92.9% (90% for

ACCpro). Thus, by combining both approaches, these problems

appear now to be essentially solved, as an accuracy of 100%

cannot be expected for several well-known reasons. These results

point also to several open technical challenges, including (i) achieving

on the order of �80% accuracy, without using any similarity with

known proteins and (ii) achieving on the order of �85% accuracy,

using sequence similarity alone.

Availability and implementation: SSpro, SSpro8, ACCpro and

ACCpro20 programs, data and web servers are available through

the SCRATCH suite of protein structure predictors at http://scratch.

proteomics.ics.uci.edu.

Contact: pfbaldi@uci.edu
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1 INTRODUCTION

The prediction of protein structural features, such as secondary

structure and relative solvent accessibility, are useful for the

study of protein evolution, structure and function and as modu-

lar components of protein 3D structure prediction pipelines.

Most of the best predictors use a combination of machine learn-

ing and evolutionary information, in the form of multiple align-

ment profiles, and thus must be retrained and assessed

periodically as the available protein data continues to grow.

Here we present the results obtained by modifying and retraining

SSpro and ACCpro (Cheng et al., 2005; Pollastri et al., 2001,

2002), two widely used predictors of secondary structure and

relative solvent accessibility, respectively, and broadly assessing

prediction performance in these fields.
It has been known for two decades that evolutionary informa-

tion in the form of profiles calculated on similar sequences helps

predictors. In the case of secondary structure prediction, for in-

stance, performance accuracy improves by roughly 2 percentage

points when profiles are used in the input, as opposed to raw

sequences alone. It is also known that using profiles in the

output, by predicting the secondary structure of each sequence

in an alignment and taking the ‘majority’ of each column, leads

to a smaller improvement (51%) over using the raw sequences

alone. Furthermore, using profiles in both the input and the

output usually leads to no significant improvement over using

profiles in the input alone.
Machine learning-based predictors developed during the past

two decades have been almost exclusively focused and evaluated

on their ability to predict the secondary structure or relative

solvent accessibility from the sequence or the profile alone. The

past decade of work has not produced major prediction improve-

ments, resulting in a set of competing predictors with similar

methods, training datasets, protocols and, most importantly,

similar prediction performances—for instance, roughly around

80% for secondary structure prediction. This is despite the

number of experimentally solved structure deposited in the

Protein Data Bank (PDB) (Berman et al., 2000), which has sig-

nificantly increased over the same period (Fig. 1) and continues

to increase faster each year (Fig. 2).
However, besides using sequence similarity to create input pro-

files, there is potentially a second way of using sequence similar-

ity to leverage the growth of the PDB and improve predictions.

Namely, if a portion of a query sequence is similar to a sequence

in the PDB, it may be possible to use the annotation of the PDB

sequence to annotate the query sequence, in lieu or in combin-

ation with the prediction produced by the machine learning

methods. This is what we call sequence-based structural similar-

ity. Although the correlation between sequence similarity and

structure similarity is not perfect (Kosloff and Kolodny, 2008),*To whom correspondence should be addressed.
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it is well known that two domains with similar sequences will in

general have similar structures (Kaczanowski and Zielenkiewicz,

2010).
There are good reasons to suspect that sequence-based struc-

tural similarity may be effective. A simple analysis of the PDB

entries released between 1996 and 2013 (Figs 3 and 4) reveals that

as of today, only 6% of the amino acids deposited in the PDB

each month belong to protein regions with no similarity to se-

quences previously deposited in the PDB (Fig. 3). Furthermore,

this percentage is decreasing year after year. Finally, when we

examine the large, redundancy reduced and representative set of

all proteins UNIREF50 (Suzek et al., 2007), we find that 62% of

its sequences have at least one domain with a similarity of �30%

to a sequence in the PDB.
Thus, in short, the main purposes of this article, besides

the upgrade of existing predictors, is to study in detail the effect-

iveness of sequence-based structural similarity for secondary

structure and relative solvent accessibility prediction alone, and

how it can be combined with predictions derived by machine

learning methods with profiles to improve the overall state-

of-the-art.

