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Abstract Mitochondrial fusion and fission affect the distribution and quality control of 
mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for 
mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion 
of mitochondria in neuromuscular junctions (NMJs). Marf mutants also fail to maintain proper 
synaptic transmission at NMJs upon repetitive stimulation, similar to Drp1 fission mutants. However, 
unlike Drp1, loss of Marf leads to NMJ morphology defects and extended larval lifespan. Marf is 
required to form contacts between the endoplasmic reticulum and/or lipid droplets (LDs) and for 
proper storage of cholesterol and ecdysone synthesis in ring glands. Interestingly, human 
Mitofusin-2 rescues the loss of LD but both Mitofusin-1 and Mitofusin-2 are required for steroid-
hormone synthesis. Our data show that Marf and Mitofusins share an evolutionarily conserved role 
in mitochondrial transport, cholesterol ester storage and steroid-hormone synthesis.
DOI: 10.7554/eLife.03558.001

Introduction
Mitochondrial dynamics plays a critical role in the control of organelle shape, size, number, function 
and quality control of mitochondria from yeast to mammals (Westermann, 2009; Chan, 2012). It 
consists of fusion and fission of mitochondria, which are regulated by several GTPases (van der Bliek 
et al., 2013). Mitochondrial fusion requires the fusion of the outer membrane followed by inner 
membrane fusion (Chan, 2012; Mishra et al., 2014). In mammals, Mitofusin 1 (Mfn1) and Mitofusin  
2 (Mfn2) regulate outer mitochondrial fusion whereas inner membrane fusion is controlled by Optic 
atrophy protein 1 (Opa1). Mitochondrial fission is regulated by Dynamin related protein 1 (Drp1) (van 
der Bliek et al., 2013). Decreased fusion results in fragmented round mitochondria, while defective 
fission leads to fused and enlarged mitochondria (van der Bliek et al., 2013).
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Loss of these mitochondrial GTPases results in lethality in worms, flies and mice (Chen et al., 2003; 
Westermann, 2009; Debattisti and Scorrano, 2012). Mutations in the human DRP1 gene causes a 
dominant fatal infantile encephalopathy associated with defective mitochondrial and peroxisomal fission 
(Waterham et al., 2007). On the other hand, missense mutations in OPA1 lead to a dominant optic 
atrophy (Alexander et al., 2000; Delettre et al., 2000). Depending on the severity of the mutation, 
patients may also suffer from ataxia and neuropathy (Yu-Wai-Man et al., 2010). Also, missense mutations 
in MFN2 cause Charcot-Marie-Tooth type 2A, a common autosomal dominant peripheral neuropathy 
associated with axon degeneration (Zuchner et al., 2004). Finally, aberrant levels of mitochondrial 
GTPases have been associated with Parkinson's, Huntington's and Alzheimers' diseases (Itoh et al., 
2012). These observations in model organisms and human patients suggest that mitochondrial dynamics 
affects neuronal maintenance in many different contexts.

A significant imbalance of mitochondrial fission and fusion may affect the subcellular distribution of 
mitochondria, especially in neurons since they need to efficiently traffic from the soma to the synapses 
(Sheng, 2014). Loss of Drosophila Drp1 impairs the delivery of mitochondria to neuromuscular junctions 
(NMJs), likely because they are large and interconnected. This defect is also associated with a severe 
depletion of mitochondria in NMJs, which affects local ATP production. This in turn affects the trafficking 
of synaptic vesicles upon endocytosis during prolonged stimulation (Verstreken et al., 2005). Similarly, 
in vertebrates, loss of Drp1 leads to an accumulation of mitochondria in the soma and reduced mito-
chondrial density in dendrites of hippocampal neurons (Li et al., 2004). The Drp1 data in flies and verte-
brates indicate that the expanded size of mitochondria affects their mobility (Sheng, 2014).

Mitochondrial trafficking may also be affected by the physical interaction between the mitochon-
dria and the transport machinery. Recent studies have documented a direct interaction between Mfn2 
and a motor adaptor complex for mitochondrial transport, Miro2 (Misko et al., 2010). Moreover, loss 
of MFN2 in Purkinje cells displayed reduced mitochondrial motility in cerebellar dendrites (Chen et al., 

eLife digest Mitochondria are the main source of energy for cells. These vital and highly 
dynamic organelles continually change shape by fusing with each other and splitting apart to create 
new mitochondria, repairing and replacing those damaged by cell stress.

For nerve impulses to be transmitted across the gaps (called synapses) between nerve cells, 
mitochondria need to supply the very ends of the nerve fibers with energy. To do this, the 
mitochondria must be transported from the main body of the nerve cell to the tips of the nerve 
fibers. This may not happen if mitochondria are the wrong shape, size or damaged.

