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The majority of trait-associated loci discovered through genome-wide associationstudies are located outside of
known protein coding regions. Consequently, it is difficult to ascertain the mechanism underlying these variants
and to pinpoint the causal alleles. Expression quantitative trait loci (eQTLs) provide an organizing principle to
address both of these issues. eQTLs are genetic loci that correlate with RNA transcript levels. Large-scale
data sets such as the Cancer Genome Atlas (TCGA) provide an ideal opportunity to systematically evaluate
eQTLs as they have generated multiple data types on hundreds of samples. We evaluated the determinants of
gene expression (germline variants and somatic copy number and methylation) and performed cis-eQTL ana-
lyses for mRNA expression and miRNA expression in five tumor types (breast, colon, kidney, lung and prostate).
We next tested 149 known cancer risk loci for eQTL effects, and observed that 42 (28.2%) were significantly asso-
ciated with at least one transcript. Lastly, we described a fine-mapping strategy for these 42 eQTL target–gene
associations based on an integrated strategy that combines the eQTL level of significance and the regulatory
potential as measured by DNaseI hypersensitivity. For each of the risk loci, our analyses suggested 1 to 81 can-
didate causal variants that may be prioritized for downstream functional analysis. In summary, our study pro-
vided a comprehensive landscape of the genetic determinants of gene expression in different tumor types
and ranked the genes and loci for further functional assessment of known cancer risk loci.

INTRODUCTION

Genome-wide association studies (GWAS) have successfully
identified thousands of variants associated with hundreds of
human traits. The vast majority of trait-associated loci are
located outside of protein coding regions. This observation
presents the next set of challenges in human genetics—to under-
stand the mechanism of the locus and to identify the causal
variant of risk loci. Expression quantitative trait loci (eQTLs)
represent an organizing principle to address both of these issues.

eQTLs refer to genomic locations harboring genetic variants that
associate with transcript levels. Many studies have unequivocally

demonstrated that a substantial proportion of transcripts are under
genetic control (1–3).

A practical value of eQTLs is their ability to implicate
candidate genes that are influenced by non-protein coding
trait-associated alleles. eQTL-based strategies provide an inter-
mediate molecular layer between germline variants and traits. A
transcript that is correlated with a variant in a relevant tissue or
cell type becomes a strong candidate for downstream functional
evaluation. Thus, eQTLs provide a logical strategy to evaluate
the biology of non-protein-coding risk loci and indeed is one
of the primary motivations behind large-scale genotype by
gene expression databases (4,5).
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When connecting trait-associated alleles with transcripts,
identifying the particular cell type where the risk allele is exert-
ing its effect remains a challenge. Evidence suggests that many
eQTLs are tissue specific; however, data continue to emerge on
this topic (5–7). Performing eQTL analysis for cancer risk loci
raises another issue—should experiments be performed in
normal and/or tumor tissue? Studying normal tissue is intuitively
appealing because risk loci increase the risk of developing
cancer and large-scale databases such as Genotype-Tissue
Expression (GTEx) are just becoming available. On the other
hand, the Cancer Genome Atlas (TCGA) has extensive data on
multiple cancer types, including mRNA expression on hundreds
of tumor samples. Performing eQTL analysis in the tumor tissue,
however, is technically challenging because of the acquired
somatic alterations that can also influence transcript levels. We
recently described a method designed to overcome this chal-
lenge and to perform eQTL studies using gene expression from
tumor samples (8).

eQTL–target gene correlations can also serve as an organizing
principle for fine mapping. Similar to fine mapping in a case–
control setting, the goal is to identify variants that have a statis-
tical signal at least as strong as the initially reported variant.
Since any eQTL–target gene association represents a relation-
ship between a regulatory element and its target gene, epigenetic
data can be incorporated into the study design to prioritize can-
didate variants that directly affect regulatory elements. Among
the known epigenetic marks, DNaseI hypersensitivity (DHS) is
a time-tested technique used for annotating regulatory elements
as it marks areas of accessible chromatin (9). Fine mapping and
DHS can be combined to prioritize a set of candidate loci for
further testing as has been recently described (10).

