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Background: Arf6 has a number of distinct effects on trafficking of integrins.
Results: Two Arf6 GAPs, ARAP2 and ACAP1, were distinctly localized and had differential effects on integrin trafficking and
integrin adhesions.
Conclusion: Arf6 effects on integrins are determined by associated Arf6 GAPs.
Significance: Arf GAPs define control points of integrin traffic important to cellular behaviors related to invasion and metas-
tasis in cancer.

Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1
are established regulators of integrin traffic important to cell
adhesion and migration. However, the function of Arf6 with
ACAP1 cannot explain the range of Arf6 effects on integrin-
based structures. We propose that Arf6 has different functions
determined, in part, by the associated Arf GAP. We tested this
idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We
found that ARAP2 and ACAP1 had opposing effects on appar-
ent integrin �1 internalization. ARAP2 knockdown slowed,
whereas ACAP1 knockdown accelerated, integrin �1 internal-
ization. Integrin �1 association with adaptor protein containing
a pleckstrin homology (PH) domain, phosphotyrosine-binding
(PTB) domain, and leucine zipper motif (APPL)-positive endo-
somes and EEA1-positive endosomes was affected by ARAP2
knockdown and depended on ARAP2 GAP activity. ARAP2
formed a complex with APPL1 and colocalized with Arf6 and
APPL in a compartment distinct from the Arf6/ACAP1 tubular
recycling endosome. In addition, although ACAP1 and ARAP2
each colocalized with Arf6, they did not colocalize with each
other and had opposing effects on focal adhesions (FAs). ARAP2
overexpression promoted large FAs, but ACAP1 overexpression
reduced FAs. Taken together, the data support a model in which
Arf6 has at least two sites of opposing action defined by distinct
Arf6 GAPs.

Endocytic traffic of transmembrane proteins, including cell
adhesion molecules such as integrins, is emerging as a critical
pathway in cell migration and signaling related to cancer inva-
sion and metastasis (1). Arf6, a GTPase of the Ras superfamily,
is a central component of the regulatory machinery controlling
the relevant endocytic trafficking (2– 4). However, the traffick-
ing pathways and the site of Arf6 action are now appreciated to
be more complex than prevailing paradigms. The understand-

ing of processes such as invasion and metastasis will be
advanced by further description of the relationship between
Arf6 and the range of itineraries possible for cargos such as
integrins.

Distinct endocytic compartments and the connections
between them are continuing to be discovered. In the prevailing
paradigms, endocytosed cargos are translocated to a common
sorting compartment from which they are directed toward the
degradative pathway or either a fast or slow recycling pathway
(5, 6). This description is now understood to be an oversimpli-
fication, with recent descriptions of integrins being recycled
from the degradative pathway (7) and other cargos bypassing
the common sorting early endosome for direct transfer to the
Arf6/Rab22 tubular recycling endosome (8). Therefore, the
pre-early endosome may be a critical sorting station for deter-
mining the endocytic itinerary. One class of pre-early endo-
somes defined by the presence of adaptor protein containing
PH2 domain, phosphotyrosine-binding (PTB) domain, and leu-
cine zipper motifs 1 and 2 (APPL1/2) has been found to traffic
integrins (9).

An understanding of the mechanism of Arf6 function within
the endocytic recycling compartment has remained elusive, as
has been the effect of Arf6-dependent recycling of the cargo
integrin on cellular structures and behaviors. Arf6 has been
reported to accelerate the recycling of cargo, including trans-
ferrin and integrin �5�1 (10 –12). However, it slows the recy-
cling of integrin �v�3 (12), the opposite of the effect on integrin
�5�1. In addition, Arf6 has been reported to increase the endo-
cytosis of integrin �5�1 (13). Adding to the complexity are the
reported cellular effects of Arf6-dependent endocytic traffic.
Focal adhesions (FAs) are structures that mediate the attach-
ment of cells to the extracellular matrix. FAs contain clustered
integrins that bind the extracellular matrix and a cytoplasmic
plaque that connects the integrins to the actin cytoskeleton and
is comprised of hundreds of structural and signaling proteins,
including vinculin and paxillin (14). Arf6-induced endocytosis
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of integrin �5�1 has been reported to result in a loss of FAs (13),
which would be anticipated given less integrin on the cell sur-
face to cluster. However, it has also been reported that Arf6-
driven recycling of integrin �5�1 destabilizes FAs (12) despite
having a greater concentration of integrins on the cell surface.
Reconciling these apparently contradictory results will require
a more detailed understanding of the site or sites of Arf6 action
and the specific endocytic itineraries that may be affected by
each.