While searching for genetic mutations that disrupt nerve function in the fruit fly Drosophila, Sandoval 
et al. spotted mutations in a gene called Marf. Further investigations revealed that flies with mutant 
versions of Marf have small, round mitochondria, and their nerves cannot transmit signals to muscles 
when they are highly stimulated. This is because the mutant mitochondria are not easily transported 
along nerve fibers, and so not enough energy is supplied to the synapses. The synapses of the Marf 
mutants are also abnormally shaped. Sandoval et al. found that this is not because Marf is lost in the 
neurons themselves, but because it is lost from a hormone-producing tissue called the ring gland.

Another problem found in flies with mutated Marf genes is that they stop developing while in 
their larval stage. Sandoval et al. established that this could also be related to the loss of Marf from 
the ring gland. The Marf protein has two different functions in the ring gland: forming and storing 
droplets of fatty molecules used in hormone production, and synthesising a hormone that controls 
when a fly larva matures into the adult fly. This suggests that the lower levels of this hormone 
produced by Marf mutant flies underlies their prolonged larval stages and synapse defects.

Vertebrates (animals with backbones, such as humans) have two genes that are related to the 
fly's Marf gene. When the human forms of these genes were introduced into mutant flies that lack a 
working copy of Marf, hormone production was only restored if both genes were introduced 
together. This indicates that these genes have separate roles in vertebrates, but that these roles are 
both performed by the single fly gene.

The role of Marf in tethering mitochondria in the ring gland may allow us to better understand 
how this process affects hormone production and how the different parts of the cell communicate.
DOI: 10.7554/eLife.03558.002
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2007) and reduced mitochondrial transport in axons in cultured dorsal root ganglion neurons (Misko 
et al., 2010). These data suggest that an interaction of Mfn2 with Miro2 may be important for its role in 
trafficking (Misko et al., 2010). Although loss of both Drp1 and MFN2 impair mitochondrial trafficking, 
a careful comparison of the phenotypes associated with loss of Drosophila Drp1, Mitofusin or Marf, 
would be useful as the suggested mechanisms by which they impair transport seem very different.

In addition to their roles in fission and fusion, Drp1, Mfns and Opa1 have been implicated in a 
variety of other processes. For example, Drp1 has been shown to facilitate the induction of apoptosis 
(Frank et al., 2001) whereas Opa1 was shown to affect the stability of cristae junction in inner mito-
chondrial membrane (Frezza et al., 2006). Finally, Mfn2 also tethers mitochondria to the endoplasmic 
reticulum (ER) to mediate Ca2+ uptake (de Brito and Scorrano, 2008). However, the molecular mecha-
nisms underlying these non-canonical functions are less well studied.

In an unbiased screen designed to identify essential genes that affect neuronal function (Yamamoto 
et al., 2014), we identified the first mutant allelic series of Marf in Drosophila. Here we exploit these 
mutants to determine how loss of Marf affects mitochondrial transport when compared to Drp1 loss. 
Surprisingly, we observe NMJ defects only in Marf mutants but not in Drp1 mutants. These defects are 
regulated non-cell autonomously by steroid-hormones produced in ring glands (RG), a major endo-
crine organ in insects. Through expression of human MFN1 or MFN2 in Marf mutant RG, we show that 
MFN1 and MFN2 have both distinct and complementary roles.

Results
Marf affects mitochondrial distribution in photoreceptors
Through a forward genetic screen on the Drosophila X-chromosome (Yamamoto et al., 2014) we 
isolated seven independent lethal alleles of Marf that affect electroretinogram (ERG) recordings in 
homozygous mutant clones (Figure 1A,C, Figure 1—figure supplement 1). The on- and off-transients 
(Figure 1A, red arrows) of the ERG are a read-out of synaptic transmission between photoreceptors 
(PR) and postsynaptic cells, while the amplitude of the depolarization (Figure 1A, green bracket) is a 
measure of the function of the phototransduction cascade (Wang and Montell, 2007). The Marf muta-
tions vary in strength (Figure 1A,E and Figure 1—figure supplement 1B), providing an allelic series. 
ERG recordings in homozygous mutant eye clones reveal a reduction in on- and off-transients as well 
as loss of amplitude in one day old flies (Figure 1A). The ERG recordings differ from Drp1 mutants that 
only exhibit a loss of on- and off-transients but a normal amplitude (Figure 1B, [Verstreken et al., 
2005]). In summary, loss of Marf severely impairs the phototransduction cascade as well as synaptic 
transmission, whereas loss of Drp1 mainly affects synaptic transmission of PRs.

