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Multiple sclerosis white matter (WM) lesions can affect brain tissue volume measurements of voxel-wise seg-
mentationmethods if these lesions are included in the segmentation process. Several authors have presented dif-
ferent techniques to improve brain tissue volume estimations by filling WM lesions before segmentation with
intensities similar to those of WM. Here, we propose a newmethod to refill WM lesions, where contrary to sim-
ilar approaches, lesion voxel intensities are replaced by random values of a normal distribution generated from
themeanWMsignal intensity of each two-dimensional slice.We test the performance of ourmethod by estimat-
ing the deviation in tissue volume between a set of 30 T1-w 1.5 T and 30 T1-w 3 T images of healthy subjects and
the same images where:WM lesions have been previously registered and afterwards replaced their voxel inten-
sities to those between gray matter (GM) andWM tissue. Tissue volume is computed independently using FAST
and SPM8.When compared with the state-of-the-art methods, on 1.5 T data our method yields the lowest devi-
ation in WM between original and filled images, independently of the segmentation method used. It also per-
forms the lowest differences in GM when FAST is used and equals to the best method when SPM8 is
employed. On 3 T data, our method also outperforms the state-of-the-art methodswhen FAST is used while per-
forms similar to the best method when SPM8 is used. The proposed technique is currently available to re-
searchers as a stand-alone program and as an SPM extension.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Magnetic resonance imaging (MRI) permits to assess tissue abnor-
malities in vivo and approximate histopathological changes of the mul-
tiple sclerosis (MS) disease (Ganiler et al., 2014; Kearney et al., 2014).
Several studies have shown that the percentage of change in brain atro-
phy tends to correlate with the progression of the disease (Pérez-
Miralles et al., 2013; Sormani et al., 2014). Moreover, changes in gray
matter (GM) atrophy are observed independently from white matter
(WM), and hence atrophy measures based on segmentation-based
methods are nowadays employed as they allow classifying brain tissues
separately (Pérez-Miralles et al., 2013). The performance of different
segmentation methods used to quantify brain atrophy or volume esti-
mation has been evaluated deeply in the last 5 years (Klauschen et al.,
2009; Derakhshan et al., 2010). However, it is well known that the pres-
ence of WM lesions can induce errors on brain tissue volume measure-
ments (Chard et al., 2010; Battaglini et al., 2012; Gelineau-Morel et al.,
2012) and non-rigid registration (Sdika and Pelletier, 2009; Diez et al.,
2014), if lesions are processedwithin the images. For instance, ifWM le-
sion voxels are classified as WM, lesion voxels with hypointense signal
. This is an open access article under
intensities are added into the WM tissue distribution, increasing the
probability of GM voxels with similar intensity to be misclassified also
as WM (Chard et al., 2010).

In the last years, someauthors have proposed different techniques to
overcome these issues in MS patients by filling WM lesions with inten-
sities similar to those ofWMbefore performing tissue segmentation and
image registration. These methods can be divided into two groups:
methods which use local intensities from the surrounding neighboring
voxels of lesions (Sdika and Pelletier, 2009; Battaglini et al., 2012;
Magon et al., 2013) and methods which use global WM intensities
from the whole brain (Chard et al., 2010). In all cases, the performance
of these methods is directly related with their ability to minimize the
impact of refilled voxels on original tissue distribution, not only due to
the addition of these voxels into the tissue distribution, but also due to
the effect on the global tissue distributions of filled images.

Within local methods, Sdika and Pelletier (2009) have proposed
to refill each WM lesion voxel with the mean of its three-dimensional
neighboring normal appearance white matter (NAWM) voxels.
Battaglini et al. (2012) have suggested refilling each WM lesion voxel
with intensities derived from a histogramof NAWMvoxels surrounding
the two-dimensional lesions. In a recent study,Magon et al. (2013) have
proposed to refill each two-dimensional lesion with the intensity from
the mean of the surrounding area of the lesion. Regarding global
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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methods, Chard et al. (2010) have proposed a different approach by
using intensities re-sampled from a global WM distribution to refill
WM lesion voxels, based on the mean and standard deviation of the
total NAWM of the whole image. Both Chard et al. (2010) and
Battaglini et al. (2012) methods are available for the community. FSL-L
(Battaglini et al., 2012) runs from a computer command-line and does
not provide any graphical interface that aids the process. This technique
has been integrated into the latest FSL package, and therefore it depends
on thewhole FSL installation. In the case of LEAP (Chard et al., 2010), the
method runs as a stand-alone script also from the command-line and
requires the installation and configuration of several external depen-
dencies, which may be difficult to install for non-computer experts.