2 METHODS

2.1 Training datasets

Three datasets are curated to train and evaluate the four predictors

(SSpro, ACCpro, SSpro8 and ACCpro20). The first dataset (pdb_full)

is derived from the PDB structures released before August 20, 2013.

Protein structures solved by X-ray crystallography with a resolution of

at least 2.5 angstroms, with no chain breaks, with less than five unknown

amino acids and of length at least 30 are first extracted from the database.

Redundancy of the selected protein chains is first reduced at the 25%

sequence identity level using CD-HIT (Li and Godzik, 2006) and

Blastclust (Altschul et al., 1997), and then further reduced using an

HSSP cutoff distance of 5 using UniqueProt (Mika and Rost, 2003) re-

sulting in 5772 protein chains. The second dataset (pdb_ante) is derived

from the PDB entries released before May 1, 2012 following the same

protocol than pdb_full and contains 5310 protein chains. The third data-

set (pdb_post) contains the 11 213 protein chains passing the filtering

criteria described above deposited in the PDB after May 1, 2012 and

before August 20, 2013. Redundancy in this last dataset is not reduced

because its purpose is precisely to allow a realistic assessment of post-

performance given pre-training data.

Fig. 3. Mean number of previously deposited chains found with sequence

similarity of at least 30% with respect to newly deposited sequences in the

PDB, computed on a monthly basis from 1996 to 2013

Fig. 4. Percentage of amino acids in newly deposited sequences covered

by previously deposited chains with sequence similarity of at least 30% in

the PDB, computed on a monthly basis from 1996 to 2013

Fig. 2. Number of protein chains deposited every month in the PDB

from 1990 to 2013

Fig. 1. Number of protein chains in the PDB from 1990 to 2013
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The secondary structure and solvent accessibility values assigned by

DSSP (Kabsch and Sander, 1983) to each amino acid in these datasets are

used to determine the target classes for the four predictors: secondary

structure in 3 and 8 classes, and relative solvent accessibility for 20 dif-

ferent thresholds from 0 to 95% in 5% increments.

2.2 Three-stage prediction

The four predictors share the same three-stage prediction workflow de-

picted in Figure 5. The first step is similar to other predictors and consists

in using three iterated steps of PSI-BLAST with the UNIREF50 database

(Suzek et al., 2007) to derive multiple sequence alignment and profile

probabilities. The second step is similar to previous versions of SSpro

or ACCpro, and uses an ensemble of 100 Bidirectional Recursive Neural

Networks (BRNNs) trained on the data to generate a first set of prob-

ability predictions for each secondary structure or solvent accessibility

class. Any other machine learning approach can be substituted in this

step. The third stage replaces the previous predictions with predictions

derived using sequence-based structural similarity in regions where simi-

lar sequences can be found in the PDB. Similar sequences extracted using

BLAST are filtered such that at least 10 amino acids are aligned to the

target protein without any gap (30 amino acids for relative solvent acces-

sibility), the BLAST expectation value is510–9 and the aligned regions

must have at least 45% identical amino acids and 55% positive substitu-

tions (70 and 75%, respectively, for relative solvent accessibility predic-

tions). The most frequent DSSP-assigned class in the set of proteins

selected for a given position in the target protein is selected as the final

prediction for that position. The BRNN predictions from the second

stage are used for all positions that do not have similar regions in the

PDB, as well as those with similar sequences in the PDB but no dominant

DSSP class.

2.3 Evaluation procedure

The four predictors are evaluated following two distinct protocols.

The first protocol (P1) aims to estimate the accuracy of the final pre-

dictors made available online. A double 10-fold cross validation is per-

formed on pdb_full where the data is first randomly divided into 10 folds.

For each cross validation fold, the remaining 90% of the data is further

subdivided into 10 sub-folds, and 10 BRNN models are trained, respect-

ively, on each set of nine sub-folds. The 10 models are tested together on

the remaining 10% of the data. The resulting ensemble of 100 BRNN

models is used to produce the final predictor. Predictions using sequence-

based structural similarity are added to the BRNN predictions after each

step of the cross validation. To provide a complete but fair evaluation of

the sequence-based structural similarity predictions, protein chains iden-

tical to any protein sequence in pdb_full are removed from the PDB for

this evaluation. However, sequences that are similar but not identical to

sequences in pdb_full are not removed, regardless of their similarity level,

precisely to evaluate the prediction accuracy as a function of sequence

similarity.