Lethal staging shows that most Marf mutants (A, B, E, F and G) die as third instars after a very extended 
larval stage period of 18–21 days, which typically takes 6 days in wild type animals (Figure 1—figure 
supplement 1B). The lethality of all Marf mutants is rescued by a Marf genomic DNA construct or by 
a ubiquitously expressed Marf cDNA (Figure 1—figure supplement 1A), showing that the Marf muta-
tions are responsible for the lethality (Figure 1—figure supplement 1B). Moreover, transheterozy-
gous MarfB/Df(1)Exel6239 female mutants display the same lethal phase as MarfB/Y males, suggesting 
that MarfB is likely to be a severe loss of function allele or null allele (Figure 1—figure supplement 1B). 
Finally, MarfB hemizygous males exhibit a severe protein loss compared to MarfG hemizygous males 
and controls (Figure 1—figure supplement 1C), suggesting that this missense mutation in the GTPase 
domain (Figure 1C) also destabilizes the protein.

Since mitochondrial transport has been shown to be affected in some neurites of MFN2-deficient 
vertebrate cells (Chen et al., 2007), we performed Transmission Electron Microscopy (TEM) at the PR 
terminals. Marf mutants exhibit a very severe loss of mitochondria (Figure 1D, yellow arrows) in PR 
terminals when compared to control (Figure 1D,E). The severity of the loss of mitochondria (Figure 
1E) correlates with the loss of neuronal function gauged by ERGs (Figure 1A). These data are reminis-
cent of the documented lack of mitochondria in PR terminals in Drp1 mutants (Verstreken et al., 
2005). However, the mitochondria in Marf mutant PRs are significantly smaller in size than controls 
(Figure 1D, yellow arrows), suggesting that an active transport mechanism is impaired.

Marf affects mitochondrial function and distribution in NMJs
To assess if mitochondrial size is also affected in mutant muscles, we stained Marf and Drp1 (Figure 2—
source data 1) mutants with an anti-mitochondrial complex V antibody (ATP5A) (Baqri et al., 2009). 

http://dx.doi.org/10.7554/eLife.03558
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As expected, Drp1 mutants have filamentous mitochondria whereas Marf mutants have small, rounded 
mitochondria (Figure 2A and Figure 2—source data 2). However, both Marf and Drp1 mutant mitochon-
dria produce similar reduced levels of ATP when compared to controls (Figure 2C and Figure 2—source 
data 2). Interestingly, the mitochondrial membrane potential (MMP) of Drp1 mutants as measured with 
tetramethylrhodamine ethyl ester (TMRE) (Scaduto and Grotyohann, 1999) is slightly elevated, as 
reported before (Verstreken et al., 2005), when compared to controls whereas MMP of Marf 

Figure 1. Loss of Marf impairs phototransduction and affects mitochondrial localization to photoreceptor terminals. 
(A) Electroretinograms (ERGs) of 1 day old ey-FLP mutant clones of 7 different Marf mutants or isogenized wild type 
clones (Control). ERGs of Marf mutant alleles and control flies. A typical ERG trace is comprised of an on-transient 
(red arrow), a depolarization (green bracket) and an off-transient (red arrow). (B) ERGs of Drp1 mutants and control 
flies. (C) Marf protein domains and localization of EMS-induced mutations of the seven Marf mutant alleles identified  
by sequencing. H494fs93 = insertion of an A at nucleotide codon for amino acid H494 that generates 93 new amino 
acids followed by a premature stop codon. TM = transmembrane domain. HR = heptad repeat. (D) TEM sections 
of a cartridge containing fly photoreceptor terminals (green shading). Marf mutant photoreceptor terminals display 
reduced number and size of mitochondria (yellow arrow heads) compared to Marf-genomic rescue controls.  
(E) Quantification of total mitochondria number per cartridge in Marf mutants and Marf-genomic rescue 
photoreceptor terminals (Control). 50 cartridges per genotype.
DOI: 10.7554/eLife.03558.003
The following figure supplement is available for figure 1:

Figure supplement 1. Mapping, lethal staging and Marf protein expression of Marf mutant alleles. 
DOI: 10.7554/eLife.03558.004

http://dx.doi.org/10.7554/eLife.03558
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mutants is reduced (Figure 2B and Figure 2—source data 2). Measurements of the activity of the 
Electron Chain Complexes (ETC I, II, III and IV) that pump protons across the mitochondrial inner mem-
brane from the mitochondrial matrix to the inner membrane space to generate the MMP revealed that all 
ETC complex activities are similarly or more severely affected in Marf than Drp1 mutants (Figure 2D). 
Furthermore, measurement of reactive oxygen species (ROS) by dihydroethidium (DHE) staining 
(Shidara and Hollenbeck, 2010) and mitochondrial aconitase assay (native activity of aconitase nega-
tively correlates with ROS levels) (Yan et al., 1997) shows that Marf mutants are significantly more 