In this paperwe propose a new technique to refillWM lesionswhich
is a compromise between global and localmethods. Hence, for each slice
composing the three-dimensional image, we compute the mean and
standard deviation of the signal intensity of NAWM tissue. On the one
hand, compared to local methods (Battaglini et al., 2012; Magon et al.,
2013) which only make use of a limited range of voxel intensities, the
fact of using global information from the whole image slice reduces
the bias caused by refilled voxels on GM and WM tissue distributions,
especially on images with high lesion load. On the other hand, com-
pared to other global methods (Chard et al., 2010), which are based
on the mean signal intensity of the NAWM of the three-dimensional
image, our method re-computes the mean signal intensity of the
NAWM at each two-dimensional slice with the aim of reproducing
more precisely the signal variability between MRI slices, especially in
low resolution images. In order to easily integrate it into current plat-
forms, the proposed method called SLF is currently available as a
stand-alone program and as SPM1 extension at the SALEM group site
(http://atc.udg.edu/salem/slfToolbox).

To evaluate the performance of our method, we estimate the devia-
tion in GM andWM tissue volume between a set of healthy images and
the same imageswhere artificialWM lesions have been refilledwith the
proposed technique. To do so, we register WM lesion masks from diag-
nosed MS patients into two sets of 30 1.5 and 3 T T1-weighted (T1-w)
images of healthy subjects, respectively. Afterwards, we simulate realis-
tic lesions on healthy images by replacing the signal intensities of regis-
tered lesion voxels with values similar to those of the mean GM/WM
interface. Brain tissue volume is computed using both FAST (Zhang
et al., 2001) and SPM8 (Ashburner and Friston, 2005) segmentation
methods, in order to avoid possible correlations between the filling
and segmentation processes. Furthermore, we compare our results
with the same images where artificial WM lesions have been segment-
ed as normal tissue, masked-out before tissue segmentation, and
refilled using also the methods proposed by Chard et al. (2010);
Battaglini et al. (2012), and Magon et al. (2013).

2. Materials and methods

2.1. Image data

The first set of images is composed of 30 images of healthy subjects
(matrix size: 176 × 208× 176, voxel size: 1 × 1×1.25mm), acquired on
a 1.5 T Vision scanner (Siemens, Erlangen, Germany) and obtained from
the Open Access Series of Imaging Studies (OASIS) repository2 (Marcus
et al., 2007). Only images from young and middle-aged subjects are se-
lected (age b 50) as they have not been diagnosed with any related pa-
thology. Image references included in the study are as follows: 2, 4, 5, 6,
7, 9, 11, 12, 14, 17, 18, 20, 25, 26, 27, 29, 34, 37, 38, 40, 43, 44, 45, 47, 49,
50, 51, 54, 55, and 57.

The second set of images is composed of 30 images of healthy sub-
jects (matrix size: 256 × 150 × 256, voxel size: 0.92 × 0.92 × 1.20 mm)
acquired on a Philips 3 T scanner (Philips Healthcare, Best, NL) and
1 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
2 Publicly available at: http://www.oasis-brain.org.
obtained from the Information eXtraction from Images (IXI) repository
maintained by the Imperial College London in London, UK.3 We selected
30 images acquired from the Hammersmith Hospital. Image references
included in the study are as follows: 12, 13, 14, 15, 33, 34, 39, 48, 49,
51, 52, 57, 59, 72, 80, 83, 92, 95, 96, 97, 104, 105, 126, 127, 128, 131,
136, 137, 146, and 159.

2.2. Preprocessing

All images are manually reoriented to match the standard MNI
space. Skull-stripping is performed using the Brain Extraction Tool
(BET) (Smith, 2002), following the optimization workflow suggested
by Popescu et al. (2012), with the exception that cerebrospinal fluid tis-
sue has been refilled on skull-stripped images again. This procedure is
preferred over other alternatives as it provides the best performance
on some lesion-filling methods such as Chard et al. (2010), being also
the choice in other recent studies (Popescu et al., 2014). IXI images
are corrected from possible intensity non-uniformities and acquisition
artifacts using N4, the ITK (Ibáñez et al., 2003) implementation of the
N3 package (Sled et al., 1997). N4 is applied on IXI images with default
options. Images from theOASIS repository are provided alreadywithN4
applied.

2.3. Lesion generation

We use a set of 37 patients with clinically confirmed MS, provided
with initial and follow-up studies (Diez et al., 2014). In these patients, le-
sions have been annotated semi-automatically on Proton Density-
weighted (PD-w) images by a trained technician using JIM software4

and afterwards co-registered with T1-w images. In order to maintain
the independence between the 1.5 and 3 T sets of images, we match
randomly 30 patients from the initial study into the OASIS images, and
we repeat the same procedure with the follow-up study and the IXI
image set.

MS lesion masks are registered into healthy images by a non-rigid
transformation (Rueckert et al., 1999). To ensure that resulting lesion
masks are placed on WM, we remove registered lesion voxels that have
not been segmented as WM by both FAST and SPM8 on the healthy
image. We computed aWilcoxon rank sum test to analyze the difference
in lesion volumes generated between OASIS and IXI datasets, obtaining
that differences were not statistically significant (p=0.162). The obtain-
edmean lesion volume on OASIS images was 21.1± 20.8ml (range from
0.5 to 65ml),while 15.4 ± 16.2ml (range from 0.8 to 62ml) on IXI 3 T
images. Note that due to the existing anatomical differences between
1.5 and 3 T image subjects and the enforced WM tissue constraint,
the effect of registering the same MS lesion mask into a 1.5 and 3 T
image results in two different lesion masks. For instance, the effect
of registering lesions from the initial study into the 3 T dataset pro-
vided different lesion volumes (10.30 ± 12.10 ml) and reported sta-
tistically significantly differences (p = 0.007) on the Wilcoxon rank
sum tests.