Examination of Arf GAPs may provide insights into the com-
plexities of Arf6-regulated endocytic traffic of integrins. Arf
GAPs, with 31 genes and multiple splice variants, outnumber
the five Arfs in humans (15, 16). Of the Arf GAPs, several spe-
cific for Arf6 have been described, including ACAP1, ACAP2,
and ARAP2 (17, 18). ArfGAPs are multidomain proteins that
have been speculated to have effector functions (19 –21). Either
by responding to specific signals, by associating with distinct
Arf6 compartments, or through an effector function, the Arf6
GAPs could determine specific functions of Arf6.

We test the idea that Arf6 GAPs, at least in part, determine
the specific effect of Arf6 on endocytic traffic by comparing
ARAP2 and ACAP1 (see Fig. 1A for a schematic of domain
structures). The proteins are structurally distinct. ARAP2 is
comprised of a sterile �-motif domain, five PH domains, an Arf
GAP domain, an Ank repeat domain, an inactive Rho GAP
domain, and a Ras association domain. ACAP1 is comprised of
a Bin/Amphiphysin/Rvs domain, a PH domain, an Arf GAP
domain, and an Ank repeat domain. ACAP1 has already been
found to accelerate the recycling of integrins and to be associ-
ated with the tubular recycling compartment containing Rab11
(17, 22). We find important differences between ARAP2 and
ACAP1 in the effects on integrin traffic, effects on FAs, and the
associated endocytic compartments. The results support a
model in which Arf function is determined, in part, by the asso-
ciated Arf GAP and leads to the identification of a unique
APPL/Arf6/ARAP2 compartment.

MATERIALS AND METHODS

Plasmids, Antibodies, and Reagents—Mammalian expression
vectors for N-terminal FLAG-tagged ARAP2, [R728K]ARAP2,
and ACAP1 have been described previously (17, 18). Rab21-
mCherry and GFP-ACAP1 were gifts from Dr. Elizabeth Sztul
(University of Alabama at Birmingham, Birmingham, AL) and
Dr. Victor Hsu (Harvard Medical School, Boston, MA), respec-
tively. GFP-human APPL1 was purchased from Addgene (Add-
gene plasmid 22198). Rabbit anti-ARAP2 antiserum (antiserum
1186) were raised against the same synthetic peptide, RSRTLP-
KELQDEQILK, as antisera 1185 described previously (18)
(Covance Research, Princeton, NJ). 1186 antisera were affinity-
purified with a purification kit (Thermo Scientific, Lafayette,
CO) using the peptide against which the antibody was raised.
Affinity-purified 1186 antisera detected a band at 190 kDa by
Western blotting. The band at 190 kDa was diminished in three
cell lines treated with siRNA targeting ARAP2, providing evi-
dence that this 190-kDa species was endogenous ARAP2. Anti-
FLAG polyclonal Ab, anti-Vinculin monoclonal Ab (catalog no.
hVIN-1), primaquine, and fibronectin were purchased from
Sigma-Aldrich (St. Louis, MO). Anti-�1 integrin monoclonal

Ab (clone MEM101A-PE) was from Novus Biologicals (Little-
ton, CO). Anti-active �1 integrin monoclonal Ab (clone 9EG7),
anti-inactive �1 integrin monoclonal Ab (clone MAB13), anti-
EEA1 monoclonal Ab, and anti-actin monoclonal Ab were from
BD Biosciences. Anti-active �1 integrin monoclonal Ab (clone
12G10-FITC), anti-GFP monoclonal Ab, and anti-APPL poly-
clonal Ab were from Abcam (Cambridge, MA). Anti-FLAG
monoclonal Ab and anti-EGFR rabbit polyclonal Ab were from
Cell Signaling Technology (Danvers, MA). Anti-GFP and
Hsc70 monoclonal Abs were from Covance Research and Santa
Cruz Biotechnology (Dallas, TX), respectively. Alexa Fluor-la-
beled secondary antibodies were from Invitrogen. Horseradish-
peroxidase-conjugated anti-mouse and anti-rabbit IgG Abs
were from Bio-Rad.