In this study, we systematically performed eQTL analyses
in five tumor types. First, we performed a genome-wide cis-
eQTL analysis for both mRNAs and miRNAs. We then tested
149 independent risk alleles (across all five tumor types) for cis-
associations with both mRNA and miRNA transcripts. Lastly,
a fine mapping strategy was introduced in order to prioritize
candidate causal alleles for future functional evaluation.

RESULTS

cis-acting eQTLs of mRNA in breast, colon, kidney,
lung and prostate tumors

To identify the genetic determinants of gene expression in
cancers, we performed cis-eQTL analyses for five common
tumor types in TCGA using RNA-seq data (Table 1). Realizing
that somatic alterations in the tumor genome can affect gene
expression, we adjusted the expression levels for somatic copy
number changes and CpG methylation variation as previously
described (see Materials and Methods) (8). For each SNP
locus, we evaluated the association between the corresponding
germline genotypes and the transcript abundances of mRNAs
within 500 kb upstream and 500 kb downstream of the locus
(see Materials and Methods). A cis-association was determined
by significant correlation between the germline genotypes and
transcript levels at a false discovery rate (FDR) of 0.1 (see Mate-
rials and Methods). Our analyses identified 1306–5285 unique
cis-associations (595–981 genes) across the five tumor types
(Table 2, Supplementary Material, Table S1). The unadjusted

P-values range from 4.28 × 1027 to 1.74 × 102296. In order to
evaluate whether the analyses are confounded by systematic
biases, we compared the distribution of the test P-values to
that of the expected P-values using Q–Q plots (Supplementary
Material, Fig. S1). The resulting l statistics for all the analyses
ranged from 0.923 to 1.02, demonstrating no systematic bias
(see Materials and Methods).

Our data reaffirmed that the cis-associations tend to occur
between SNPs and nearby transcripts. 24.5% of the cis-
associations occur between a SNP locus and the target gene
located closest to the risk SNP; 44.0% of the cis-associations
occur between SNP locus and one of the five closest genes
(Supplementary Material, Fig. S2).

cis-acting eQTLs of miRNA in human cancers

We next evaluated the genetic determinants of miRNA expres-
sion. We performed cis-eQTL analyses for the 1523 known
miRNAs, of which the expression levels in the five aforemen-
tioned tumor types were available from TCGA RNA-sequencing
data. Applying an FDR of 0.1, we identified 53–81 unique
cis-associations (19–53 miRNAs) from the five tumor types,
respectively (unadjusted P-value ranging from 7.09 × 1027

to 1.08 × 102133, Table 3, Supplementary Material, Table S2).

Cancer risk loci as genetic determinants of gene expression

We next evaluated a set of 149 independent cancer risk loci from
recent GWAS with P-values ,1 × 1027 (Table 1, Materials and
Methods) (11–13). For each of the risk loci, we retrieved all the
correlated variants (r2 ≥ 0.7) from the 1000 genomes project
and assessed the distribution of this set of variants across the
genome (Fig. 1, Materials and Methods). Consistent with previ-
ous studies, only a small fraction (1.1%) of the risk-associated
variants (or their proxies) directly altered protein coding
sequences, whereas the majority of variants were intergenic
(52.2%) and intronic (45.1%) (13).

Forty-two of the 149 risk loci (28.2%) had 1–12 associated
genes within 500 kb (FDR ≤ 0.1) (Table 4). Among the 42
cancer risk loci that function as cis-eQTLs, 8 were breast
cancer risk loci, 31 were prostate cancer risk loci and another
1 each from lung adenocarcinoma and kidney cancer. The
analyses also identified one colon cancer risk locus (20q13.33)
associated with the expression of a miRNA (Table 4, Supple-
mentary Material, Table S3).