Artificial lesions are simulated by replacing registered lesion voxel
intensities with ones between the GM and WM interface, following
the same strategy shown in Battaglini et al. (2012). For each original
image, GM andWMtissue distributions are computed using only voxels
in agreement between FAST and SPM8.WM lesion voxels are filledwith
random intensities coming from a newly generated normal distribution,
with mean equal to the average of the GM and WM mean values and
standard deviation equal to the difference between mean WM and
GM, divided by 4 (Battaglini et al., 2012). Artificial lesions are refilled
with the aim of simulating a profile which clearly separates their signal
intensity with healthy tissue. This intensity profile chosen does not
3 Publicly available at http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=
Main.Datasets.

4 Xinapse Systems, JIM software webpage, http://www.xinapse.com/home.php.
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reflect the entire scope of possible real lesions, but allows us to visualize
themagnitude of the differences in tissue volume between images with
artificial lesions and the same imageswhere lesion have been filledwith
the proposedmethod. The intensity profile chosenwould not affect any
of the methods studied since they do not take into account the artificial
lesion intensities.
2.4. Lesion filling

The proposedmethod aims to combine the global approach of Chard
et al. (2010) with the similarity between refilled voxel intensities and
their surrounding voxels of local methods such as Battaglini et al.
(2012) and Magon et al. (2013). Basically, for each slice composing
the three-dimensional image, lesion voxel intensities are replaced by
random intensities of a normal distribution generated from the mean
NAWM intensity of the current slice. Fig. 1 summarizes the lesion-
filling process graphically.

The proposed algorithm requires two input images: a preprocessed
T1-w image (skull-stripped and intensity inhomogeneity corrected)
and its corresponding binary WM lesion mask. After testing the perfor-
mance of the method with different skull-stripping approaches (Smith,
2002; Shattuck et al., 2001), we observed that including this step inside
the filling process is not necessary, because the skull-stripping method
employed seems to not interfere significantly in the results obtained
(Wilcoxon significant rank-sum tests between differences in tissue vol-
ume between lesion-filled and original images of both datasets for GM
and WM tissue, p N 0.13).

WM lesions aremasked out from the T1-w image using the provided
lesion mask, in order to avoid the influence of artificial lesions on tissue
distributions. The resulting image is used to estimate the probability of
each voxel to be classified as CSF, GM, andNAWM, by segmenting tissue
with a Fuzzy-C-means approach (Pham, 2001). The Fuzzy-C-means im-
plementation used here follows the algorithm described in Pham
(2001), with clusters initialized according to Bezdek et al. (1999).More-
over, input signal intensities are constrained to the mean plus three
standard deviations of the signal intensity of the image, in order to
avoid outlier signal intensities, such as residual parts of the eyes or
neck. From the obtained tissue segmentation output, we compute the
Fig. 1. Proposed algorithm for filling WM lesions. From a preprocessed T1-w image (skull-strip
vided WM lesion binary mask. Using a Fuzzy-C-means approach, we estimate the probability
whole image, lesion voxel intensities are replaced by a random intensity derived from a norma
of the current slice.
three-dimensional NAWMmask from the image voxelswith thehighest
probability to pertain to the WM cluster.

Finally, the lesion-filling process is achieved as follows: for each axial
slice composing the three-dimensional image, we compute the mean
and standard deviation of the signal intensity of NAWM tissue. Axial
sampling is motivated because after testing the sampling procedure
on the coronal, axial and sagittal planes, we found that the best results
were obtained when we sampled the axial plane. This was due to the
fact that using the axial plane reduced the variability of possible existing
WM intensities, when compared to coronal and sagittal sampling. The
Fuzzy-C-means approach used to estimate the tissue probabilities is a
simple method which in fact does not take into account neither spatial
nor neighboring information, and hyper-intense signal intensities such
as residual parts of the eyes or the neck produced in the skull-
stripping process can bias significantly the clusters. The risk of adding
these parts into theWMdistribution is minimized in the axial plane be-
causewe are reducing it to a certain slicewhere lesion volume is usually
lower than that in central slices. The computed mean and standard de-
viation values are used to generate a normal distribution with mean
equal to the computed NAWM mean intensity and standard deviation
equal to half of the computed NAWM standard deviation. Standard de-
viation is always fixed to half of the WM mean independently of the
dataset used. This value was chosen empirically with the aim of
balancing the accuracy of the method with both 1.5 and 3 T images.
Although a specific tuning of this parameter could provide a better
performance on certain cases, we decided to fix it avoiding therefore
the number of parameters to tune. Lesion voxel intensities from the
current image slice are replaced by random values of the generated
distribution. The procedure is repeated until all image slices are
completed.
2.5. Volume analysis

