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Background: In Friedreich3s ataxia (FA) the genetically decreased expression of themitochondrial protein frataxin
leads to disturbance of the mitochondrial iron metabolism. Within the cerebellum the dentate nuclei (DN) are
primarily affected. Histopathological studies show atrophy and accumulation of mitochondrial iron in DN. Den-
tate iron content has been suggested as a biomarker to measure the effects of siderophores/antioxidant treat-
ment of FA. We assessed the iron content and the volume of DN in FA patients and controls based on ultra-
high-field MRI (7 Tesla) images.
Methods: Fourteen FApatients (mean age 38.1 yrs) and 14 age- and gender-matched controls participated.Multi-
echo gradient echo and susceptibility weighted imaging (SWI) sequences were acquired on a 7 T whole-body
scanner. For comparison SWI images were acquired on a 1.5 T MR scanner. Volumes of the DN and cerebellum
were assessed at 7 and 1.5 T, respectively. Parametric maps of T2 and T2* sequences were created and proton
transverse relaxation rates were estimated as a measure of iron content.
Results: In FA, the DN and the cerebellum were significantly smaller compared to controls. However, proton

transverse relaxation rates of the DN were not significantly different between both groups.
Conclusions:Applying in vivoMRImethodswe could demonstrate significant atrophyof theDN in the presence of
normal iron content. The findings suggest that relaxation rates are not reliable biomarkers in clinical trials eval-
uating the potential effect of FA therapy.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Friedreich3s ataxia (FA) is the most common genetic ataxia that af-
fects up to one out of 36,000 people (Epplen et al., 1997; Schöls et al.,
1997). The disease usually begins before the age of 25 years (Harding
criteria; Harding, 1993) although older onset is observed [Late-Onset
FA (LOFA), De Michele et al., 1994]. Symptoms are variable and include
ataxia, neuropathy, dysarthria, hypertrophic cardiomyopathy, skeleton
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deformities, and diabetes mellitus (Harding, 1993; Pandolfo, 2003).
Available treatments cannot delay the progression.

The causativemutationwas found in 1996 (Campuzano et al., 1996).
A GAA nucleotide repeat expansion in the first intron of chromosome
9q13 gene leads to decreased expression of the mitochondrial protein
frataxin (Pandolfo, 2003). This protein iswidely held to play an essential
role in the mitochondrial iron metabolism. Lack of frataxin causes per-
turbation of iron–sulfur cluster (ISC) biosynthesis and iron transport
and storage (Rötig et al., 1997; Gakh et al., 2006; Cavadini et al., 2002;
Koeppen, 2011). Studies in mutation-carrying mice, yeast and humans
found mitochondrial dysfunction in cardiac cells, fibroblasts (Delatycki
et al., 1999) and the cerebellar dentate nucleus (DN) supposedly due
to oxidative stress and accumulation of iron in mitochondria. Therefore,
siderophores/antioxidant molecules are of interest concerning thera-
peutic treatment. Measuring the iron content of the DN is discussed as
a possible method to monitor the effect of these treatments. Studies in
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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small patient populations using magnetic resonance imaging (MRI;
Waldvogel et al., 1999; Boddaert et al., 2007; Velasco-Sanchez et al.,
2011; Bonilha da Silva et al., 2014) or transcranial sonography
(Synofzik et al., 2011) suggest increased iron content in theDN in FApa-
tients and a decrease during treatment with deferiprone (Boddaert
et al., 2007; Velasco-Sanchez et al., 2011). However, in immunohisto-
chemistry and immunofluorescence studies the absolute amount of
iron did not differ between patients and controls (Koeppen et al., 2012).

Until the 20th century, FAwas classified as a disorder of the spinal cord,
andonly in 1957was the considerable involvement of theDNand, to a less-
er extent, of the cerebellum appreciated (Urich et al., 1957; Wüllner et al.,
1993; Huang et al., 1993; Ormerod et al., 1994). In histopathological studies
the DN is severely atrophic with neuronal loss of large neurons and prolif-
eration of synaptic terminals (Koeppen andMazurkiewicz, 2013). Atrophy
of the cerebellum appears late and is commonly minor.

The aim of our study was to investigate the volume and iron content
of the DN in FA compared to controls using ultra-high-field [UHF;
7 Tesla (T)] MRI. UHFMRI3 is supposed to have an improved sensitivity
for evaluating the iron content using relaxometry. The results were
compared to data obtained with a 1.5 T field. We hypothesized that
UHF MRI allowed for more sensitive assessment of increased iron con-
tent than conventional 1.5 T field strength.