Table 1. Number of samples and risk loci included in the analyses

Cancer type Sample size,
mRNA-analysis

Sample size,
miRNA-analysis

Number
of risk loci
tested

Breast invasive
carcinoma (ER+)

391 227 53

Colon adenocarcinoma 121 193 19
Kidney renal clear cell

carcinoma
163 102 3

Lung adenocarcinoma 183 26 5
Prostate adenocarcinoma 145 66 69
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Fine mapping cancer risk loci that are acting as eQTLs

The identification of causal alleles presents a challenge because
of the intrinsic property of linkage disequilibrium (LD)—
according to the 1000 genomes data, on average, a given risk
locus is correlated with 56 other variants (14). eQTLs provide
rational additional information for candidate causal allele detec-
tion. eQTL–gene associations represent a biological unit com-
prised of a regulatory element and its target gene. This

relationship is important for two reasons: it provides (i) the
appropriate cell type in which to perform functional work; and
(ii) a clear-cut readout for causal allele identification—the
causal variant would be expected to influence expression
levels whereas a correlated variant would not.

We performed a fine-mapping analysis for the 42 significant
cancer risk loci identified above. The goal of the analysis is to
identify candidate causal alleles that could be prioritized for
downstream functional evaluation. We specifically hypothe-
sized that the target gene is under the control of a single
variant. Because DHS sites are an accepted way of annotating
regulatory elements, we used this feature to prioritize variants
residing in potential regulatory elements. We used the
ENCODE DNaseI track that is a compilation of genome-wide
DNaseI HS profiles from125 cell types (15). Our rationale was
to minimize false negatives by not having to rely upon a
profile from one cell line (derived from one individual), which
may not adequately capture the diversity of DHS. For each
variant, we derived a posterior probability to summarize the
eQTL level of significance (the association data) and the regula-
tory potential (DHS) (Materials and Methods).

For the 42 risk loci where we identified significantly asso-
ciated gene(s), we imputed the genotypes of all correlated poly-
morphisms with an r2 larger than 0.5 (Materials and Methods)
and located within 1 Mb of the risk locus (N ¼ 2181) (Materials
and Methods). We calculated the posterior probability for each
of the 42 eQTL target–gene associations. The posterior values
showed a strong bimodal distribution (Supplementary Material,
Fig. S3). To select the variants with the highest likelihood of

Table 2. Summary of eQTL-mRNA associations in cis in five cancer types

Cancer type Number of
associations in cis

Number of
eQTLs

Number of
associated genes

P-values FDR

Breast invasive carcinoma (ER+) 5285 4652 981 1.74 × 102296–
4.28 × 1027

1.74 × 102289–
0.0999

Colon adenocarcinoma 1324 1161 602 8.88 × 102147–
1.59 × 1027

8.63 × 102140–
0.0994

Kidney renal clear cell carcinoma 2250 1184 860 2.25 × 102148–
2.00 × 1027

2.08 × 102141–
0.0997

Lung adenocarcinoma 1306 1197 595 5.79 × 102192–
1.59 × 1027

5.82 × 102185–
0.0997

Prostate adenocarcinoma 1642 3466 1089 7.96 × 102178–
5.09 × 1027

3.93 × 102171–
0.0999

Table 3. Summary of eQTL-miRNA associations in cis in five cancer types

Cancer type Number of
associations in cis

Number of
eQTLs

Number of
associated miRNAs

P-values FDR

Breast invasive carcinoma (ER+) 74 74 19 2.28 × 10240–
2.90 × 1027

6.13 × 10235–
0.0907

Colon adenocarcinoma 71 71 28 1.08 × 102133–
3.23 × 1027

3.16 × 102128–
0.0873

Kidney renal clear cell carcinoma 81 76 28 1.25 × 10222–
7.09 × 1027

3.31 × 10217–
0.0979

Lung adenocarcinoma 77 48 53 1.38 × 10225–
7.04 × 1027

4.16 × 10220–
0.0944

Prostate adenocarcinoma 53 43 38 4.93 × 10241–
5.73 × 1027

1.49 × 10235–
0.0984

Figure 1. The genomic distribution of the risk loci of five TCGA cancer types and
their correlated (r2 ≥ 0.7) variants. Similar to prior observations, the majority of
variants (98.8%) are outside of known protein coding region.
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being causal, we applied an unsupervised partition algorithm
(Materials and Methods). Thus, we identified 408 candidate
causal alleles for the 35 cancer risk loci with each locus having
1 to 81 candidates (Table 5, Supplementary Material, Table
S4). While the rank order list of the posterior should serve as a
guidepost for downstream functional follow-up, we note that
65 variants had a posterior value of at least one order of magni-
tude higher than the posterior of reported risk loci. Figure 2 illus-
trates various scenarios. The NUDT11 and RGS17 plots show
loci with a large number of highly correlated variants (Fig. 2).
Incorporating DHS data greatly reduces the number of can-
didate causal variants for functional testing. The C5orf35
locus demonstrates that the strongest candidate variants are
moderately correlated with the index variant and are 41.5 kb
(rs11960484) � 81.1 kb (rs252920) away (Fig. 2).