We compute the absolute percentage % difference in normalized
gray matter volume (NGMV) and normalized white matter volume
(NWMV) between each original and its correspondent lesion-filled im-
ages. Normalized volumes are obtained as the ratio of voxels outside
lesion regions segmented as GM or WM and the total number of
ping and intensity inhomogeneity corrected), WM lesions are masked out using the pro-
of each image voxel to be classified as CSF, GM, and NAWM. For each slice composing the
l distribution with mean and half of the standard deviation of the NAWM tissue intensities

image of Fig.�1
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segmented voxels, respectively. For instance, the % difference in NGMV
is computed as:

% ¼
NGMVfilled−NGMVorig

�
�
�

�
�
�

NGMVorig
� 100

where NGMVfilled and NGMVorig values refer to the computed vol-
umes for the lesion-filled and original images, respectively. The higher
the performance of the lesion-filling method, the lower the percentage
difference between lesion-filled and original images.

In order to analyze possible correlations between the filling process
and the segmentation method employed, brain tissue volume is calcu-
lated independently on the same subjects using FAST (Zhang et al.,
2001) (v.5.0.5) and SPM8 (Ashburner and Friston, 2005) (v.4667)
approaches.

2.6. Statistical analysis

We compare the performance of our method with respect to other
existing techniques such as the ones proposed by Chard et al. (2010);
Battaglini et al. (2012), and Magon et al. (2013). We also add two
more sets of images into the comparison: images segmented with arti-
ficial lesions and images where WM lesions have been masked out be-
fore tissue segmentation. Given the small differences in NGMV and
NWMV between original and lesion-filled images, the use of a standard
Analysis of the Variance (ANOVA) or a classic t-test is impractical here.
Instead, we perform a series of permutation tests to determine signifi-
cant differences in tissue volume between pairs of methods (Menke
andMartínez, 2004; Valverde et al., 2014). The permutation tests return
themean μ and standard deviationσ of the fraction of times that the dif-
ference in NGMV and NWMV for a current lesion-filling method is
smaller than the rest of methods with p-value ≤ 0.05. Afterwards,
methods are presented in 3 ranks determined by themean and standard
deviation of the best method and the distance with respect to the mean
of the rest ofmethods (Valverde et al., 2014). In our experiments, we set
the number of comparisons between each pair ofmethods to N=1000.

3. Results

3.1. OASIS dataset (1.5 T data)

Fig. 2 depicts the absolute mean % difference in NGMV and NWMV
between the 30 original 1.5 T images and the same imageswith artificial
lesions (NONE), masked-out lesions before segmentation (MASKED),
and lesion-filled using Magon et al. (2013) (MAGON), Battaglini et al.
(2012) (FSL-L), and Chard et al. (2010) (LEAP), and finally our proposed
algorithm SLF.
Fig. 2. Absolute % difference in NGMV and NGWM between original and filled images from the
segmentedwith SPM8. Gray bars represent the absolutemean % difference inNGMV,whilewhi
the standard deviation for each method and tissue.
When FAST is used, SLF reports the lowest absolute mean difference
in NGMV (0.16 ± 0.14), followed by LEAP (0.40 ± 0.30) and FSL-L
(0.43 ± 0.58) methods. Our proposal also provides the lowest differ-
ence in NWMV (0.29 ± 0.36), followed by FSL-L (0.81 ± 1.28). Maxi-
mum values in NGMV are found in NONE images, with differences up
to 2.30 ± 2.62 in NGMV and 3.85 ± 4.81 in NWMV.

When SPM8 is used, SLF also reports the lowest differences inNGMV
(0.09 ± 0.14), followed by LEAP method (0.12 ± 0.13). Our proposed
method also performs better than the rest of the methods on NWMV
(0.20 ± 0.24), followed by the LEAP method (0.36 ± 0.40). Again, the
highest differences in NGMV (1.84 ± 1.97) and NWMV (4.82 ± 4.58)
are found in NONE images. Table 1 shows the absolute mean difference
inWMvolume for all methodswhere lesion volumehas been ranged by
size intervals. Results are presented for both SPM8 and FAST segmenta-
tion methods.

Table 2 presents the performance of each filling-method after run-
ning all possible pair-wise permutation tests. With a significant p-value
of≤0.05, all tests run on images segmented with FAST show the superi-
ority of SLF over the other methods presented. On images segmented
with SPM8, all tests show a clear superiority of SLF over the other
methods on NWMV, while a similar performance of SLF and LEAP over
the other methods on NGMV.

3.2. IXI dataset (3 T data)

We also test the performance of our algorithm using 3 T data. As be-
fore, Fig. 3 shows the absolute mean % difference in NGMV and NWMV
between the 30 original 3 T images and the same imageswith added le-
sions (NONE), masked-out lesions before segmentation (MASKED), and
lesion-filled methods MAGON, FSL-L, and LEAP, and our proposed ap-
proach SLF.