2. Materials and methods

2.1. Subjects

Fourteen participants with genetically proven FA (8 female, 6 male;
mean age 38.1 ± 8.5 yrs, range 24 to 52 yrs, Table 1) and 14 age and
gender-matched controls without any known neurological diseases or
neurological deficits (7 female, 7 male; mean age 38.1 ± 7.7 yrs, range
24 to 51 yrs) participated in the study. Duration from symptom onset
until examination was 17.6 ± 7.2 years, range 6 to 27 years. Six out of
14 subjects had LOFA (onset N 24 yrs). Twelve out of 14 subjects were
treated with idebenone. All but one patient (Participant 9 in Table 1)
and one control were right handed. The severity of neurological symp-
toms was assessed with two neurological scales: Friedreich Ataxia Rat-
ing Scale [FARS, Subramony et al., 2005]; Scale of the Assessment and
Rating of Ataxia [SARA, Schmitz-Hübsch et al., 2006]. Patients who are
more severely affected reach higher scores. In the patient group the
mean FARS score was 70.1 ± 25.3 (range 25–116, max. score 159)
and the mean SARA score was 22.1 ± 7.1 (range 7–32, max. score 40).
For individual scores see Table 1. Scores were highly correlated
(p b 0.001, Pearson3s R N 0.882).

All subjects gave informed consent. The study was approved by the
ethics committee of the Medical Faculty of the University of Essen-
Duisburg. The experimentswere conducted in accordancewith theDec-
laration of Helsinki.

2.2. MRI measurements

All participants were examined on a Magnetom 7 T whole-bodyMR
system (Siemens Healthcare, Erlangen, Germany) equipped with a gra-
dient coil of comparable performance as used at 1.5 T. An eight-channel
head coil (Rapid Biomedical, Wurzburg, Germany) was used for signal
transmission and reception. For comparison, a second examination
was performed with an Avanto 1.5 T whole-body scanner (Siemens
Healthcare, Erlangen, Germany) using a standard 12-channel receive-
only head coil provided by the vendor. The time interval between
both imaging procedures was less than 4 months.

In the 7 T scanner, amulti-echo gradient echo sequencewas used for
T2*mappingwith TR=800ms, bandwidth=570Hz/pixel, and a bipo-
lar readout mode to enable short TE. 19 slices were measured within
3 Cer: cerebellar white matter; GP: globus pallidus; CCS: splenium of the corpus
callosum.
5:09 min. A total of 12 echoes were read out between 4.08 and
38.76 ms, each being separated by 3.06 ms. For T2 mapping utilizing a
turbo spin echo sequence, due to strong specific absorption rate limita-
tions only one slice could be measured within 11:18min. Here, six ech-
oes were read out at TE = 7.7, 15.4, 23.1, 30.8, 38.5, and 46.2 ms. For
all mapping sequences the field-of-view (192 × 192 mm), matrix
(384 × 384) and slice thickness (2 mm) were kept the same, resulting
in a high spatial resolution of 0.5 × 0.5 × 2 mm3 voxel size. Finally, a
T2*-weighted SWI sequence with a high resolution of 0.5 mm isotropic
was performed (TR/TE = 35/16.9 ms, FOV 224 × 182 mm2, flip angle
19°, BW 160 Hz/pixel, 144 slices, matrix 448 × 364, slice thickness
0.5 mm, Grappa R = 2 and TA 16:14 min).

At 1.5 T, amulti-echo gradient echo sequencewas used for T2*map-
pingwith T=800ms, bandwidth=570Hz/pixel, and a bipolar readout
mode to enable minimum TE. T2 mapping was based on a multi-echo
spin echo sequence with a TR of 4 s, 180° flip angle, and a bandwidth
of 482 Hz/pixel. For both mapping sequences the spatial resolution
had to be reduced to 0.75 × 0.75 × 3 mm3 with acquisition times of
3:24 min and 9:02 min, respectively. In addition, a 3D sagittal volume
of the entire brainwas acquiredwith a T1-weightedmagnetization pre-
pared rapid acquisition gradient echo sequence (MPRAGE; TR =
2400 ms, TE = 3.5 ms, TI = 1200 ms, FOV = 256 mm, 160 slices,
voxel size 1.0 × 1.0 × 1.0 mm3, TA = 10:15 min).