The fine mapping results also suggested that variants not
correlated with the risk alleles are associated with the same
target gene as the risk variant. Specifically, out of 35 target

genes associated with cancer risk loci, 16 have minimally corre-
lated (r2 , 0.3) variants that possess at least one order of magni-
tude higher significance than the index variant (Supplementary
Material, Table S5).

DISCUSSION

eQTLs can serve as an organizing principle. They provide a
logical framework for identifying both candidate causal genes
and candidate causal loci. They help to identify the particular
cell type where the trait-associated allele is acting providing a
rationale for selecting the appropriate cell line for follow-up
experiments. In addition, eQTLs provide a clear experimental
readout (transcript levels) for fine mapping and causal allele
identification. In this study, we generated a list of candidate
causal genes and causal loci that should be considered as
strong candidates for functional evaluation in appropriate
assays.

Table 4. Summary of the cis-eQTL associations of the GWAS risk loci of five cancer types

Cancer type Number of
association test

Risk loci Chromosome Cytoband Most significant
associated transcripts

P-values FDR

Breast invasive carcinoma 394 rs889312 5 q11.2 C5orf35 9.59 × 1027 0.000188
394 rs720475 7 q35 OR2A7 5.78 × 1028 2.27 × 1025

rs3817198 11 p15.5 TH 0.00213 0.0559
rs3903072 11 q13.1 DKFZp761E198 0.000734 0.0289
rs3803662 16 q12.1 TOX3 0.000147 0.00966
rs13329835 16 q23.2 DYNLRB2 0.000701 0.0289
rs4808801 19 p13.11 LRRC25 0.00317 0.0731
rs3760982 19 q13.31 ZNF155 0.00342 0.0731

Colon adenocarcinomaa 139 rs4925386 20 q13.33 hsa-mir-1-1 0.00697 0.0901
Kidney renal clear cell carcinoma 18 rs718314 12 p11.23 BHLHE41 0.000764 0.00817
Lung adenocarcinoma 43 rs7216064 17 q24.2 C17orf58 0.000536 0.00764
Prostate adenocarcinoma 216 rs1218582 1 q21.3 GBA 0.00303 0.018

rs4245739 1 q32.1 PIK3C2B 0.0445 0.0469
rs10187424 2 p11.2 GNLY 0.00294 0.0178
rs1465618 2 p21 LOC100129726 0.0149 0.0389
rs12621278 2 q31.1 ITGA6 0.0182 0.0393
rs7584330 2 q37.3 MLPH 0.000659 0.00526
rs3771570 2 q37.3 HDLBP 0.0249 0.0393
rs17181170 3 p11.2 CHMP2B 0.0498 0.0498
rs7611694 3 q13.2 GRAMD1C 0.0192 0.0393
rs10934853 3 q21.3 RUVBL1 0.0448 0.0469
rs6763931 3 q23 ACPL2 0.0101 0.032
rs12500426 4 q22.3 BMPR1B 0.000394 0.00333
rs12653946 5 p15.33 IRX4 5.11 × 10214 7.13 × 10212

rs2273669 6 q21 SESN1 1.41 × 1027 1.17 × 1025

rs1933488 6 q25.2 RGS17 1.75 × 1026 5.69 × 1025

rs651164 6 q25.3 PNLDC1 0.0384 0.0437
rs6465657 7 q21.3 LMTK2 0.0463 0.0476
rs11135910 8 p21.2 EBF2 9.58 × 1025 0.00157
rs1512268 8 p21.2 LOXL2 0.00119 0.00833
rs4242384 8 q24.21 MYC 0.0323 0.0411
rs817826 9 q31.2 RAD23B 0.0196 0.0393
rs3123078 10 q11.23 NCOA4 0.0101 0.032
rs3850699 10 q24.32 AS3MT 0.00016 0.00223
rs7130881 11 q13.2 FGF19 0.0298 0.0401
rs10875943 12 q13.12 C1QL4 0.00251 0.0159
rs902774 12 q13.13 KRT5 0.00439 0.024
rs8008270 14 q22.2 PSMC6 0.0379 0.0435
rs684232 17 p13.3 VPS53 1.40 × 1026 5.59 × 1025