When FAST is used, SLF reports the lowest absolute mean % differ-
ence inNGMV(0.06±0.06), followed by LEAP (0.09±0.10). Ourmeth-
od SLF also performs the lowest difference in NWMV (0.09 ± 0.09),
followed again by LEAP (0.12 ± 0.08). Maximum values in NGMV are
found in NONE images, with differences up to 1.40 ± 1.56 in NGMV
and 1.00 ± 1.32 in NWMV.

When SPM8 is used, both LEAP (0.04 ± 0.06) and SLF (0.05 ± 0.05)
yield the lowest absolute % mean difference in NGMV. On NWMV, also
LEAP (0.09 ± 0.12) and SLF (0.08 ± 0.09) report the lowest absolute
mean % difference in volume between original and lesion-filled images.
Again, highest differences in NGMV (1.84 ± 1.97) and NWMV (4.82 ±
4.58) are found in NONE images. Table 3 shows the absolute mean dif-
ference inWM volume for all methods on IXI images, where lesion vol-
ume has been ranged by size intervals. Results are presented for both
SPM8 and FAST segmentation methods.

Table 4 shows the performance of each filling-method after running
the permutation tests. Tests run on images segmented with FAST show
OASIS (1.5 T) dataset. (a) Results for images segmented using FAST. (b) Results for images
te bars represent the absolutemean % difference inNWMV. Lines above each bar represent

image of Fig.�2


Table 1
Absolute mean difference in NWMV between original and filled images from the 1.5 T
OASIS images. Results are presented for both SPM8 and FAST segmentation methods. Le-
sion volume is ranged by size intervals with n = 6 by interval. Values indicate the mean
and standard deviation of the absolute difference in volume (μ ± σ) of each lesion-
filling method at a current lesion interval.

Method/
lesion(ml)

0.5–4 ml
(n = 6)

4–11 ml
(n = 6)

11–20 ml
(n = 6)

25–36 ml
(n = 6)

N36 ml
(n = 6)

SPM8 segmentation method
NONE 0.47 ± 0.50 1.54 ± 0.95 2.71 ± 0.60 7.09 ± 1.42 10.64 ± 3.10
MASKED 1.56 ± 0.94 2.42 ± 0.70 1.49 ± 0.43 3.16 ± 1.35 3.91 ± 1.76
MAGON 0.03 ± 0.03 0.08 ± 0.07 0.24 ± 0.25 0.32 ± 0.19 1.95 ± 1.25
FSL-L 0.03 ± 0.01 0.10 ± 0.05 0.31 ± 0.15 0.55 ± 0.07 2.38 ± 1.26
LEAP 0.04 ± 0.04 0.10 ± 0.05 0.19 ± 0.05 0.44 ± 0.22 0.92 ± 0.42
SLF 0.03 ± 0.03 0.04 ± 0.03 0.09 ± 0.06 0.23 ± 0.20 0.55 ± 0.23
FAST segmentation method
NONE 0.21 ± 0.21 0.71 ± 0.38 1.88 ± 0.56 4.55 ± 2.04 8.95 ± 4.36
MASKED 9.52 ± 1.20 8.36 ± 1.30 11.53 ± 4.91 7.42 ± 1.08 5.79 ± 1.92
MAGON 0.08 ± 0.04 0.25 ± 0.22 0.91 ± 0.63 1.28 ± 0.39 6.24 ± 2.74
FSL-L 0.03 ± 0.02 0.05 ± 0.05 0.30 ± 0.21 0.58 ± 0.19 2.13 ± 1.22
LEAP 0.08 ± 0.07 0.34 ± 0.10 0.65 ± 0.13 1.07 ± 0.66 2.50 ± 0.80
SLF 0.07 ± 0.05 0.13 ± 0.09 0.22 ± 0.15 0.36 ± 0.30 0.42 ± 0.16

Table 2
Permutation tests for obtained absolute % differences in NGMV and NWMV on 1.5 T im-
ages. Reported values are mean and standard deviation (μo, σo) of the fraction of times
when eachmethod produces significant p-values (p≤ 0.05). (a) Results when using FAST.
(b) Results when using SPM8. Positive values indicate that in average, the method out-
performs the other methods in pair-wise significant tests. Negative values indicate the
contrary. Rank 1: (μo − σo, μo], rank 2: (μo − 2σo, μo − σo], rank 3: (μo − 3σo, μo − 2σo].

NGMV NWMV

Method μ ± σ Method μ ± σ

(a) FAST segmentation method (1.5 T)
Rank 1 SLF 0.83 ± 0.41 SLF 0.83 ± 0.41
Rank 2 FSL-L 0.33 ± 0.82 FSL-L 0.33 ± 0.82

LEAP 0.33 ± 0.82 LEAP 0.33 ± 0.82
Rank 3 MAGON −0.17 ± 0.98 MAGON −0.17 ± 0.98

MASKED −0.23 ± 0.41 MASKED −0.23 ± 0.41
NONE −0.50 ± 0.84 NONE −0.50 ± 0.84

(b) SPM8 segmentation method (1.5 T)
Rank 1 SLF 0.67 ± 0.52 SLF 0.83 ± 0.41

LEAP 0.67 ± 0.52
Rank 2 MAGON 0.00 ± 0.89 LEAP 0.33 ± 0.82

FSL-L 0.00 ± 0.89 MAGON 0.17 ± 0.75
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a significant superiority of SLF over the rest of the methods on NWMV,
and a slightly better performance of SLF with respect to LEAP on
NGMV, although both methods are clearly superior to the rest of
methods presented. When SPM8 is used, tests show a similar perfor-
mance of SLF and LEAP over the rest of the methods on both NWMV
and NGMV.