2.2.1. Volumetry
The volume of DN was calculated based on 7 T SWI images. Due to

magnetic susceptibility effects caused by high iron content, they are
best visible in the raw magnitude and high-pass-filtered phase images.
DN were marked manually as regions of interest (ROIs) using MRICro
software (http://www.mricro.com, Rorden, 2007) on the phase images
by two independent examiners (KS, BB). They were identified based on
their anatomical localization and by comparison with a 3D histological
atlas (Schmahmann, 1999). The methodology has been reported previ-
ously in detail (Diedrichsen et al., 2011). Iron-rich areas appear too large
in phase images (Haacke et al., 1995) because they have the disadvan-
tage of a “blooming effect”. Note that the apparent volume of the DN
is therefore overestimated compared to true histological measures.
Data show relative differences in DN volume between patients and con-
trols, but do not reflect true volume.

The volume of the cerebellum was calculated based on 1.5 T
MPRAGE images by BB, an experienced lab technician. Interrater reli-
ability has previously been shown to be high (seeDimitrova et al.,
2008). Volumetric analysis of MPRAGE images was performed semi-
automatically with the help of ECCET software (http://www.eccet.de)
developed for visualization and segmentation of MRI and computed to-
mography data. Details of this methodology have been reported previ-
ously (Rabe et al., 2009; Weier et al., 2012). In brief, the cerebellum
was semi-automatically outlined and separated from the brain stem.
We expressed DN and cerebellar volumes as the fraction of total intra-
cranial volume (TICV) to estimate atrophy independent of head size.

2.2.2. Relaxometry
Proton transverse relaxation rates (RR) are influenced by inhomoge-

neities in the localmagnetic field resulting from the paramagnetic effect
of iron. Cerebral structures that contain considerable iron present ele-
vated RR. The field inhomogeneity is expected to increase in high mag-
netic fields and lead to an increase in RR for 7 T maps in comparison to
1.5 T maps. SyngoMapIt (Siemens Healthcare, Erlangen, Germany) was
used to automatically create parametric maps of T2 and T2* sequences.
ROIs were manually drawn on anatomical axial T2* and T2 images. We
chose a ROI of 20–40 pixels to provide comparable size between partic-
ipants and regions. The following ROIs were chosen: left and right DN,
cerebellar white matter (Cer), globus pallidus (GP) and the splenium
of the corpus callosum (CCS). Great carewas taken, to assess only voxels
belonging toDNbut notwhitematter. Because in the7 T scannermerely
one slice of the T2 sequence could be acquired, we drewROIs only in the

http://www.mricro.com
http://www.eccet.de


Table 1
Patient characteristics. FARS = Friedreich Ataxia Rating Scale; SARA= Scale of the Assessment and Rating of Ataxia.

Number Gender Age (yrs) Age at onset (yrs) Duration (yrs) Handedness Medication FARS SARA

1 Male 52 25 27 Right Idebenone 34 11
2 Female 24 15 9 Right Idebenone 54 14
3 Female 40 29 11 Right Idebenone 33 15
4 Male 35 16 19 Right Idebenone 94 26
5 Female 27 15 12 Right Idebenone 92 29
6 Female 32 12 20 Right Idebenone 84 27
7 Female 29 11 18 Right none 108 32
8 Female 43 17 26 Right none 82 28
9 Male 46 25 21 Left Idebenone 60 17
10 Male 40 16 24 Right Idebenone 118 31
11 Female 46 33 13 Right Idebenone 65 21
12 Male 51 30 21 Right Idebenone 56 20
13 Female 35 16 19 Right Idebenone 84 32
14 Male 33 27 6 Right Idebenone 44 15
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DN and cerebellar white matter. For all ROIs mean T2 and T2* were
assessed. The relaxation rates R2, R2*, and R2′ were computed with
the following formulas: R2 = 1 / T2, R2* = 1 / T2*, R2′ = R2* − R2.
R2′ is suggested to have higher iron specificity than R2 and R2*
(Gelman et al., 1999; Schenck and Zimmerman, 2004).
2.3. Statistics