Figure 2. Mitochondrial morphology and function in Marf and Drp1 mutants. (A) Mitochondrial morphology  
based on anti-Complex V antibody staining (Complex V) in larval muscles (Zoom in view around muscle nucleus). 
(B) Mitochondrial membrane potential as measured by the TMRE dye in larva muscle. (C) Relative ATP amounts.  
(D) Measurement of the enzymatic activity of electron transport chain (ETC) complexes (I–IV) from purified 
mitochondria from third instar larvae. All the ETC activities were normalized to citrate synthase (CS) activity of 
controls. (E and F) ROS is measured by two methods: (E) by DHE staining in larval muscles and (F) by measuring 
aconitase activity reduction from purified mitochondria. Reducing reagents reactivate native aconitase. Aconitase 
activities were normalized to controls. (C, D and F) error bars represent ± SEM.
DOI: 10.7554/eLife.03558.005
The following source data are available for figure 2:

Source data 1. Lethal staging of Drp1 mutants. 
DOI: 10.7554/eLife.03558.006
Source data 2. Phenotypic comparison of Marf, Drp1 and Marf and Drp1 mutants. 
DOI: 10.7554/eLife.03558.007

http://dx.doi.org/10.7554/eLife.03558
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severely affected than Drp1 mutants (Figure 2E,F and Figure 2—source data 2). The ROS data is in 
agreement with the ETC data as loss of function of CI and CIII are considered the major drivers of 
increased ROS (Koopman et al., 2013). In summary, Marf and Drp1 mutants exhibit dysfunctional 
mitochondria, but loss of Marf affects their function more severely.

Loss of one copy of MFN2 in human causes a progressive and severe loss of function of neurons 
with long axons and affects motor neurons (MN) more severely than sensory neurons (Zuchner et al., 
2004). To assess if mitochondria in MN are affected in larvae we expressed MitoGFP in MN using the 
D42-Gal4 driver (Pilling et al., 2006). In the ventral nerve cord (VNC) of control larvae, MitoGFP 
mostly localizes to the neuropil (Figure 3A). Marf mutants show an obvious reduction in levels of mito-
chondria in the neuropil and the mitochondria mostly form clumps in the soma and the initial segments 
of axons (Figure 3A). In control MN, MitoGFP also labels numerous mitochondria in axons that inner-
vate proximal (A3) and more distal (A5) segments (Figure 3B). In the axons of Marf mutants, fewer 
MitoGFP-marked mitochondria are observed in distal axons compared to controls (Figure 3B). These 
data show that loss of Marf impairs, but does not abolish, axonal mitochondrial transport (Figure 3B).

To assess the presence of mitochondria at NMJs, we counted MitoGFP positive puncta in boutons 
labeled by anti-Discs Large 1 (Dlg1 [Parnas et al., 2001]). While control NMJs contain numerous mito-
chondria per bouton, Marf boutons contain almost no mitochondria, even fewer than in Drp1 mutants 
(Figure 3C, see Figure legend, [Verstreken et al., 2005]). However, unlike Drp1 mutants, Marf mutant 
NMJs exhibit severe morphological defects (see below). Interestingly, we find no obvious labeling 
defects with the presynaptic active zone marker Bruchpilot (Wagh et al., 2006), endocytic markers 
such as α-Adaptin (Gonzalez-Gaitan and Jackle, 1997), Dap160 (Roos and Kelly, 1998), Endophilin 
(Verstreken et al., 2002), and Synaptojanin (Verstreken et al., 2003), or the postsynaptic Glutamate 
receptor IIA (Qin et al., 2005) in Marf mutants (Figure 3—figure supplement 1). Expression of Marf 
protein in MN using the D42-Gal4 driver rescues the trafficking defect and restores the presence of 
mitochondria at the NMJ (Figure 3). However, it does not restore the morphological defects (Figure 3C), 
suggesting that Marf's function in mitochondrial trafficking is cell autonomous and that the defects in 
synapse morphology are cell non-autonomous.

Recently, mammalian MFN2 was shown to physically interact with MIRO2, an adaptor protein for 
motor proteins required for mitochondrial trafficking (Misko et al., 2010). Drosophila miro (dmiro) 
mutants are severely impaired in mitochondrial trafficking in the VNC (Guo et al., 2005). Indeed, RNAi 
knockdown of dmiro almost abolishes the presence of mitochondria in axons, a phenotype that is 
much more severe than what we observe in Marf mutants (data not shown). Moreover, loss of dmiro in 
Marf mutant MNs largely enhances the mitochondrial trafficking defect in the VNC and proximal axons 
(Figure 3—figure supplement 2A,B). This suggests that Marf cannot be the sole anchor that binds 
dMiro for mitochondrial trafficking.