Cell Culture and Transfection—HeLa and MDA-MB-231
cells were maintained at 37 °C in Dulbecco’s modified Eagle’s
medium and RPMI 1640 medium supplemented with 100
units/ml penicillin, 100 �g/ml streptomycin, and 10% FBS.
siRNA against ARAP2 (5�-GUAAGAAGACAUUGGGUUA-
3�), ACAP1 siGENOME SMARTpool, and control siRNA
(siCONTROL non-targeting siRNAs #2 and #4) were pur-
chased from Thermo Scientific (Lafayette, CO). Subconfluent
cells were transfected with 40 nM siRNA using DharmaFECT
transfection reagent 1 (Thermo Scientific). Functional experi-
ments with siRNA-transfected cells were performed 72 h fol-
lowing transfection when ARAP2 and ACAP1 expression was
reduced. FLAG-ACAP1 expression was reduced 77% in ACAP1
siRNA-transfected cells compared with control siRNA-
transfected cells. For experiments requiring exogenous protein
expression, 48 h after siRNA transfection, cells were transfected
with plasmids expressing FLAG-ARAP2, FLAG-[R728K]-
ARAP2, �5 integrin-EGFP, untagged �1 integrin, Rab5-GFP,
Rab21-mCherry, Rab4-HA, Rab11-GFP, or GFP using Lipo-
fectamine 2000 reagent (Invitrogen) or the Amaxa nucleofector
system (Amaxa Inc., Gaithersburg, MD) according to the
instructions of the manufacturer. 24 h later, the effects on
integrins and FAs were assessed using confocal microscopy.

Integrin Internalization Assay—Integrin internalization and
recycling were followed in complex with antibodies to integrin
�1 and detected with secondary antibody for FACS (23) and
immunofluorescence experiments. To study internalization,
cells were incubated at 4 °C with R-phycoerythrin (PE)- or
FITC-conjugated anti-�1 integrin (clones MEM101A and
12G10, respectively) antibody at 5 �g/ml for 30 min. Cells were
washed to remove unbound antibody. Internalization was ini-
tiated by adding medium (37 °C). At each time point, cells were
put on ice, washed with ice-cold PBS � 0.2% BSA, and incu-
bated at 4 °C for 30 min with Alexa Fluor 647 anti-mouse anti-
body in cold PBS � 0.2% BSA to detect the remaining cell sur-
face primary antibody. Cells were washed, detached from plates
using StemPro Accutase (Invitrogen), and analyzed using flow
cytometry (BD FACSCalibur, BD Biosciences). The ratio of
normalized fluorescence intensity from integrin antibody on
the cell surface at each time point (signal from secondary Ab)
and total surface integrin labeled by antibody at time 0 (signal
from primary integrin Ab) was determined. For the internaliza-
tion assay using MAB13 Ab (inactive �1 integrin) that was
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unconjugated to a fluorophore, all procedures were the same,
except the signal was normalized to time 0.

Transferrin Recycling Assay—Cells were incubated for 30
min with 0.025 �g/ml Transferrin-Alexa Fluor 488 (Invitrogen)
in media. Cells were washed three times with ice-cold PBS and
incubated in media at 37 °C for the indicated times. Cells were
transferred on ice, washed, and detached for FACS as described
for integrin. The recycled transferrin was calculated as 100%
minus the percentage of cell-associated signal at time 0.

EGFR Degradation—siRNA-treated HeLa cells were serum
starved overnight in DMEM�0.1% FBS and treated with 100
ng/ml EGF for the times indicated. Cells were lysed in lysis
buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA,
and 1% Triton X-100 supplemented with protease and phos-
phatase inhibitor mixture), and 20 �g of lysates were subjected
to Western blotting using anti-EGFR antibody.

Immunoprecipitation and Western Blotting—Cells were
lysed in lysis buffer. Proteins were immunoprecipitated using
either anti-FLAG antibody conjugated to agarose or anti-GFP
and anti-ARAP2 antibody precipitated with protein A/G-aga-
rose. Immunoblots were processed by standard methods and
visualized with enhanced chemiluminescence.

Immunofluorescence and Confocal Microscopy—Cells were
plated on coverslips coated with 10 �g/ml fibronectin and fixed
in 4% paraformaldehyde. For AlF4

� treatment, cells were incu-
bated in media containing 30 mM NaF and 50 �M AlCl3 for 30
min before fixation. Fixed cells were incubated in 15 mM glycine
for 10 min and 50 mM NH4Cl for 2 � 10 min and then permea-
bilized and blocked with 0.2% saponin, 0.5% BSA, and 1% FBS in
PBS for 20 min. Cells were incubated in primary antibody for
1 h, followed by secondary antibodies for 1 h, and mounted
in DakoCytomation fluorescent mounting medium (Dako,
Carpinteria, CA). Images for fixed cells were taken on a Zeiss
LSM 510 attached to a Zeiss Axiovert 100 M with a 63 � 1.4
numerical aperture plan Neofluar oil immersion lens (Carl
Zeiss, Thornwood, NY). For FRAP, the cells were plated on a
Lab-TekII four-chambered coverglass coated with fibronectin
and visualized with a Zeiss Axiovert 200 microscope and
PerkinElmer Life Sciences UltraView spinning disk confocal
system using a 63 � 1.4 numerical aperture plan Neofluar oil
immersion objective. Cells were imaged in real time on a stage
preheated to 37 °C with a CO2 chamber using an Orca-ERII
camera (Hamamatsu, Bridgewater, NJ). �5-Integrin-EGFP-la-
beled adhesions were bleached using a 488-nm laser at full
power. During fluorescence recovery, images were captured at
200- to 500-ms intervals for less than 5 min at a reduced laser
intensity (40�60%) to minimize undesired photobleaching.
FRAP data were fit to exponential curves using GraphPad Prism
(La Jolla, CA).