Statistical analysis of the data was performed using SPSS 20.0.0. To
compare the iron content in the DN and the volume of nuclei and cere-
bellum between groups (patients and controls), unpaired t-tests were
used. Repeated-measures ANOVA were calculated for the obtained pa-
rameters to compare iron contents between gray and white matter.
Within-subject factors were gray (DN, GP) and white (Cer, CCS) matter
at 1.5 and 7 T, the between-subject factor was group (patients, con-
trols). The Pearson correlation coefficient was used to assess bivariate
correlations. Level of significance was set to p b 0.05. Bonferroni correc-
tion for multiple comparisonswas applied if required. Cronbach3s Alpha
was assessed to control interrater reliability.
3. Results

3.1. Volumetry

3.1.1. Volumetry of the DN
Two examiners independently assessed the volume of the DN. We

achieved a high interrater reliability (Cronbach3s Alpha = 0.985), al-
though nuclei could not bemeasured in 4 patients, because their visibil-
ity was too low for correct assessment. Volume of the DN (expressed as
fraction of TICV) was significantly smaller in patients compared to con-
trols (Fig. 1, FA: 0.0026 ± 0.0005, controls: 0.004 ± 0.0004, t-test,
t(19) = 7.042, p b 0.001).
3.1.2. Volumetry of the cerebellum
The volume of the cerebellum (expressed as fraction of TICV) was

assessed and compared between groups. In patients, we found a signif-
icantly smaller cerebellum compared to controls (FA: 0.088 ± 0.009,
controls: 0.097 ± 0.007, t-test, t(22) = 3.14, p = 0.005). Volume of
the cerebrum (in relation to TICV) was not significantly different com-
pared to controls (t-test, t(24) = 0.5, p = 0.616).
Fig. 1. A. DN of a patient (number 8 in Table 1) and B. a control (different window levels).
In the FA-patient the nucleus is smaller and the gray matter ribbon is less distinct than in
the normal dentate nucleus.
3.1.3. Correlation between the DN and cerebellum
TICV corrected volume of the cerebellum and the DN correlated

in patients (R = 0.479), although this did not reach significance (p =
0.162). Correlation reached significance when taking into account pa-
tients and controls (R = 0.465, p = 0.019, Fig. 2).
3.2. Relaxometry

3.2.1. Group differences between patients and controls
Iron content of the DNwas assessed by calculating RR (R2*, R2, R2′)

of the left and right DN. Patients did not show increased RR compared to
controls at 7 T (Fig. 3A) or 1.5 T (Fig. 3B). Instead, R2* and R2′ at 7 T
were smaller in patients compared to controls (t-test; R2*, t(20) =
2.3, p=0.03; R2′, t(22)=2.4, p=0.03). Significancewas lost after cor-
rection formultiple comparisons. In the following, we report only R2′ as
this parameter is most reliable and dependent on R2* and R2.

3.2.2. Age dependency of relaxation rates in the DN
RR increased with higher age in controls (Fig. 4; 7 T: R2′, R = 0.611,

p=0.020). It could not be reproduced at 1.5 T. Values in patients did not
show age dependency (7 T: R2′, R = –0.277, p = 0.383).

3.2.3. Validity of the method

3.2.3.1. Comparison of values at 7 and 1.5 T. RR at 7 T and at 1.5 T in all
evaluated structures were highly correlated (Suppl. mat. Fig. 1; R2′,
R = 0.719, p b 0.001). RR at 7 T were higher than at 1.5 T [t-test,
t(201) = 16.4, p b 0.001]. The ratio between values at 7 and 1.5 T was
even higher in gray matter (DN, GP) than in white matter (Cer, CCS)
and highest for R2′ (Suppl. mat. Fig. 2). The Bland–Altman plot (Bland
and Altman, 1986) shows a proportional error (Suppl. mat. Fig. 3).

image of Fig.�1


Fig. 2. The volume of DN and the cerebellum in relation to total intracranial volume (TICV)
was correlated in patients and controls. Con = controls.

Fig. 4. In controls, relaxometry parameters increased with age, although differences did
not reach statistical significance.

96 K. Solbach et al. / NeuroImage: Clinical 6 (2014) 93–99
3.2.3.2. Comparison of relaxation rates between gray and white matter. RR
are influenced by inhomogeneity in the local magnetic field resulting
from the paramagnetic effect of iron. Therefore, we found significantly
higher R2* values in gray matter (DN, GP) than in white matter
(Cer, CCS) at 7 and 1.5 T (Suppl. mat. Fig. 1; ANOVA; group effect,
F(1)= 579.8 (7 T) and 226.7 (1.5 T), p b 0.001). Due tomethodical lim-
itations at 7 T, R2 and therefore R2′ values could be assessed only in the
DN and cerebellar white matter. A t-test revealed significantly higher
values in DN than in the white matter (p b 0.001).