Marf is required to maintain synaptic transmission upon repetitive 
stimulation
Loss of mitochondria at NMJs in Drp1 mutants was shown to affect synaptic transmission at high fre-
quency stimulation (Verstreken et al., 2005). To gauge how loss of Marf affects synaptic transmission 
we performed electrophysiological recordings at the NMJs, using a transheterozygous MarfB/MarfE 
allelic combination in order to compare larvae of the same size since MarfB mutant are small in size. 
When stimulated at 0.2 Hz, Marf mutants do not exhibit any obvious defect in transmitter release 
based on excitatory junction potential (EJP) recordings (Figure 4A). Moreover, the amplitude of spon-
taneous release events or miniature EJPs (mEJPs) and quantal content are not altered in Marf mutants 
(Figure 4A). Hence, the average number of vesicles released in response to low frequency stimulations 
in Marf mutants is not different from Marf genomic-rescue controls. However, Marf mutant terminals 
are unable to properly sustain a 10 Hz stimulus for 10 min when compared to controls (Figure 4B) as 
the EJP amplitudes progressively decrease. A rundown of synaptic transmission is often observed in 
endocytic mutants such as endophilin and synaptojanin (Verstreken et al., 2002, 2003; Dickman et 
al., 2005), dap160 and eps15 (Koh et al., 2004, 2007), and flower (Yao et al., 2009). We therefore 
assessed if endocytosis is impaired and used FM1-43, a dye that reversibly binds membranes and is 
internalized into vesicles (Verstreken et al., 2008). Unlike eps15 mutants that serve as a positive con-
trol, nerve stimulation at 60 mM K+ in the presence of FM1-43 effectively labels synaptic boutons in 
Marf mutants similar to controls (Figure 4C,D). Hence, vesicle endocytosis or evoked responses at 0.2 Hz 
are not affected in Marf mutants. These features are similar to Drp1 mutants, suggesting that lack of 

http://dx.doi.org/10.7554/eLife.03558
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Figure 3. Mitochondrial trafficking defects in distal axons and boutons. Mutations and controls were crossed to a 
motor neuron driver (D42-GAL4, UAS-MitoGFP) to label neuronal mitochondria. (A) Ventral nerve cord (VNC): Marf 
and Drp1 mutants exhibit clustered mitochondria in the soma. (B) Comparison of a proximal axonal segment in 
A3 and a distal segment in A5. Distal segments of A5 axons in Marf mutants contain many fewer mitochondria than 
proximal segments. (C) Marf mutants contain almost no mitochondria in boutons when co-stained with post-synaptic 
marker Discs Large 1 (Dlg1). Percentage of boutons with no mitochondria: Genomic rescue (0%), Marf B (89%), 
UAS-Marf (0%), Drp12 (36%) and Marf B;Drp12 (95%).
DOI: 10.7554/eLife.03558.008
The following figure supplements are available for figure 3:

Figure supplement 1. Pre-synaptic, endocytic and postsynaptic markers are present in Marf mutant boutons. 
DOI: 10.7554/eLife.03558.009

Figure supplement 2. Mitochondrial trafficking defect in Marf mutants cannot be rescued by motor neuron 
expression of human MFN1 or MFN2. 
DOI: 10.7554/eLife.03558.010

http://dx.doi.org/10.7554/eLife.03558
http://dx.doi.org/10.7554/eLife.03558.008
http://dx.doi.org/10.7554/eLife.03558.009
http://dx.doi.org/10.7554/eLife.03558.010
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mitochondria at synaptic terminals affect ATP levels required for vesicle mobilization at high frequency 
stimulation (Verstreken et al., 2005).

Marf is required for proper NMJ development
A striking difference between Marf mutants and Drp1 mutants is that loss of Marf severely affects NMJ 
morphology whereas loss of Drp1 does not affect NMJ development (Figure 3C, Figure 3—figure 
supplement 1 and Figure 2—source data 2). To visualize bouton morphology, we co-stained with 
Eps15, a presynaptic marker (Koh et al., 2007) and Dlg1, a postsynaptic marker (Parnas et al., 2001). 
Marf mutant displayed a severe reduction in average bouton size (Figure 5A) accompanied by an 
increase in clustering and numbers of boutons when compared to controls (Figure 5A,C). This NMJ 
phenotype can be rescued by a Marf genomic rescue construct as well as ubiquitous expression of a 
Marf cDNA (Figure 5A,C). An increase in bouton number and reduction in size is also observed by 
ubiquitous knockdown of Marf using RNAi (Figure 5B,D and Figure 1—figure supplement 1C).