The second protocol (P2) aims to estimate how the method performs

over time by training the BRNN models following protocol P1 but using

the smaller set of PDB entries released before May 1, 2012 (dataset

pdb_ante), and testing the resulting predictor on all the protein entries

released after May 1, 2012 (dataset pdb_post). Sequence-based structural

similarity predictions in this case use all the PDB entries released before

May 1, 2012, thus enabling the assessment of the performance of the

combined predictor over a 16 month period without retraining.

2.4 Comparison with other predictors

Fair comparisons with existing predictors are difficult for several reasons.

First, the various predictors are trained on different datasets, at different

times, using different versions of the PDB. Often, the datasets are not

available and, even when they are, the details of the cross validation

datasets are not preventing a perfect comparison requiring training and

testing on the same folds. Second, retraining third-party predictors using

our own data is also not feasible because the trainable version of these

predictors is not publicly available. Furthermore, retraining third-party

software is subject to criticism owing to the variability resulting from the

fine-tuning of hyperparameters and related matters. Third, even the most

popular predictors still actively updated, like DISTILL (Mirabello and

Pollastri, 2013) or PSIPRED (Buchan et al., 2013), do not come with a

sequence-based structural similarity module.

Nevertheless, we provide some measure of comparison by reporting

the accuracy numbers for DISTILL and PSIPRED, using the most recent

version of these programs kindly made available to us by the authors. We

compute these accuracy numbers on the same datasets used to evaluate

SSpro and ACCpro, giving the other predictors the benefit of the doubt,

as some of the proteins in our test sets are likely to be in the training sets

of the other predictors. Because both DISTILL and PSIPRED use profile

inputs and are currently provided without corresponding sequence profile

generators, we used our own generator PROFILpro to generate all the

necessary sequence profiles. Note that PROFILpro is available for down-

load, together with all our other predictors.

3 RESULTS

Results obtained following the two protocols described in

Section 2.3 are summarized in Table 1. The accuracy of the pre-

dictors on the pdb_full and pdb_ante datasets is obtained

Fig. 5. General workflow for the SSpro, SSpro8, ACCpro and ACCpro20 predictors. Sequence and structural similarity analyses are performed by

stand-alone modules (PROFILpro and HOMOLpro, respectively). BRNN models are trained to predict the features from the profiles and combined in

an ensemble
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following the P1 protocol, whereas the accuracy of the predictors

on the pdb_post dataset is obtained following the P2 protocol.
Using both sequence similarity and sequence-based structural

similarity, SSpro’s accuracy is 92.91% on pdb_full and 91.74%
when trained on pdb_ante (PDB entries released before May 1,

2012) and evaluated on the 11 213 recent PDB entries in
pdb_post (released after May 1, 2012). This is considerably

better than any other existing predictor, including the previous

release of SSpro (Table 1). This result, combined with the initial
analysis performed on the PDB and UNIREF50 databases (see

Section 1), highlights the interest of systematically combining
sequence-based structural similarity with profile-based machine

learning methods. Without using sequence-based structural simi-

larity, the accuracy of the best secondary structure predictors
(including SSpro) is estimated to be between 79 and 82%

(Mirabello and Pollastri, 2013), thus 10% lower than the accur-
acy of SSpro after combining the raw predictions with the ones

based on known protein structures. It is useful to contrast the
combination of both approaches with the use of sequence-based

structural similarity alone. For instance, using sequence-based

structural similarity alone, predictions can be made for 75% of
the amino acids in the dataset pdb_post, with an overall accuracy

of 96%.
SSpro’s accuracy as a function of sequence similarity and iden-

tity is reported in Figure 6, showing that as soon as similar se-
quences can be found in the PDB, even with low sequence

identity or similarity with the target protein, the prediction ac-
curacy significantly increases. SSpro is also the only secondary

structure predictor made publicly available for download, which

includes both profile generation and sequence-based structural
similarity modules.