4. Discussion

Several studies have proposed to use different filling techniques in
order to reduce the effects ofWM lesions on brain tissuemeasurements
of T1-w images. Up to date, only LEAP (Chard et al., 2010)5 and FSL-L
(Battaglini et al., 2012)6 are publicly available methods that permit to
refill T1-w images given a WM lesion mask. The Lesion Segmentation
Toolbox (LST) proposed by Schmidt et al. (2012) also provides a
lesion-filling approach based on the work of Chard et al. (2010), but it
is dependent of a FLAIR image and an internal lesion-probability map
obtained during the lesion segmentation step.

In general, deviation in tissue volume between original and lesion-
filled images tends to be higher on 1.5 T OASIS images than on 3 T IXI
images. The observed deviation is caused by differences in intensity,
slice thickness and dimensionality between datasets. On IXI images,
the distance between GM and WM signal intensity distributions is
narrower than that of 1.5 T data. Applying the lesion generation algo-
rithm (Battaglini et al., 2012) with identical parameters of those used
with 1.5 T images creates simulated lesions whose intensity are notice-
ably similar to the mean WM, because the standard deviation of the
generated lesion distribution is themean between the GM andWM tis-
sue divided by 4. However, this fact only explains the difference found
on images segmented with artificial lesions. In the rest of the methods,
the signal intensity of the generated lesions is not interfering with the
obtained results since in all cases lesion voxels are replaced before tissue
segmentation. On images where lesions have been masked before seg-
mentation (MASKED), the lower deviation in tissue volume of 3 T im-
ages can be explained by the increase in the resolution of the images
when compared to 1.5 T data, which reduces the effect ofmasked voxels
in tissue distributions. The same reason can be behind the lower devia-
tion found on all four lesionfillingmethods. By increasing the number of
slices, differences produced by the methods on certain slices can be
smoothed by tissue segmentation methods. Moreover, the use of a re-
duced sampling space or a better tuning of the parameters involved in
5 http://www.nmrgroup.ion.ucl.ac.uk/analysis/lesionfill.html.
6 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling.
the WM tissue distribution generated to refill lesion voxels could in-
crease the performance of the presented method. Nevertheless, in all
our experiments we decided to fix the standard deviation to 2 for
simplicity.

Analyzing the results by dataset, on 1.5 T images from the OASIS
dataset, our results show that compared to the available methods, the
proposed algorithm SLF reduces significantly the differences in NWMV
between original and filled images, independently of the brain tissue
segmentation method used to measure the tissue volume. With the
same data, SLF also reduces significantly the differences in NGMV
when FAST is used. Although ourmethod reports the lowestmean% dif-
ference in NGMV when SPM8 method is used, the permutation test
clearly shows that differences between SLF and LEAP are not relevant.
On 3 T images from the IXI dataset, SLF also yields the lowestmean%dif-
ferences inNGMVandNWMV,when FAST is used tomeasure tissue vol-
ume. These results are clearly significant in NWMV, but not in NGMV,
although our method reports also the lowest difference among all
methods. When SPM8 is used, SLF presents a similar performance of
that of LEAP, and both methods tie on the results of the significance
tests.

Comparedwith local methods, our algorithmperforms quantitative-
ly better than localmethods on images with high lesion load (N 36 ml).
The MAGON method incorporates all neighbor voxels surrounding a
WM lesion region to compute a mean intensity which is used to refill
all lesion voxels. On images with high lesion load touching GM tissue,
includingGM voxels can decrease refilled intensities andmodify the tis-
sue distribution of filled images. FSL-L overpasses this limitation by
building an intensity distribution based only onWMvoxels surrounding
lesions. However, on large lesion regions, all lesion voxels will be filled
with a narrow range of intensities coming from the neighboring voxels
that can have a direct incidence on GM andWM tissue distributions. By
contrast, lesion volume appears to affect less global methods. In our
case, the intensity distribution generated to refill lesion voxels will be
independent of both the size and the position of lesion. Furthermore,
the effect of filled voxels on the global WM tissue distribution is
smoothed by the addition of intensities which try to reassemble the
global NAWM of the current slice.