Figure 4. Marf is required to maintain synaptic transmission upon repetitive stimulation. (A) Excitatory Junctional 
Potentials (EJP) and miniature EJPs (mEJP) measured at 0.2 Hz in 0.75 mM Ca2+ are similar in Marf mutants (day 12 or 
day 20 old larvae) and controls. Hence, quantal content in Marf mutants is also similar to controls (n = 6–11 larvae 
assayed). (B) Controls display facilitation whereas Marf mutants (day 12 or day 20 old larvae) show a rundown at 10 Hz in 
0.75 mM Ca2+. (C) Assessing endocytosis using FM-143 dye uptake at 60 mM [K+] for 1 min shows no obvious differences 
between wild type controls and Marf mutants. (D) Quantification of FM-143 uptake. Error bars represent ± SEM.
DOI: 10.7554/eLife.03558.011

http://dx.doi.org/10.7554/eLife.03558
http://dx.doi.org/10.7554/eLife.03558.011
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Since ubiquitous expression of the Marf cDNA rescues the NMJ morphology phenotype, we tested 
whether expression of Marf in MN, muscles or glial cells is able to rescue the phenotype. The NMJ 
phenotype is only partially rescued by Marf expression in MN (Figure 5A,C). Moreover, muscle, glial 
or MN and muscle expression of Marf does not alter the Marf mutant NMJ morphology (Figure 5A,C 
and Figure 5—source data 1). Consistent with these observations, RNAi knock down of Marf in MN, 
muscles, glia and MN and muscle does not affect bouton number or size at NMJs (Figure 5D and 

Figure 5. Loss of mitochondrial fusion but not fission in the ring gland results in altered bouton morphology. Third 
instar larvae NMJs from muscles 6/7 segments A3 were stained with pre-synaptic (EPS15) and post-synaptic (Dlg1) 
markers. (A) Ubiquitous (Tubulin-Gal4) or ring gland (RG, Feb36-Gal4) expression of Marf rescue bouton morphology 
in Marf mutants, while motor neuron (D42-Gal4) or muscle (Mef-Gal4) Marf expression did not. (B) Ubiquitous or 
RG specific knockdown of Marf or Opa1 (Poole et al., 2010) phenocopy the bouton phenotype in Marf mutants 
while knockdown of Drp1 (Drp1 IR knockdown of Drp1 mRNA is 82% using ubiquitous driver Actin-Gal4) did not. 
(C and D) Quantification of bouton numbers from three independent experiments. Error bars represent ± SEM.
DOI: 10.7554/eLife.03558.012
The following source data and figure supplements are available for figure 5:

Source data 1. Tissue specific Gal4 screen to assess rescue of lethality and bouton morphology by Marf expression. 
DOI: 10.7554/eLife.03558.013
Source data 2. Tissue specific Gal4 screen to assess lethality and alterations to bouton morphology by Marf knockdown. 
DOI: 10.7554/eLife.03558.014
Figure supplement 1. Ring gland drivers tissues specificity. 
DOI: 10.7554/eLife.03558.015

http://dx.doi.org/10.7554/eLife.03558
http://dx.doi.org/10.7554/eLife.03558.012
http://dx.doi.org/10.7554/eLife.03558.013
http://dx.doi.org/10.7554/eLife.03558.014
http://dx.doi.org/10.7554/eLife.03558.015
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Figure 5—source data 2). This indicates that Marf expression is required in other cells than MN, 
muscles or glia.

Mitochondrial fusion regulates NMJ morphology via a non-cell 
autonomous function in the ring glands
To assess which other tissue/cells contribute to the NMJ defects in Marf mutants, we tested specific 
RNAi knockdown of Marf using Gal4 drivers that drive expression in different tissues including fat 
body, haemocytes, oenocytes, trachea or ring gland (RG) (Figure 5—source data 2). Knockdown of 
Marf with three independent RG-Gal4 drivers resulted in a NMJ phenotype similar to that observed in 
Marf mutants or ubiquitous knockdown of Marf (Figure 5B, Figure 5—source data 2 and Figure 5—
figure supplement 1), clearly showing a non-cell autonomous requirement for Marf in RGs. In addi-
tion, while knockdown of Marf in neurons and RG resulted in pupal lethality, only knockdown of Marf 
in RG significantly lengthened the third instar larva stage (8–10 days) (Figure 5—source data 2). 
Finally, expression of Marf in the RG using two different RG drivers rescued the bouton phenotype of 
Marf mutants (Figure 5A,C, Figure 5—source data 1 and Figure 5—figure supplement 1). Hence, 
Marf is required in RGs to regulate NMJ morphology in a cell non-autonomous manner.

Given that loss of Drp1 does not cause obvious developmental defects at NMJs (Figure 2—source 
data 2, Figure 3C and Figure 5B) (Drp1 IR knockdown of Drp1 mRNA is 82% using a ubiquitous driver 
Actin-Gal4), we tested whether loss of Opa1, another fusion protein (Cipolat et al., 2004; Chen et al., 
2005), in RGs causes a bouton phenotype. A RG specific knockdown of Opa1 (Deng et al., 2008; 
Poole et al., 2010) causes a very similar alteration in synaptic morphology as Marf knockdown (Figure 
5B). Moreover, Opa1 knockdown in RG also lengthens the larval stages and causes pupal lethality, 
similar to Marf knockdown (data not shown). Hence, both inner and outer mitochondrial fusion but not 
fission proteins alter bouton morphology and lengthen larval lifespan via RG, suggesting that the fu-
sion proteins affect the same cell non-autonomous process.