rs11650494 17 q21.33 ZNF652 0.000209 0.00237
rs11672691 19 q13.2 CEACAM21 0.0262 0.0393

aThe 20q13.33 risk locus of COAD is associated with miRNA expression.
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We leveraged the strength of TCGA data. TCGA is notable for
amassing multiple data elements on tumors in a quality-
controlled fashion. Because expression measurements are
performed in tumors, it is important to adjust for somatically
acquired alterations as we have previously shown (8). In this
study, we used expression as measured by RNA-sequencing as
opposed to microarray data in our prior study. Importantly,
two of the three cis-eQTLs discovered in our prior study were
significant in this study. Interestingly, MYC levels are associated
with one of the prostate cancer 8q24 risk loci, rs4242384. Most
studies evaluating 8q24 cancer risk loci (across multiple tumor
types) and MYC levels are negative (16,17). Despite negative
eQTL data, other data such as long-range physical interactions,
as well as mouse data for the colon cancer 8q24 risk locus, impli-
cate MYC involvement in 8q24 driven tumors (16,18–20).

The current eQTL analyses are restricted to common variants
due to sample size limitations. However, rare variants may also
play critical roles to determine the phenotype and should be
included in future studies. Another important question is the
comparison of eQTLs from the tumor and the normal tissue,
which is hindered by lack of matched normal samples in

TCGA. Therefore, comparison of eQTL target–genes in both
normal and tumor tissue of the same cell type will be interesting.
Efforts such as the Genotype-Tissue Expression project will be
informative in this regard (4).

Multiple prostate eQTL target–genepairs that havebeenprevi-
ously identified in other studies are observed in this data set,
including rs12653946/IRX4 and rs5945619/NUDT11 (21,22).
Other previously reported eQTL target–genes, however, did not
replicate in the prostate data set such as HNF1B and MSMB
(21). Discordant results between studies may be due to power
(the current TCGA prostate sample size is smaller than some of
the prior studies) and/or because the association is only observed
in normal tissue. For prostate cancer associations in particular,
some of the discrepancies may be explained by variants that are
associated with PSA levels, but not with prostate cancer as have
been shown for a handful of polymorphisms (23). Additionally,
different analytic and statistical techniques can influence the com-
parisons between studies. Lastly, it is conceivable that some of the
prior associations are false positive results.

Certain genes deserve mention as plausible candidates medi-
ating cancer risk. DYNLRB2 is a gene that has been implicated in

Table 5. Summary of fine mapping of causal variants for each risk loci as cis-eQTLs

Cancer type Risk loci Transcripts
associated in cis

Number of variants
tested

Number of
candidates

Posterior
risk loci

Posterior candidates

Breast invasive carcinoma rs889312 C5orf35 38 5 1.37 × 10211 0.0442–0.131
rs720475 OR2A1 8 1 0.0167 0.0167–0.0167
rs720475 OR2A7 8 1 1.12 × 1026 1.12 × 1026–

1.12 × 1026

rs720475 OR2A9P 8 1 4.67 × 1026 4.67 × 1026–
4.67 × 1026

rs3903072 DKFZp761E198 40 7 0.00710 0.0071–0.0168
rs3903072 OVOL1 40 17 0.00548 0.00548–0.0243
rs3903072 SNX32 40 6 3.53 × 1026 0.00202–0.00553
rs3817198 TH 5 1 0.00371 0.00371–0.00371
rs13329835 CDYL2 48 14 9.74 × 1025 0.00064–0.00239
rs13329835 DYNLRB2 48 5 0.0163 0.0422–0.0668
rs3803662 TOX3 21 5 0.0148 0.0446–0.071
rs4808801 CCDC124 72 28 0.00754 0.00754–0.0246
rs4808801 LRRC25 72 7 0.00387 0.00387–0.0231
rs3760982 ZNF155 45 3 6.51 × 1029 1.81e-07–5.07 × 1027