Compared with global methods, there are some interesting differ-
ences between our method and LEAP. Contrary to localmethods, global
methods have to dealwith the skull-stripping process before processing
images. LEAP incorporates the skull-stripping process as part of the pro-
cessing pipeline. In addition, LEAP also allows the user to provide a brain
Rank 3 NONE −0.67 ± 0.52 FSL-L 0.00 ± 0.89
MASKED −0.67 ± 0.52 MASKED −0.50 ± 0.84

NONE −0.83 ± 0.41
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Fig. 3.Absolute mean % difference in NGMV andNWMVbetween original and filled images from the IXI (3 T) dataset. (a) Results for images segmented using FAST. (b) Results for images
segmentedwith SPM8. Gray bars represent the absolutemean % difference inNGMV,whilewhite bars represent the absolutemean % difference inNWMV. Lines above each bar represent
the standard deviation for each method and tissue.

Table 3
Absolutemean difference inNWMVbetween original and filled images from the 3 TOASIS
images. Results are presented for both SPM8 and FAST segmentationmethods. Lesion vol-
ume is ranged by size intervals with n=6 by interval. Values indicate themean and stan-
darddeviation of the absolute difference in volume (μ±σ) of each lesion-fillingmethod at
a current lesion interval.

Method/
lesion(ml)

0.8–3 ml
(n = 6)

4–6 ml
(n = 6)

6–13 ml
(n = 6)

16–21 ml
(n = 6)

N21 ml
(n = 6)

SPM8 segmentation method
NONE 0.68 ± 0.56 0.92 ± 0.31 1.61 ± 0.85 3.37 ± 0.81 5.16 ± 1.83
MASKED 0.07 ± 0.03 0.21 ± 0.16 0.34 ± 0.22 1.07 ± 0.79 1.42 ± 0.65
MAGON 0.05 ± 0.10 0.15 ± 0.28 0.14 ± 0.15 0.47 ± 0.44 0.41 ± 0.22
FSL-L 0.06 ± 0.06 0.06 ± 0.03 0.19 ± 0.16 0.80 ± 0.80 1.32 ± 0.53
LEAP 0.01 ± 0.01 0.03 ± 0.02 0.05 ± 0.05 0.13 ± 0.15 0.22 ± 0.18
SLF 0.03 ± 0.03 0.02 ± 0.01 0.09 ± 0.12 0.09 ± 0.06 0.16 ± 0.13
FAST segmentation method
NONE 0.14 ± 0.10 0.24 ± 0.06 0.52 ± 0.34 1.27 ± 0.35 2.94 ± 1.67
MASKED 0.07 ± 0.05 0.17 ± 0.07 0.41 ± 0.27 0.95 ± 0.25 2.23 ± 1.13
MAGON 0.05 ± 0.03 0.07 ± 0.06 0.08 ± 0.04 0.59 ± 0.55 1.07 ± 0.79
FSL-L 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.18 ± 0.20 0.77 ± 0.45

91S. Valverde et al. / NeuroImage: Clinical 6 (2014) 86–92
mask. By contrast, our method does not deal with skull-stripping inter-
nally, and the method requires an already skull-stripped image or a
brain mask. As noted previously, the skull-stripping method employed
seems to not interfere significantly in the results obtained by ourmeth-
od.While setting up each of the different processes involved in the pro-
posed pipeline, we found that, at leastwith our data, the performance of
LEAP decreased or failed in 1.5 T scans when the skull-stripping
methods BSE (Shattuck et al., 2001) and BET (Smith, 2002) were used
with default options. By contrast, LEAP provided the best results when
the optimized method proposed by Popescu et al. (2012) was used.
This fact motivated the selection of this skull-stripping method for all
the experiments of the study.

Furthermore, on both datasets, we have also compared the differ-
ences between our method and LEAP estimating the mean NAWM in-
tensity used as a basis to fill lesion voxels. In most of the images, the
global mean NAWM intensity does not differ significantly between
fityk7 on LEAP and our Fuzzy-C-means approach. Hence, we can reject
the hypothesis that observed differences in 1.5 T images can be caused
by the approach employed to compute the NAWM tissue distribution
before filling lesion voxels. However, on both lesion-filling approaches,
tissue segmentation methods tended to increase the apparent mean
WM tissue distribution on 1.5 T images with high lesion load (N40 ml)
due to the increase of voxels refilled with intensities higher than the ac-
tual mean WM signal intensity. This effect is clearly more visible on
LEAP than in our method, especially when FAST is used. The resolution
of the OASIS 1.5 T images (176 × 208 × 176 slices) is lower than that
of IXI 3 T images (256 × 150 × 256 slices). On images with low number
of slices, each slice has a higher weight into the global tissue distribu-
tion. After comparing the a prioriWMtissue distribution values estimat-
ed by both the LEAP and SLF methods with the already computed WM
tissue distributions obtained from healthy images, we found that as le-
sion size increases, global methods such as LEAP and SLF tend to in-
crease the differences in tissue volume with respect to original images.
In bothmethods, we have observed that the a priori estimatedmean in-
tensity of theWM distribution tends to be higher than the actual tissue
distribution as computed by FAST and SPM8 on healthy images. As le-
sion volume increases, the addition of more filled voxels with intensity
higher than the actual mean tissue intensity is more prominent, causing
a displacement of the mean intensity of the WM distribution returned
by the segmentation methods on filled images. Consequently, more
voxels bordering GM/WMare segmented as GMandWM tissue volume
decreases. In this scenario, the strategy followed by SLF, where WM is
sampled independently at each slice, is more robust to the increase of
lesions size than a global estimation of the WM tissue (LEAP) because
7 Available at: http://sourceforge.net/projects/fityk.
possible errors introduced by a particular slice are not propagated into
the rest of the slices. Contrary to SPM8, which estimates the tissue dis-
tributions based on a Gaussian Mixture Model approach of the whole
image, FAST builds a network of neighboring relations based on a Mar-
kov random field approach, more sensible to changes between slices.
The same reason can also be behind the better performance of our
method on 3 T when FAST is used. Compared with 1.5 T images, the
probability of intensity change between slices is less prominent on 3 T
images due to a higher resolution between slices.