RGs are responsible for production of hormones such as ecdysone (Huang et al., 2008) and juve-
nile hormone (Di Cara and King-Jones, 2013). These hormones regulate growth and differentiation 
of numerous tissues and control the proper timing of larval molts and metamorphosis (Yamanaka et al., 
2012; Di Cara and King-Jones, 2013). Loss of production of ecdysone in RGs results in a lengthened 
larval stage ranging from 4 to 19 days (McBrayer et al., 2007, Talamillo et al., 2008; Rewitz et al., 
2009). To determine if ecdysone production is affected we measured the levels of 20-hydroxyecdysone 
(20E) (Porcheron et al., 1976), in Marf mutants as well as animals with RG specific knockdown of Marf, 
Opa or Drp1. Marf mutants or knockdown of Marf and Opa1 in RG exhibit severely reduced levels of 
20E when compared to control or knockdown of Drp1 in the RG or Drp1 mutant alleles (Figure 6A and 
Figure 2—source data 2). Restoring expression of Marf in the RGs of Marf mutants partially restores 
the 20E levels (Figure 6A). Moreover, the feeding of 20E to third instar larvae with RG specific knock-
down of Marf rescued both the pupal lethality and NMJ morphology phenotype (Data not shown 
and Figure 6—figure supplement 1A). In summary, Marf and Opa1 but not Drp1 affect ecdysone 
production in the RG.

Marf is required for lipid droplet formation in RG
The production of ecdysone (steroid hormones) involves many steps following uptake of cholesterol. 
Drosophila lacks several biosynthetic enzymes for de novo cholesterol synthesis and depends on 
cholesterol uptake from the food (Clark and Block, 1959). In the RG, cholesterol is processed into 
‘free-cholesterol (FC)’ in the ER (Miller, 2013). It is then transported into the mitochondrial inner 
matrix for processing by at least two cytochrome p450 enzymes (encoded by disembodied [Chavez 
et al., 2000] and shadow [Warren et al., 2002] in Drosophila) and finally secreted from the RG into the 
hemolymph (Gilbert, 2004). Because steroid hormones cannot be stored during Drosophila larva de-
velopment, FC is stored in the form of cholesterol esters in lipid droplets (LDs) until there is a burst of 
ecdysone synthesis (Talamillo et al., 2008; Miller, 2013). This process of cholesterol ester storage and 
steroid synthesis is highly conserved from flies to mammals.

To assess cholesterol ester storage in LDs in RGs of wandering third instar larva, we first stained LDs 
with Nile Red, which marks neutral lipids that comprise LDs (Greenspan et al., 1985). This larval stage 
precedes the large burst of ecdysone that occurs at the larval–pupal transition (Yamanaka et al., 
2012). Interestingly, the numbers of LDs are severely reduced in Marf mutants as well as in Marf knock-
down in RGs (Figure 6B,C). Moreover, RG expression of Marf rescues the LD phenotype and even 
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increases the LDs numbers above control in Marf mutants, suggesting that Marf is necessary and suf-
ficient for LD formation (Figure 6B,C). Interestingly, RG knockdown of Opa1 does not affect LD 
number (Figure 6B,C), suggesting that Marf and Opa1 have different roles in the RG. Our findings 
indicate that Marf plays a unique role in LD synthesis in RG and that it affects cholesterol ester storage. 
Loss of Opa1 on the other hand does not affect LD storage but like loss of Marf, impairs 20E production. 
Finally, loss of Drp1 or RG expression of Drp1 does not affect LD synthesis, nor does it affect 20E 
production (Figure 6A–C, Figure 2—source data 2 and Figure 6—figure supplement 1B,C). Taken  
together, the three mitochondrial GTPases have different roles in LD dynamics and ecdysone synthesis.

LD are generated from the ER through budding of the outer leaflet of the ER membrane (Walther 
and Farese, 2012). A physical link between the ER, LDs and mitochondria are often observed as these 
organelles collaborate to orchestrate numerous metabolic processes such as cholesterol transport and 
steroid synthesis (Issop et al., 2012; English and Voeltz, 2013). Indeed, human MFN2 has been 
shown to tether the mitochondria to the ER (de Brito and Scorrano, 2008). To assess the ultrastructural 
features of ER, LDs, and mitochondria in RGs, we performed TEM in RG. As shown in Figure 6D, Marf 
mutants exhibit a fragmented ER, reduced number of LD, and morphologically altered mitochondria 
when compared to controls. The contacts between the mitochondria and the ER, the ER and LD, as 