Image Analysis and Statistics—Focal adhesion number per
cell was analyzed using ImageJ (National Institutes of Health,
http://rsb.info.nih.gov/ij/) as described previously (24). For
analysis of photobleaching recovery, the integrated fluores-
cence intensity was recorded in prebleach and recovery image
series and normalized so that the prebleach value was 100%.
The recovery halftime (t1⁄2) and mobile fraction were calculated
using the normalized recovery values with the one-phase expo-
nential association fit in GraphPad Prism (GraphPad Software).

For quantification of the colocalization of integrins with endo-
somal markers, z stack images of consecutive optical planes
spaced by 0.5 �m were acquired to cover the whole cell volume
using confocal microscopy. Pearson’s coefficient was deter-
mined using Imaris 7.4.0. The differences between multiple and
two treatments were analyzed by one-way analysis of variance
using Bonferroni’s multiple comparison test and Student’s t
test, respectively, with p � 0.05 considered to be significant.

RESULTS

ARAP2 Affects Endocytosis and Recycling of Integrins Differ-
ently Than ACAP1—Arf6�GTP can have opposing effects
on integrin traffic and integrin-dependent cell behaviors.
Arf6�GTP has been reported to accelerate integrin recycling
with an increase in integrin-based cell adhesion (11, 25, 26), and
it has also been reported to decrease cell adhesion because of
increased integrin internalization, leading to a loss of FAs (13,
27). These apparently contradictory results may be explained
by binding of Arf6�GTP to different effectors and/or function-
ing of Arf6�GTP at multiple sites. One Arf6 GAP, ACAP1, not
associated with FAs, promotes recycling of integrins. Three
other bona fide Arf6 GAPs, ARAP2 and GIT1/2, reside in and
regulate FAs, but their effects on integrin traffic have not been
examined. Here we examined ARAP2 and ACAP1. We hypoth-
esize that differential effects of Arf6 are mediated, at least in
part, by interacting with structurally distinct Arf6 GAPs. In an
initial test of this idea, we compared the effect of ACAP1 and
ARAP2 knockdown on the net internalization rate of integrin
�1, examined for 30 min. Integrins are found in at least two
states: an active form, which has a high affinity for extracellular
matrix ligands, and an inactive form that has a low affinity for
extracellular matrix ligands. The two forms have different con-
formations and can be distinguished by binding to specific anti-
bodies. We first focused on the active form of integrin �1. An
antibody specific for active �1 was used to measure the endo-
cytosis of integrin (23). Knockdown of ACAP1 reduced the sur-
face levels of active integrin �1 by 13.7 � 0.02%. Total cell-
associated active �1 integrin was also decreased by 17.1 �
0.06% (Fig. 1B). The ratio of surface to total integrin was not
changed. Cells with reduced ACAP1 internalized a greater frac-
tion of integrin �1 after 20 min of internalization. After 30 min,
there was 34% greater internalization of integrin �1 compared
with controls. This result is consistent with reduced recycling
through the Rab11 (slow) recycling pathway that has been
reported for ACAP1 knockdown (Fig. 1C) (22, 28). ARAP2
knockdown was different from ACAP1 knockdown in two
respects. First, ARAP2 knockdown cells had a greater content
of integrin �1, whereas ACAP1 knockdown cells had a small
decrease in integrin �1 content. Surface levels of active �1
integrin were increased �2-fold in ARAP2 siRNA-treated
HeLa (Fig. 1E) and MDA-MB-231 cells (Fig. 2A). Total cell-
associated active �1 integrin was also increased �2-fold in
ARAP2 knockdown cells (Figs. 1E and 2A). Consequently, the
ratio of surface to total integrin was not affected (48 � 3.1% for
control versus 44 � 7.1% for ARAP2 knockdown in HeLa cells
and 14 � 1.7% versus 14 � 0.4% in MDA-MB-231 cells). The
second difference between ARAP2 and ACAP1 knockdown
was in the internalization of integrins. In ARAP2 knockdown
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cells, the net rate and extent of integrin �1 internalization were
50�60% that of the control HeLa cells (Fig. 1F), and the differ-
ence from the control was observed within 5 min of initiating

uptake. In MDA-MB-231 cells, ARAP2 knockdown also
reduced the net internalization rate of integrin �1 (Fig. 2B). The
effects of ARAP2 knockdown to increase integrin levels and to
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slow the net rate of integrin internalization were independent
of the activation state of integrin �1 because these results were
also observed when using an antibody specific for inactive �1 or
an antibody that does not discriminate between active and inac-
tive �1 (Fig. 1, H–K).