Kidney renal clear cell
carcinoma

rs718314 BHLHE41 30 2 0.00487 0.0757–0.107

Lung adenocarcinoma rs7216064 C17orf58 145 14 0.0206 0.0206–0.0402
Prostate adenocarcinoma rs4245739 PIK3C2B 106 52 0.000108 0.000578–0.00422

rs10934853 RUVBL1 102 25 0.00232 0.00232–0.0151
rs17021918 BMPR1B 55 9 0.00304 0.00304–0.006
rs17021918 HPGDS 55 1 0.000134 0.00255–0.00255
rs12653946 IRX4 12 1 0.00293 0.958–0.958
rs1933488 RGS17 69 5 0.0145 0.0779–0.0788
rs2273669 SESN1 204 33 0.00123 0.0103–0.0705
rs6465657 LMTK2 57 6 0.00472 0.00472–0.00472
rs11135910 EBF2 35 3 0.05146 0.154–0.154
rs3850699 AS3MT 50 16 0.000241 0.000565–0.00184
rs3850699 C10orf32 50 5 8.18 × 1025 0.00246–0.0046
rs3850699 SUFU 50 5 0.000321 0.000801–0.00108
rs3850699 TMEM180 50 2 1.62 × 1029 1.62 × 1029–

3.32 × 1029

rs10875943 C1QL4 5 3 5.52 × 1029 5.52 × 1029–
6.98 × 1029

rs10875943 FKBP11 5 3 0.00561 0.00561–0.00772
rs684232 FAM57A 64 1 0.0416 0.302–0.302
rs684232 GEMIN4 64 3 0.0184 0.0184–0.0254
rs684232 VPS53 64 3 0.101 0.101–0.324
rs5945619 NUDT11 334 113 0.00862 0.00862–0.0464
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the progression from in situ to invasive breast cancer (24).
BMPRIB is a serine/threonine kinase that has been shown to
inhibit growth and proliferation of prostate cell lines (25).
SESN1 is part of a family of genes induced by the p53 protein
and has been shown to be repressed by the androgen receptor
(26). RGS17, a member of the regulator of G-protein signaling
family, shRNA knockdown in prostate cells inhibited prolifer-
ation (27). FGF19, a member of the fibroblast growth factor
family, was recently shown to function as an autocrine growth
factor. Exogenous FGF19 promoted growth, invasion, adhesion
and colony formation, whereas decreasing FGF19 decreased
invasion and proliferation in vitro and tumor growth in vivo
(28). Only one risk locus was associated with a microRNA—
the colon cancer risk locus, rs4925386, with miR-1-1. Interest-
ingly, miR-1-1 is frequently methylated in colorectal cancers
and it has been suggested to act as a tumor suppressor (29).

A notable observation is that the number of significant eQTL
target–gene associations differs substantially among the five
tumor types. Despite having similar numbers of risk loci as
breast cancer (and fewer samples to analyze), the prostate
samples had the greatest number of associations.Trait-associated
variants may exert their effects in a cell automonous or non-cell
autonomous fashion. Perhaps prostate cancer risk variants are

more likely to act in a cell autonomous manner. Further studies
will be necessary to definitively address this issue.

While eQTLs are being used to annotate trait-associated loci,
they are potentially equally powerful for prioritizing candidate
causal loci for downstream functional testing. As stated above,
due to LD, a purely genetic approach is unlikely to definitively
identify the causal variant. Because an eQTL target–gene asso-
ciation represents a regulatory element and its target gene, a
straightforward experimental test with a quantitative readout
(i.e. gene expression levels) can be designed. Using genome
editing tools such as transcriptional activator like effector
nucleases (TALENs) or Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) technologies, it is possible to
directly engineer single nucleotide changes with pinpoint preci-
sion into the nuclear genome without selectable markers (30,31).
The expectation is that the causal allele will alter transcript levels
whereas a correlated variant will not.