3.3. Correlation to clinical rating scores

We did not find a significant correlation between DN volume and
any of the clinical rating scores (FARS, SARA; p ≥ 0.676, R ≤ –0.152)
or duration of symptoms (p = 0.206, R = 0.438). Neither, there was a
correlation between cerebellar volume and clinical rating scores
(p ≥ 0.164, R ≤ –0.410), duration of disease (p = 0.775, R = –0.088)
and age (p = 0.634, R = –0.146), or, finally, between RR of the DN
Fig. 3. Relaxometry parameters between patients and controls did not show significant differen
and clinical rating scores (FARS, SARA; p≥ 0.075, R≤ 0.490) or duration
of symptoms (p ≥ 0.067, R ≤ 0.502).

4. Discussion

To our knowledge, this is the first study showing atrophy of DN in
patients with FA using conventional volumetry based on UHF MR im-
ages. Beyond that, we confirmed histochemical findings, that the total
iron levels in the DN are not increased (Koeppen et al., 2007, 2012) ap-
plying relaxometry at twofield strengths (1.5 and7 T). Our results are in
contrast to earlier MR studies using relaxometry (Waldvogel et al.,
1999; Boddaert et al., 2007; Bonilha da Silva et al., 2014).

4.1. Atrophy of the dentate nuclei and the cerebellum

In FA, the DN is the most prominently affected structure of the cere-
bellum (Koeppen et al., 2012). Histopathological studies demonstrate
severe atrophy due to selective atrophy of large neurons (Koeppen
ces for either 7 T (A) or 1.5 T (B). Values were higher at 7 T than at 1.5 T. Con = controls.

image of Fig.�2
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et al., 2012; Pandolfo, 2009; Alper andNarayanan, 2003). Up to now, im-
aging studies did not provide sufficient precision to assess the cerebellar
nuclei. The Italian group around Mascalchi described reduction of the
white and gray matter in the peridentate region using DTI and VBM
(Pagani et al., 2010; Della Nave et al., 2008a,b). However, due to limita-
tions of themethodology, they failed to demonstrate atrophy of the DN.
Using a sequence suitable to demonstrate structures containing iron
(SWI) and taking advantage of the improved resolution in UHF MRI,
we could document in vivo statistically significant atrophy of DN in
FA. Only recently has the development of MRI technologies allowed
the visualization of the deep cerebellar nuclei, as has been demonstrat-
ed earlier in healthy subjects by our group (Diedrichsen et al., 2011;
Küper et al., 2012). Our findings are the first to demonstrate that the
DN are reduced in size in FA patients using these in vivo volumetric
measures. However, the size in both groups is overestimated in phase
images due to the “blooming effect”. Iron-rich areas appear larger than
in histological measurements. More recent developments like quantita-
tive susceptibility mapping (QSM) likely increase the accuracy of histol-
ogy (Deistung et al., 2013) and should be applied in future studies.

Our findings of reduced cerebellar volume agree with recent patho-
logical and imaging studies of the cerebellum in FA. Initially, cerebellar
atrophy was assessed visually (Wüllner et al., 1993; Huang et al.,
1993; Ormerod et al., 1994; De Michele et al., 1995; Bhidayasiri et al.,
2005). In the past few years, analyses applying voxel basedmorphome-
try (VBM), diffusion tensor imaging (DTI), or diffusion weighted imag-
ing (DWI) have confirmed reduction in gray and white matter of
cerebellar hemispheres (Franca et al., 2009; Della Nave et al., 2008a,b).
Bhidayasiri et al. (2005) observed cerebellar atrophy in MRI more
often in patients with LOFA (5/9) than in patients with early-onset FA.
There was no difference in the present study, but subgroups were too
small to allow meaningful statistical comparison.

The involvement of the cerebellum is much less than neuronal atro-
phy of the DN would indicate (Koeppen and Mazurkiewicz, 2013). In
our study, patients with more pronounced atrophy of the DN had more
severe loss of cerebellar volume. We hypothesize that atrophy of the nu-
cleimight drive in part the cerebellar atrophydue to retrogradeprocesses.