The net rate of internalization is a balance of endocytosis and
recycling. Therefore, a slower net rate of integrin internaliza-
tion in ARAP2 knockdown cells could be due to reduced endo-
cytosis or accelerated rapid recycling (29). In the presence of
primaquine (PQ), which blocks recycling, therefore isolating
endocytosis (30), the integrin endocytic rate in ARAP2 knock-
down cells was indistinguishable from that in control cells (Fig.
1F). Therefore, the reduction in the net internalization rate in
ARAP2 knockdown cells was likely due to accelerated recy-
cling, in contrast to the effect of ACAP1 knockdown of slowing
recycling (28). Because endocytosis occurred rapidly compared
with the time resolution of the experiment, we cannot exclude
an effect of ARAP2 on endocytosis on the basis of this
experiment.

For further information on endocytosis, at least at FAs, we
determined the exchange rate of integrin at FAs by FRAP anal-
ysis using �5-EGFP as a model integrin. �5-EGFP integrin was
coexpressed with untagged �1 integrin in cells treated with
control or ARAP2 siRNA. In Fig. 3A, example FRAP results for
control and ARAP2 knockdown cells are shown. In Fig. 3B, the
averages of t1⁄2 for recovery and mobile fraction determined
from 38 traces for control cells and 39 traces for ARAP2 knock-
down cells are shown. The fluorescence recovery time of
�5-EGFP was shorter and the exchangeable fraction of
�5-EGFP was larger in ARAP2 knockdown cells (Fig. 3). This
result is consistent with more rapid endocytosis and recycling
rates of integrin in ARAP2 knockdown cells.

We examined additional cargos that transit the endocytic
pathway. Following endocytosis, most transferrin receptor is
recycled. We found that neither ARAP2 knockdown nor
ACAP1 knockdown had a detectable effect on transferrin recy-
cling (Fig. 4, A and B). The result with ACAP1 is different from
that reported previously (22), which could be the result of a
difference in the cell strain used or methodology. We also
examined EGFR. Following receptor occupancy and endocyto-
sis, EGFR is primarily targeted to the lysosome for degradation.
We measured the rate of EGFR degradation to determine the

effects on this pathway (31). Different from integrins, neither
the total EGFR level nor the EGFR degradation rate was
affected by ARAP2 knockdown or ACAP1 knockdown (Fig. 4, C
and D).

ARAP2 Affects the Transit of Integrins from APPL to EEA1
Endosomes—We characterized the intracellular itinerary of
integrins in HeLa cells with reduced ARAP2 expression.
APPL1/2 is recruited by Rab5 and Rab21 to pre-early endo-
somes that form immediately after clathrin-dependent endocy-
tosis. Subsequently, EEA1 is recruited to form the canonical
early endosome that sorts transmembrane cargo proteins to
various endosomal compartments, including the tubular recy-
cling endosome that is positive for Rab11 and Rab22 (5, 32).
ACAP1 has been reported to affect traffic of integrins through
the tubular recycling compartment (11, 22, 28). To determine
the step in the endocytic pathway affected by ARAP2, cells with
reduced expression of ARAP2 were coimmunostained for �1
integrins and either endogenous APPL or endogenous EEA1
(Fig. 5). �1 integrins and APPL colocalized to a greater extent in
HeLa cells with reduced ARAP2 than controls (Fig. 5, A and C).
Similar results were obtained in the breast cancer cell line
MDA-MB-231 (Fig. 5D). �1 integrin was also stained in control
and ARAP2 knockdown cells expressing Rab5-GFP or Rab21-
mCherry (Fig. 5E). Similar trends of more association of �1
integrin with these Rab5 family proteins were observed when
ARAP2 was knocked down, although the data were not as clear,
possibly because of the heterogeneity of the Rab5 compart-
ment, which includes both APPL and EEA1 compartments. In
contrast, the association of �1 integrins with EEA1 decreased in
ARAP2 knockdown cells (Fig. 5, B and C). This reciprocal
change in integrin association with APPL and EEA1 endosomes
was observed for both active and inactive integrins (Fig. 5, C and
E). �1 integrins no longer accumulated in APPL endosomes
when FLAG-tagged wild-type ARAP2 was overexpressed
in ARAP2 knockdown cells. ArfGAP-dead FLAG-[R728K]-
ARAP2 did not rescue the defect (Fig. 5, A and C). From EEA1
endosomes, integrins can be sorted to the late endosomes/lyso-
somes or recycling compartments containing Rab4 or Rab11 (5,
33). In ARAP2 knockdown cells, colocalization of active �1
integrins with lysosomes (LAMP1) decreased (Fig. 5E), which
may explain increased cellular levels of integrin (Fig. 1). We did
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not detect differences in integrin association with Rab4 or
Rab11 in ARAP2 knockdown cells (Fig. 5E).