We devised a posterior probability that incorporates both the
strength of an association between a variant and transcript levels
as well as whether or not the variant was located in a DHS. This
test is similar to another recently published test that also accounts
for the association signal and epigenetic features (10). Over the
past several years, many epigenetic marks have been shown to

Figure 2. Illustration of the fine-mapping candidates of three cancer risk loci based on an integrated posterior probability combining association and epigenetic data.
Each point represents a correlated germline variant of the initially reported risk locus (labeled by blue text); the height of the points corresponds to the eQTL level of
significance (2log10 P values); the DNaseI HS scores are shown beneath the posterior; the green bars show the posterior probabilities. (A) Xp11.22/rs4945619 with
NUDT11 in prostate cancer; (B) 6q25.2/rs1933488 withRGS17 in prostate cancer and (C) 5q11.2/rs889312 with C5orf35in ER-positive breast cancer. NUDT11 and
RGS17 demonstrate how incorporating DNaseI HS data can prioritize variants for functional testing in areas with extensive LD. For C5orf35, the strongest candidates
are a considerable distance away from and are moderately correlated with the initial risk SNP.
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correlate with various types of regulatory activity (e.g. promo-
ters, enhancers, silencers and insulators). Because we did not
want to be biased toward a particular type of regulatory
element, we chose to use DHS, a generic mark of open chroma-
tin. In order to increase the sensitivity of the fine mapping
analysis, we used the union DHS from 125 cell types to define
the prior. This selection is probably made at the cost of specifi-
city. On the other hand, an investigator may select tissue-specific
DHS to increase specificity, at the possible cost of sensitivity.
Importantly, the final proof of the success or failure of any
algorithm that proposes to identify causal alleles will be deter-
mined by comparing the top variants from the eQTL analysis
with the top variants from case–control fine mapping as well
as functional validation. Until more causal alleles are definitively
identified and we gain a deeper understanding of how various
epigenetic features track with actual causal alleles, individual
investigators will be required to make an educated guess as to
which feature they believe to be the most important. Our goal
was to provide a model that is flexible enough to accommodate
investigators’ choices for various features.

The data generated in this study provide a list of genes and
variants that can be immediately prioritized for functional evalu-
ation. However, some caveats exist. For approximately half of
the associations, we have identified for the risk loci, the signifi-
cance of the risk loci is less (at least one magnitude) than inde-
pendent variants from the same region. This observation is
consistent with two plausible scenarios: first, it is possible that
the target gene has nothing to do with the particular phenotype
under study. That is, the risk locus can be an eQTL for the
target gene and this eQTL target–gene association is completely
independent from risk; second, the independent variant is also a
risk locus that acts on the same target gene. As is now being
observed by many fine mapping studies, genomic risk loci
often harbor multiple independent risk alleles (12,32,33). Fine
mapping in large-scale case–control studies will distinguish
these two scenarios.

Lastly, many risk loci are not significantly associated with a
target gene. Possible reasons include evaluation of the wrong
cell type (e.g. either a different cell type or subset of morpho-
logically similar cells such as stem cells), transcripts that are
outside the tested interval, other mechanisms driving risk (e.g.
influencing long non-coding RNA levels), evaluating the incor-
rect state (tumor instead of normal), measuring expression at the
wrong time point, or a false negative due to sample size and/or
assay sensitivity.

MATERIALS AND METHODS

Data sets

Five tumor types were included in the eQTL analyses (Table 1).
The data were downloaded from ‘The Cancer Genome Atlas’
(TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/tcga
Home2.jsp). A total of 906 600 common variants were geno-
typed from matched normal DNA samples using Affymetrix
SNP 6.0. The expression profiles of mRNA and miRNA in
matched tumor samples were obtained from pre-processed
RNA sequencing data; the somatic copy number and methyla-
tion are also measured and inferred from matched tumor
samples.

eQTL analysis

For each cohort of tumors, we determined the ancestry based on
the germline genotype data using EIGENSTRAT software with
415 HapMap genotype profiles as control set. Only populations
of Northern and Western European ancestries were included in
the analyses.