Analyzing the possible deviations in tissue volume caused by each
tissue segmentation process, we obtained results which suggest that
the chosen tissue segmentation method does not affect significantly
the performance of our filling-method. Results between the same filled
images segmentedwith FAST and SPM8 differ (b0.1%) in the worst case
on both datasets and tissues. By contrast, MAGON, FSL-L and LEAP
switch their rank on 1.5 T images, depending on the segmentation
method used. On 3 T images, only MAGON and FSL-L appear to switch
between ranks when FAST or SPM8 is used, respectively.

The present study is not free from limitations. The most important
one is the lack of images of MS patients with brain tissue expert annota-
tions. All images from MS patients taken from Diez et al. (2014) have
been only provided with lesion annotations delineated by a trained ex-
pert, but not brain tissue annotations. To overpass this limitation, we
have registered WM lesions from MS patients into healthy images as
performed in Battaglini et al. (2012) and double-checked that registered
LEAP 0.07 ± 0.05 0.03 ± 0.03 0.14 ± 0.13 0.19 ± 0.16 0.29 ± 0.13
SLF 0.03 ± 0.02 0.04 ± 0.02 0.08 ± 0.06 0.20 ± 0.15 0.34 ± 0.14

http://sourceforge.net/projects/fityk
image of Fig.�3


Table 4
Permutation tests for obtained absolute % differences in NGMV and NWMV on 3 T images.
Reported values are mean and standard deviation (μo, σo) of the fraction of times when
each method produces significant p-values (p ≤ 0.05). (a) Results when using FAST.
(b) Results when using SPM8. Positive values indicate that in average, the method out-
performs the other methods in pair-wise significant tests. Negative values indicate the
contrary. Rank 1: (μo − σo, μo], rank 2: (μo − 2σo, μo − σ0], rank 3: (μo − 3σo, μo − 2σo].

NGMV NWMV

Method μ ± σ Method μ ± σ

(a) FAST segmentation method (3 T)
Rank 1 SLF 0.67 ± 0.52 SLF 0.67 ± 0.52

LEAP 0.66 ± 0.51 LEAP 0.50 ± 0.55
FSL-L 0.33 ± 0.82

Rank 2 MAGON 0.00 ± 0.8 MAGON −0.17 ± 0.98
FSL-L 0.00 ± 0.3

Rank 3 MASKED −0.50 ± 0.84 MASKED −0.50 ± 0.84
NONE −0.83 ± 0.41 NONE −0.83 ± 0.41

(b) SPM8 segmentation method (3 T)
Rank 1 LEAP 0.67 ± 0.52 LEAP 0.67 ± 0.52

SLF 0.67 ± 0.52 SLF 0.67 ± 0.52
MAGON 0.17 ± 0.98 MAGON 0.17 ± 0.98

Rank 2 FSL-L −0.33 ± 0.82 FSL-L −0.17 ± 0.98
MASKED −0.33 ± 0.82

Rank 3 NONE −0.83 ± 0.41 MASKED −0.50 ± 0.84
NONE −0.83 ± 0.41
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lesions have replaced voxels segmented asWMby FAST and SPM8. This
strategy has a negligible impact on the performance of the filling-
methods analyzed in this study, becausewe assure a priori that generat-
ed lesions are onWM, andmoreover none of themethods use informa-
tion from the artificial lesions generated. Furthermore, although we
tested the performance of the proposed method with two datasets
with different magnetic field strengths, our results are limited to these
two different scanners with particular configurations, and hence it is
difficult to generalize the results to all 1.5 and 3 T scanners.

In conclusion, the results of this study show that regardless of the le-
sion size, the SLFmethod performs consistently well compared to other
existingmethods such as LEAP, especially on 1.5 T images. Furthermore,
the results obtained show that the proposedmethod can be an effective
method for low resolution images. The skull-stripping process does not
especially affect the accuracy of themethod, which allows integrating it
with different preprocessing pipelines. Additionally, volume estima-
tions of lesion filled images processed by our algorithm appear to be
not affected by the segmentation method employed. In contrast to
other approaches, SLF may be installed by non-computer experts who
can easily use it without any parameter tuning. SLF is currently available
to researchers as a stand-alone script and as an SPM library extension
which facilitates to incorporate the lesion filling process into the expert
workflow for tissue volume segmentation.
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