ARAP2 also affected the cellular distribution of the APPL
compartment. In both HeLa and MDA-MB-231 cells, APPL1-
positive structures are distributed throughout the cells (Fig. 5).
A small fraction of the cells had the APPL1 signal restricted to
the periphery. Reducing ARAP2 expression in HeLa (Fig. 5, F
and G) and MDA-MB-231 cells (Fig. 5H) increased the percent-
age of cells with peripheral APPL endosomes, further support-
ing the idea that ARAP2 regulates the APPL compartment.

ARAP2 Associates with an APPL1/Arf6-positive Compart-
ment Morphologically Distinct from the ACAP1 Compart-
ment—We compared the cellular distributions of ARAP2 and
ACAP1 relative to APPL and Arf6 in the absence and presence
of AlF4

�, which can form a stable membrane-associated
Arf6�GDP�AlF4

��ArfGAP complex (34). In the absence of AlF4
�,

GFP-APPL and FLAG-ARAP2 colocalized in punctate struc-
tures with Arf6-HA (Fig. 6A, Pearson’s coefficient 0.20 �
0.061). In cells expressing Arf6-HA with FLAG-ARAP2 and
GFP-APPL1 and treated with AlF4

�, the three proteins colocal-
ized in membrane protrusions (Fig. 6, A and B, Pearson’s coef-
ficient 0.24 � 0.051 for FLAG-ARAP2 and GFP-APPL1). In
cells expressing FLAG-ACAP1, GFP-APPL1, and Arf6-HA and
treated with AlF4

�, ACAP1 colocalized with Arf6 in tubules that
had terminal expansions enriched in GFP-APPL1 (Fig. 6B). The
tubules were not observed in cells expressing ARAP2 instead of
ACAP1. In cells coexpressing FLAG-ARAP2 and GFP-ACAP1,
ARAP2 and ACAP1 did not colocalize in the tubular structures
(Fig. 6C).

Examination of complex formation with APPL also revealed
differences between ARAP2 and ACAP1. FLAG-ARAP2 and

FLAG-ACAP1 were immunoprecipitated from lysates of cells
expressing GFP-APPL1 and either FLAG-ARAP2 or FLAG-
ACAP1 with an anti-FLAG antibody. GFP-APPL1 was detected
in the precipitates from cells coexpressing FLAG-ARAP2 but
not in precipitates from cells expressing GFP-APPL1 alone or
GFP-APPL1 with ACAP1 (Fig. 6D). Similarly, when GFP-
APPL1 was immunoprecipitated, more than 3% input of FLAG-
ARAP2 was detected in the precipitates (Fig. 6E, note that the
input signal is light, indicated by the asterisk in the second lane
from the right). FLAG-ACAP1 was also present in these precip-
itates, but the precipitation was less efficient, with less than 3%
of the input FLAG-ACAP1 present. Finally, endogenous
APPL1 was also coimmunoprecipitated with endogenous
ARAP2 (Fig. 6F), supporting the conclusion that ARAP2 asso-
ciates with APPL1 in cells.

Cell morphology was differentially affected by ARAP2 and
ACAP1. In the experiments determining whether ARAP2 and
ACAP1 associated with different cellular structures, the cell
morphology appeared to be related to the GAP that was
expressed (Fig. 6). Furthermore, ACAP1 expression has been
reported previously to prevent the formation of Arf6-induced
protrusions (17). To determine whether ARAP2 also affects
Arf6-dependent cell morphology, we compared cells express-
ing Arf6-HA alone or with either FLAG-ARAP2 or FLAG-
ACAP1 and treated with AlF4

� (Fig. 7). We classified Arf6-pos-
itive structures on the basis of morphology: ruffles, tubules,
protrusions, and blebs (Fig. 7A). In the presence of AlF4

�, Arf6-
HA-expressing cells exhibited prominent membrane ruffles at
the periphery and on the dorsal surface of the cell (Fig. 7, A and
B, Ruffles), which were rarely seen when ARAP2 or ACAP1 was
coexpressed with Arf6-HA. Expression of ARAP2 and ACAP1
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induced different Arf6-positive structures. ARAP2 promoted
membrane protrusions/blebs, whereas ACAP1 increased tubules
(Fig. 7, A and B).