Similarly, at the 25% accessibility threshold, ACCpro accur-
acy is 90.02% on pdb_full and 88.22% on pdb_post, above any

other predictor, and about 8% better than the accuracy of the

previous ACCpro release. A similar detailed evaluation of the
predictor’s accuracy, as a function of sequence identity and simi-

larity, is provided in Figure 7.
Results for SSpro and ACCpro multi-class variants SSpro8

and ACCpro20 also show significant improvements. SSpro8 is
the eight-class version of SSpro, predicting the protein secondary

structure using the eight different classes assigned by DSSP. The
sequence-based structural similarity analysis is available for the

first time for this kind of predictor and results in an accuracy of
87.92% on pdb_full and 85.88% on pdb_post, a 22% improve-

ment over the last published accuracy of the SSpro8 predictor.
ACCpro20 is the 20-class version of ACCpro predicting if an

amino acid is buried or exposed for 20 different relative solvent

accessibility thresholds. ACCpro20 prediction accuracy is
89.92% in the hard case (25% accessibility threshold) and is

now comparable with the accuracy of ACCpro. Note that both
predictors have no other existing method to be directly compared

with.
Finally, redundancy in the SSpro and ACCpro training sets

was reduced using first a 25% sequence identity threshold. This
is a common practice in the field, established over the years

through many trial and errors and aimed at balancing multiple
constraints: in particular redundancy reduction versus training

set size. However, there is nothing fundamental about such a

threshold, and one might be concerned by the existence of pro-
teins in the training and test sets that are remotely homologous,

with a level of sequence identity 525%, which could lead to
overestimating the accuracy of the predictors. To address this

point, first note that we used a more stringent redundancy re-
duction procedure than a simple 25% identity cutoff by using an

additional HSSP distance cutoff (see Section 2). Second, we con-

ducted one additional set of tests. For each test protein in
pdb_full, we used PSI-BLAST to extract any segment of length

at least 10 with sequence identity of at least 18% with any other
protein in the training set. In total, 58% of amino acids in the

test set were found to occur in such segments, leaving 42% of

Table 1. SSpro, ACCpro, SSpro8 and ACCpro20 prediction accuracy

evaluated following the protocols described in Section 2.3

Predictor pdb_full (%) pdb_ante (%) pdb_post (%)

SSpro 92.91 92.92 91.74

SSpro8 87.92 87.92 85.88

ACCpro 90.02 90.13 88.22

ACCpro20 89.92 90.02 87.98

SSpro (2005) 83.21 84.04 85.68

SSpro8 (2005) 63.38 63.59 63.50

ACCpro (2005) 80.71 81.17 81.50

ACCpro20 (2005) 76.31 76.39 77.73

DISTILL Porter 4.0 82.56 82.74 81.62

DISTILL PaleAle 4.0 80.43 80.51 81.28

PSIPRED 3.3 80.59 80.74 79.60%

Note: Accuracy reported for the pdb_full and pdb_ante datasets is obtained follow-

ing protocol P1, and accuracy reported for the pdb_post dataset is obtained follow-

ing protocol P2. Accuracy reported for ACCpro20 is the accuracy at the 25%

accessibility threshold. Accuracy of the newly trained versions of SSpro and

ACCpro are reported in bold font. Previous published accuracy of the predictors

is also reported (Cheng et al., 2005). Accuracy of DISTILL (Mirabello and Pollastri,

2013) and PSIPRED (Buchan et al., 2013) are reported for the same datasets using

the downloadable packages made available by the authors (see Section 2.4).

Fig. 6. SSpro prediction accuracy on the pdb_full and pdb_post datasets

calculated as a function of the percentage of sequence identity or simi-

larity (BLAST positive substitutions) with proteins found in the PDB.

Cases where no similar sequence is found in the PDB for a given residue

position, and thus predicted without using sequence-based structural

similarity, are included in the 0% sequence identity or similarity case
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amino acids in the test set with no similarity to the training set

(at the 18% identity level). The accuracy of SSpro on both

groups of amino acids is almost identical: 92.98% on the first

group (58% of all amino acids) and 92.81% on the second,

highly non-redundant, group (42% of all amino acids), with a

combined accuracy of 92.91% as reported above. Interestingly,

using a much higher and more permissive identity threshold of

50% over at least 10 amino acids, the predictor’s accuracy is

92.61% on the redundant group (7% of all amino acids) and

92.93% on the least redundant group (93% of all amino acids).