We first performed cis-eQTL analyses for the five tumor types
using a method we described previously, in which the associ-
ation between 906 600 germline genotypes and the expression
levels of mRNA or miRNA (located within 500 kb on either
side of the variant) were evaluated using linear regression
model with the effects of somatic copy number and CpG methy-
lation being deducted. (For miRNA expression, the effect of
CpG methylation is not adjusted for since the data are not avail-
able.) To adjust for multiple tests, we adjusted the test P-values
using the Benjamini–Hochberg method based on the total
number of cis-associations that has been tested. A significant
association is defined by a FDR of ,0.1. For each eQTL ana-
lyses, we generated the Q–Q plot based on the distribution of
test P-values and the distribution of expected P-values. The in-
flation factor (l statistics) is used to indicate possible confound-
ing effects in the analyses.

Following the cis-eQTL analyses, we collected a set of risk
loci of the five tumor types which were derived from previous
GWAS with P-values below 1027 (Table 1) (13). For each
tumor type, we retrieved the correlated variants (r2 . ¼ 0.7)
of the corresponding risk loci that are represented in the germline
genotype data as a test set. Again, we adjusted the test P-values
using the Benjamini–Hochberg method based on the number of
cis-associations tested for the risk loci only. The significant asso-
ciations are defined by a FDR of ,0.1.

Imputation

For each risk locus to which a gene has been found associated in
cis, we retrieved the genotype of all SNPs on the Affymetrix 6.0
array within 2 Mb of either side of the risk locus. Using these
genotypes and the impute2 March 2012, 1000 Genomes Phase
I integrated variant cosmopolitan reference panel of 1092 indivi-
duals (haplotypes were phased via SHAPEIT), we imputed the
genotypes of SNPs in the 1000 Genomes Project in the target
regions for TCGA samples (34–37). For each risk locus to
which a gene had been found associated in cis, we retrieved
the imputed variants within 500 kb of either side of the risk
locus. In order to control for the accuracy, variants of low imput-
ation quality (,0.7) are excluded from the following fine-
mapping analysis. We tested for association between imputed
SNPs and gene expression using the linear regression algorithm
described above, where each imputed SNP was coded as an
expected allele count (38).

Fine mapping

For each SNP locus i, we considered two factors: the eQTL level
of significance, which is represented by the test P-values from
the eQTL analysis; and the potential regulatory activity in the
locus (prior),which is represented by the DNaseI hypersensitivity.

We select the candidate causal alleles by a posterior pro-
bability which takes into account both aforementioned factors.
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Let pi denote the P-value resulting from the test between the
genotype of a SNP locus i and the target gene, and let xi

2 ¼
zi

2, where zi ¼ F21(1 2 pi/2), and F21 is the inverse of the
normal cumulative distribution function. Under the assumption
that there is exactly one causal variant in the set of SNPs tested,
the posterior probability that SNP i is the causal allele can be
approximated by the following expression:

exp((1/2)x2
i )pdi

∑
i exp((1/2)x2

i )pdi
,

where the sum is over all SNPs in the tested set, di ¼ 1 if a
DNaseI HS site is located within 50 bp of SNP i and di ¼ 0
otherwise, and pi is a relative prior weight for SNPs in or near
DNaseI HS sites (39). DNaseI HS sites were identified from
125 cell types by the ENCODE project (15). To determine pi,
we sampled one million random variants from 1000 Genome
Project (CEU population) that are uniformly represented in
known DNaseI HS sites; and another one million variants in
non-DNaseI HS sites. We evaluated the distribution of anno-
tated eQTL activity (B. Stranger, personal communication) in
either set. As a result, 11.3% of the variants in or near DNaseI
HS sites (di ¼ 1) turned out to be eQTLs compared with 2.3%
of the variants outside any DNaseI HS sites (di ¼ 0). Thus, we
set pi ¼ 0.113/0.023 ¼ 4.91. The higher the posterior, the
more likely the variants are the causal.

To identify candidate causal variants, we retrieved all corre-
lated variants (r2 ≥ 0.5) of a known risk locus from the 1000
genomes phase I data and minor allele frequency .0.05
(based on the CEU population). We then calculated the posterior
probability for each of the correlated variant i as described.

For each risk locus, we stratified the posterior probabilities of
all the correlated variants using a medoid-based partition method
(40). Then, we selected the subset of variants with higher poster-
ior as the fine mapping of the original reported risk locus.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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