The tubules and protrusions induced by ACAP1 and ARAP2
were dependent on Arf6�GTP. Neither formed in AlF4

�-treated
cells expressing ACAP1 or ARAP2 with a dominant negative

mutant of Arf6 ([N122I]Arf6-HA) (Fig. 7, C–E). We conclude
that the formation of protrusions and blebs depend on ARAP2
together with active Arf6, whereas tubules depend on active
Arf6 with ACAP1.

Distinct Effects of ARAP2 and ACAP1 on FAs—We compared
the effect of ARAP2 and ACAP1 overexpression on the size of
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FAs using vinculin as a marker. ARAP2 overexpression resulted
in fewer small adhesions and more large adhesions (
3 �m2)
(Fig. 8, A and B). In contrast, ACAP1 overexpression reduced all
adhesions (Fig. 8, A and B). The expression levels of the recom-
binant ARAP2 were estimated to be 200- to 500-fold higher
than that of endogenous ARAP2 (Fig. 8C). However, ARAPs are
highly regulated (35), which would limit extreme effects of
overexpression. In fact, ARAP2 knockdown has been reported
previously to reduce FA size and number (36), consistent with
our result in which overexpression resulted in larger FAs. Nei-
ther ARAP2 nor ACAP1 overexpression had a significant effect
on total or surface active integrins (Fig. 8D). However, the over-
expressed ARAP2 and ACAP1 associated with specific Arf6
compartments and had distinct effects on FAs. Therefore, the
effect on the morphology of Arf6 structures and FAs cannot be
explained by different amount of integrins and is not likely due
to a nonspecific effect of the Arf GAP on Arf6 function. Rather,
our results are consistent with the idea that a reduction in recy-
cling by ARAP2 overexpression and accelerated recycling by
ACAP1 overexpression may explain the effects on FAs because
rapid recycling of �5�1 has been reported to destabilize adhe-
sions (12). We conclude that ARAP2 and ACAP1 are Arf6
GAPs that associate with different Arf6-positive endosomal
compartments and have different effects on integrin traffic and
opposing effects on FA morphology.

DISCUSSION

We examined two Arf6 GAPs to understand the opposing
effects of Arf6 on integrins and integrin-dependent cellular
processes. Arf6 and Arf6 exchange factors have been reported
to affect both integrin endocytosis and exocytosis (11–13, 26),
leading to the idea that Arf6 may affect integrin traffic at two
distinct sites. We found that ARAP2 and ACAP1, two bona fide
Arf6 GAPs, localize to morphologically distinct compartments
and differentially affect integrin traffic and FAs. The Arf GAPs
may, at least in part, define the Arf6 compartment and action.

The precise relationship of the ARAP2/APPL/Arf6 compart-
ment within the complex traffic pathways of integrins remains
to be fully characterized. Integrins are endocytosed into vesicles
that fuse with a pre-early endosome. Some pre-early endo-
somes contain APPL. From the pre-early endosome, integrins
are transported to the early endosome. Consistent with the
accumulation of integrin in the APPL compartment in ARAP2
knockdown cells, ARAP2 may promote pre-early to early endo-
some traffic (Fig. 9, route A). From the early endosome, integrin
is transported to either the degradative pathway or the recy-
cling pathway and may be recycled from either (1, 33). A block
in pre-early endosome to early endosome transport in ARAP2
knockdown cells would explain the result of decreased transit
through the degradative pathway and increased total integrin
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levels. The accelerated recycling rate may be the result of trans-
port directly from the pre-early endosome to the tubular recy-
cling compartment (6, 8) or transport from the APPL endo-
some to the plasma membrane (Fig. 9, routes B and C). It is
plausible that ARAP2 prevents transport from pre-early endo-
some to tubular recycling endosome or to the plasma mem-
branes and that knockdown of ARAP2 would, therefore, accel-

erate transport through these two routes (Fig. 9, routes B and
C). Alternatively, with a block in transport of integrin from the
pre-early endosome to the early endosome, the tubular recy-
cling compartment or direct transport to the plasma membrane
may be a default pathway for transport. Regardless of the spe-
cific path, as far as we are aware, this is the first report of an Arf
GAP regulating the APPL compartment.
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Arf6 function in a pre-early endosome has been described
previously in reports examining the effects of expressing con-
stitutively active Arf6 (37). Arf6 associated with two compart-
ments. One was the recycling endosome that also contained
ACAP and Rab11 (4, 38). The other compartment was enriched
in phosphatidylinositol 4,5-bisphosphate and trapped cargos
(37, 39). The structure was assumed to have formed early dur-
ing endocytosis. A plausible connection is that this phosphati-
dylinositol 4,5-bisphosphate-rich Arf6 compartment matures
into the APPL/ARAP2/Arf6 compartment.