Similar results are observed for ACCpro. Thus, these results

show that the small residual redundancy between the training

and test sets does not lead to overestimating the performance

of the predictors. Within reasonable ranges, this accuracy is

roughly constant regardless of the residual level of similarity,

providing additional confirmation of the validity of the training

protocol used here.

4 DISCUSSION AND CONCLUSION

SSpro and ACCpro achieve a performance accuracy above 92

and 90%, respectively, when presented with samples of proteins

either in the PDB (pdb_full) or in the process of being added to

the PDB (pdb_post). Barring surprises from proteins that yet

remain to be discovered, one may conjecture that the problems

of protein secondary structure and relative solvent accessibility

prediction are close to being solved.
It is well known that there are fundamental reasons why an

accuracy of 100% should not be expected, including (i) the pres-

ence of disordered regions; (ii) the ambiguities inherent in the

definitions of secondary structure or relative solvent accessibility,

as reflected by the imperfect correlation between several pro-

grams for determining these features from PDB files; (iii) the

errors and uncertainties contained in the PDB; and (iv) the

role of the solvent and other molecules, from ions to chaperone

proteins, in determining structure, and which are not taken into

consideration by most present methods.
As the PDB continues to grow, so will the coverage provided

by sequence-based structural similarity methods. Systematically

combining profiles, machine learning methods and sequence-

based structural similarity seems to be the best strategy, and

this is one of the reasons we are providing separate modules

for each one of these three tasks. Because protein structures

are more conserved than protein sequences, in the future further

small improvements may be possible by using methods capable

of detecting remote structural similarity, not readily visible in the

sequences alone. However, the best existing such methods use

predicted secondary structure and relative solvent accessibility to

detect remote homology. To avoid any circularity, in the present

study we have striven to separate the detection of structural simi-

larity from the prediction of secondary structure.
Finally, when proteins fold in vivo or even in vitro, they do not

use sequence or structural similarity at all. This suggests that our

understanding of protein structural features is far from complete

and points to at least two interesting technical challenges for the

foreseeable future: (i) predicting structural features with an ac-

curacy of about �80%, using no similarity to known proteins at

all, i.e. no profiles; (ii) predicting structural features with an ac-

curacy of �85%, using sequence similarity alone and no struc-

tural similarity. We believe that the key to addressing these

challenges is to use machine learning methods that can use in-

formation contained in larger input windows, ideally the entire

protein lengths. Recent progress in deep learning methods,

including the use of new training approaches such as the dropout

algorithm (Baldi and Sadowski, 2014) and GPU clusters, may

offer some promising directions.

4.1 Software availability

The four predictors are included in the SCRATCH suite of pre-

dictors available online at http://scratch.proteomics.ics.uci.edu

together with all the data. A stand-alone version of the predictors

can be downloaded from the same url and is free for academic

use. PROFILpro, the sequence profile generator used by the four

predictors, and HOMOLpro, the sequence-based structural simi-

larity secondary structure and relative solvent accessibility pre-

dictor, are also made available as stand-alone tools. They can be

used in combination with other secondary structure or solvent

accessibility predictors.

ACKNOWLEDGEMENTS

We acknowledge the support of the UCI Institute for Genomics

and Bioinformatics and a hardware donation by NVIDIA.

Additional support of our computational infrastructure has

been provided by Yuzo Kanomata.

Funding: This work has been supported by grants NIH

LM010235, NIH NLM T15 LM07443 and NSF-IIS-1321053

to P.B.

Conflicts of Interest: none declared.

Fig. 7. ACCpro prediction accuracy on the pdb_full and pdb_post data-

sets calculated as a function of the percentage of sequence identity or

similarity (BLAST positive substitutions) with proteins found in the

PDB. Cases where no similar sequence is found in the PDB for a given

residue position, and thus predicted without using sequence-based struc-

tural similarity, are included in the 0% sequence identity or similarity case
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