4.2. Dentate iron level

Relaxation rates in our study indicate that the iron levels in theDN of
FA patients were not increased. Although a vast number of reviews and
studies on FA act on the assumption of disturbances in ironmetabolism,
the influence and pathomechanism of these disturbances remain unre-
solved. A redistribution of iron has been reported, with mitochondrial
iron accumulation and cytosolic iron depletion (Huang et al., 2009)
resulting from defects in ISC synthesis and an increase in cellular iron
uptake (Li et al., 2008; reviewed in Rouault, 2012 and Koeppen,
2011); however, inverted distribution (increased cytosolic iron and de-
pletedmitochondrial iron)was observed by another group in the hearts
of FA patients (Ramirez et al., 2012). While some report iron accumula-
tion in brain and heart tissue of FA patients (Lamarche et al., 1980),
there is also evidence in FA patients of normal absolute iron levels in
the DN (Koeppen et al., 2007), dorsal root ganglia (Koeppen et al.,
2009), fibroblasts (Delatycki et al., 1999), and the heart (Michael et al.,
2006). X-ray fluorescence and ferritin immunohistochemistry of the
DN in FA demonstrated no change in iron distribution, rather that the
copper and zinc regions broadened and overlappedwith the iron region
(Koeppen et al., 2012). Maximal metal concentrations did not differ be-
tween patients and controls (Koeppen et al., 2007).

Waldvogel et al. (1999) were the first to use relaxometry to deter-
mine iron content of the DN. They examined 12 patients (5–33 yrs)
and 23 controls. The difference of R2* values between groups reached
significance (p = 0.026). These data have to be observed with caution
because 20 pixels with the highest R2* were selected and their R2*
value averaged. Boddaert et al. (2007) controlled for reliability by re-
peating the MRI (1.5 T) after 2 h, and they averaged all measured R2*
values in the DN. However, they examined only 9 patients (14–23 yrs)
and found, although significantly, only minor differences of R2* be-
tween patients (18.3/s) and controls (16.6/s). Values decreased to
16.2 and 15.7/s after treatment with deferiprone (20–30 mg/kg/d
DFP) for only 1 month and 6 months, respectively. Presumably, either
treatment is effective already after 1 month and does not induce a sig-
nificant further decrease, or the initial value was incorrect. Likewise,
an effect of treatmentwas seen by Velasco-Sanchez et al. (2011). Twen-
ty patients (8–25 yrs) were treated with idebenone (20 mg/kg/d) and
deferiprone (20 mg/kg/d) for 11 months. R2* was obtained in 1.5 T
MRI. Significant (p = 0.007) reduction of R2* in the DN but not in
other regions was observed during treatment. Absolute values are not
available to the reader. Controls were not assessed. Recently, Bonilha
da Silva et al. (2014) evaluated T2 of DN in 35 patients. T2 was
significantly decreased in patients compared to controls, and was
even lower at 12 month follow-up. Finally, in a recent ultrasound
trial (Synofzik et al., 2011), a blinded examiner visually rated
hyperechogenicity in 34 consecutive patients (14–71 yrs), which was
seen in 85% of patients vs. 6% of controls. However, the histological
equivalent of hyperechogenicity in FRDA is not clear. As echogenicity re-
sults from the reflection of ultrasoundwaves at interfaceswith differing
acoustic impedance it might result from both gliosis due to atrophy and
increased iron content. Ourfindings suggest that relaxometricmeasure-
ments in the DNmust be be treated cautiously as outcomemeasures in
clinical studies. Although therapy with chelators might reduce mito-
chondrial iron, it appears unlikely that this loss can be detected by
relaxometry in the presence of normal cellular iron levels.

Age differences in the study populations might explain differences
between our findings and the earlier studies. We found that the iron
content in the DN tended to increase with age in healthy subjects. Sim-
ilar findings were observed byMaschke et al. (2004) in healthy subjects
as well as in FA patients (Waldvogel et al., 1999; Bonilha da Silva et al.,
2014). These findings fit into the background of increasing iron levels
during aging throughout the brain. First to show this were Hallgren
and Sourander (1958), who found a linear increase of iron content in
various brain regions until about 20 years of age and a less steep in-
crease in the following years. The iron level approaches a plateau in
the fifth decade (Maschke et al., 2004). Although the number of older
patients was very small, Waldvogel observed that the difference in
iron content between patients and controls was diminished in older
participants. Bonilha da Silva et al. (2014) found a significant decrease
of T2 with increasing age in the DN in patients and controls. We includ-
ed patients from 24 to 52 years (mean 38 yrs), while the patients in
Waldvogel3s study (5–33 yrs) as well as in Boddaert3s examination
(14–23 yrs) were significantly younger.