The mechanism responsible for the morphological differ-
ences in the Arf6-positive compartments in cells expressing
ARAP2 or ACAP1 and treated with AlF4

� remains elusive.
ARAP2 or ACAP1 could generate the structures via an unique
domain. For example, the Bin/Amphiphysin/Rvs domain of
ACAP1 could induce the curvature necessary for the tubules to
form. Alternatively, the inability to hydrolyze GTP on Arf6
because the GAP is sequestered in the Arf6�GDP�AlF4��GAP
complex stabilizes or expands the specific GAP compartment.

The association of ARAP2 with an APPL/Arf6-positive com-
partment that regulates integrin traffic links several previous
studies. APPL, which associates with very early endosomes, has
been implicated in FA dynamics through its interaction with
GAIP-interacting protein C terminus, member 1 (GIPC1,
which binds to integrins (9)) to control integrin traffic and as an
element of signaling that regulates FA dynamics (40). Arf6 has
been reported to control integrin recycling and adhesion (11,
13, 29) and has been found to function downstream of synde-
can4 to direct the itinerary of specific integrins to control FA
dynamics (12). Increased Arf6�GTP levels accelerated �5�1
integrin recycling, destabilizing FAs, whereas decreased Arf6�
GTP levels increased �v�3 recycling, stabilizing FAs. ARAP2
could respond to cellular signals to regulate Arf6 and APPL in
an endosomal compartment that controls the integrin traffic
itinerary, therefore providing a single model explaining these
reports.

Cargo sorting may be a common feature of Arf-dependent
trafficking steps. We found that ARAP2 specifically affects the

trafficking of �1 integrin without effects on EGFR or transfer-
rin. Similarly, ACAP1 is thought to regulate the traffic of spe-
cific cargos from the recycling endosome (10, 41). A role for
ArfGAP1, functioning with a class 1 or 2 Arf, in the cargo sort-
ing in Golgi-to-endoplasmic reticulum trafficking has also been
described (42– 44), and ArfGAP3, also with a class 1 or 2 Arf, is
postulated to affect the traffic of specific cargo between the
early and late endosomes (45). Arf1 and Arf5 have also been
reported to affect FAs and integrin trafficking (23, 36). Partic-
ular Arf GAPs may provide the cargo specificity necessary to
navigate the complex endocytic pathways. Particular Arf GAPs
may also determine specific intracellular itineraries. ARAP2
and ACAP1 handle integrin �5�1 in common but affect differ-
ent compartments with different consequences.

Thirty-one genes encode Arf GAPs in humans, many with
multiple splice variants (15). In many cases, a clear Arf specific-
ity for Arf GAPs has not been able to be determined. It is pos-
sible that the Arf GAPs may be promiscuous in this regard. The
“wobble” in the Arf may provide additional Arf/Arf GAP pairs
for fine regulation of membrane traffic, with both the specific
Arf and the specific GAP determining the particular effect.

ARAP2 may also have a central role in signaling from the
APPL/Arf6 compartment. Phosphoinositides may be affected
through regulation of Arf6, which activates phosphatidylinosi-
tol phosphate kinase (46), and by ARAP binding to SHIP2, a
phosphoinositol 5�phosphatase (47). ARAP2 also affects
Rac1�GTP levels and is a target of Rho (18, 36). Given that
ARAP2 integrates a number of signals, we envision ARAP2 to
be a key regulatory component of a signaling and membrane
traffic station defined by the presence of APPL and dependence
on Arf6. A plausible model is that ARAP2 and ACAP1 respond
differentially to cellular signals to control the integrin traffick-
ing necessary for specific effects on cell migration.

In summary, we identify a unique Arf6/APPL/ARAP2 endo-
somal compartment that is distinct from the ACAP1 endo-
somal compartment. We propose that, in addition to sorting
specific cargos, particular endocytic itineraries are mediated by
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distinct compartments defined, at least in part, by particular
Arf/Arf GAP pairs (Fig. 9).
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