When interpreting our results we have to consider that most of our
patients were treated with idebenone. This treatment might have had
an effect on iron levels. However, the effect should not be significant, be-
cause idebenone is a free-radical scavenger and antioxidant (Wilson
et al., 2012; Parkinson et al., 2013; Soriano et al., 2013; Boddaert et al.,
2007) and no chelator like deferiprone. Furthermore, Boddaert et al.
(2007) found increased iron levels compared to controls although all
patients were treated with idebenone. Further limitations of our study
exist in a limited statistical power in consequence of the small sample
size. Circumstances of UHF MRI (strict contraindications and difficult
handling) reduced the number of suitable patients.

Are relaxometry and ultrasound adequate methods to assess the
iron content? The increased relaxation rate and hyperechogenicity in
previous studiesmight just aswell be due to the atrophy of the DN. Nei-
ther method can differentiate between increased density and increased
iron content. The methodsmight also detect shifts into a different state,
e.g. ferritin (Koeppen et al., 2007). Copper and manganese are other
paramagnetic ions that might affect relaxation rates, although the phys-
iological concentrations might be too low (Schenck, 2003; Schenck and
Zimmerman, 2004; Koeppen et al., 2012). There are limitations to trans-
ferring conclusions from relaxometry and sonography parameters to
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histological findings. Tissue for histopathological evaluation of regions
of interest is available only post-mortem, whereas MRI measurements
are performed in vivo, so the reliability of bothmethodswithin subjects
cannot be assessed. However, strong correlation (R N 0.9) of non-heme
iron concentrations and relaxation rates has been shown for various
brain regions in a 3 T magnetic field study by Gelman et al. (1999)
using iron concentrations assessed by Hallgren and Sourander in 1958.
However, in other studies a correlation between R2 and iron content
could not be found (Chen et al., 1989; Brooks et al., 1989). R2 is said
not to be a specific indicator of iron levels, especially if abnormal tissue
is involved, because other factors like tissue density, myelin content,
and water content might contribute (Bartzokis et al., 1997). A more re-
liable factor is R2′ at highfield strength, which is the difference between
R2* and R2 (Gorell et al., 1995; Ordidge et al., 1994). R2′ is limited as a
measure of iron as well because it can be influenced by magnetic field
inhomogeneities. In our study great carewas taken tomeasure iron con-
tent in voxels belonging to the dentate nuclei. White matter may have
been included in other studies.

We expected to improve iron-related sensitivity by using 7 T field
strength for the evaluation of iron content in the DN. The iron-related
sensitivity increaseswith higher field strength,whichmeans that small-
er differences in iron content can be detected (Schenck, 1995). In vitro
experiments showed a linear dependence of R2 with field strength
(Vymazal et al., 1996). The increased relaxation rates at 7 T in our
study confirmed the theory that the effect of iron magnetic susceptibil-
ity is higher in UHFMRI. Besides the advantages at UHF strength like in-
creased signal-to-noise ratio to allow higher spatial resolutions, there
are also many challenges. Most prominent at UHF is the transmit field
inhomogeneity due to the decreased wavelength at 7 T compared to
1.5 T. Although it can be expected that resulting flip angle variations re-
main similar within the study population for brain scans using the same
RF coil and transmit mode, this inaccuracy nevertheless represents a
source of error and limitation in the presented study. The validity of
our measurements is supported by the following results: We assessed
relaxation rates for each patient at two magnetic field strengths to ex-
clude shortcomings of UHF MRI. We confirmed that RR are increased
at UHF MRI. Parameters were strongly correlated between both field
strengths. Finally, we demonstrated increased parameters in the gray
compared to the white matter, which was commonly observed in earli-
er studies. However, significant differences between groups were not
observed at either field strength. In accordance, concentrations of iron
in theDNdid not differ between FA and controls in histochemical exam-
inations (Koeppen et al., 2012). With this knowledge, in light of the low
patient numbers and small absolute differences between groups, the re-
sults of earlier trials should be judged critically.

5. Conclusions

Our volumetric and relaxometric assessments demonstrate degen-
eration of the dentate nuclei in the presence of normal dentate iron con-
tent. We suggest a cautious handling of relaxation rates as a biomarker
in trials concerning FA therapy.

Supplementary data related to this article can be foundonline at
http://doi.dx.org/10.1016/j.nicl.2014.08.018.
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