Figure 6. Both Marf and Opa1 regulate ecdysone synthesis in the ring gland, but only Marf promotes lipid droplet 
formation. (A) Both loss of Marf and Opa1 in the RG have reduced 20-hydroxyecdysone (20E) levels when compared 
to loss of Drp1 and controls. 20E levels are determined and normalized by weight. (B) Only loss of Marf in the RG 
results in reduced lipid droplets (LDs) when stained by Nile Red compared to loss of Opa1 or Drp1. (C) Quantification 
of LDs in the ring gland (RG) from three independent experiments. (D) TEM sections of RG were the ER is labeled 
in green, mitochondria in blue and lipid droplets are labeled ‘LD’. Marf mutants display increased ER fragmenta-
tion and reduced numbers of LDs when compared to Marf-genomic rescue control animals. (E) Marf mutants have 
reduced contact length between mitochondria and ER, ER and LD, and mitochondria and LD when compared to 
controls. Error bars represent ± SEM.
DOI: 10.7554/eLife.03558.016
The following figure supplement is available for figure 6:

Figure supplement 1. Feeding of 20E rescues the NMJ morphology of RG specific knockdown of Marf. 
DOI: 10.7554/eLife.03558.017
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well as mitochondria and LD, are all severely reduced in Marf mutant RG (Figure 6D,E). This suggests 
that Marf promotes cholesterol ester storage in LDs possibly through inter-organelle connections.

Marf integrates the functions of human MFN1 and MFN2
Human MFN2 tethers mitochondria to the ER (de Brito and Scorrano, 2008) but this has not been 
documented for MFN1. Similarly, loss of MFN2 leads to ER stress (Ngoh et al., 2012; Sebastian et al., 
2012; Munoz et al., 2013) but a role for MFN1 in ER function has not been reported. If Drosophila 
Marf mediates connections of mitochondria to ER and if this activity is required for ecdysone synthesis, 
expression of human MFN2 (Dorn et al., 2011) in the RG may rescue the loss of LDs, alleviate the 
bouton morphology defects and restore 20E levels in Marf mutants. We find that RG specific expres-
sion of human MFN2 restores the proper number of LD levels and organelle contacts in Marf mutants 
whereas expression of human MFN1 (Dorn et al., 2011) does not (Figure 7A,C and Figure 7—figure 
supplement 1), indicating that MFN2 specifically can rescue the defect in LD synthesis. However, RG 
expression of human MFN2 did not rescue the bouton phenotype of Marf mutants (Figure 7B,D). 
Moreover, ubiquitous expression of MFN1 or MFN2 alone (Daughterless-Gal4 and Tubulin-GAL4) does 
not rescue the lethality (Figure 1—figure supplement 1B), mitochondrial morphology (Figure 7—
figure supplement 2), mitochondrial trafficking to synapses (Figure 3—figure supplement 2), 20E 
levels, and the NMJ phenotypes (Figure 7), whereas ubiquitous co-expression of both MFN1 and 
MFN2 rescued all phenotypes (Figure 1—figure supplement 1B and Figure 7). These data indicate 
that MFN1 and MFN2 play non-redundant roles and have complementary functions that are inte-
grated into a single protein in Drosophila Marf.

Discussion
How does loss of fission or fusion affect mitochondrial function? In the absence of fusion mixing of 
mitochondrial DNA and proteins may be severely impaired. Given that mitochondrial proteins are in 
an environment rich in oxygen radicals, lack of fusion may cause more damage than when fission is 
impaired (Chan, 2012). Simply stated, loss of fusion proteins like Marf, MFN1 or MFN2 may cause 
more severe phenotypes than the loss of a fission protein like Drp1. Moreover, proteins like Marf and 
Drp1 may perform other functions that are not directly related to fusion or fission, and hence affect 
other processes. Based on a careful phenotypic comparison of loss of Marf and Drp1 in Drosophila we 
find many similarities and differences.

Marf mutants display small mitochondria whereas Drp1 mutants exhibit large fused mitochondria. 
Interestingly, both mutants accumulate mitochondria in the cell body of the neurons and the proximal 
axonal segments (Figure 3A). In Drp1 mutants, the mitochondria seem to be severely elongated in 
axons where they fail to reach the NMJs, as previously described (Verstreken et al., 2005). The 
impairment in axonal transport is thought to be due to the fact that the mitochondria are hyperfused 
and cannot easily be transported. Indeed, loss of Marf in Drp1 mutants can restore mitochondrial traf-
ficking proximally but distal axonal trafficking is still impaired (Figure 3B). In Marf mutants, even 
though mitochondria are small and can enter the axons, the numbers of mitochondria that travel 
distally toward the NMJs are dramatically reduced (Figure 3B). Hence, loss of Marf impairs mitochon-
drial trafficking and longer axons are more severely affected than shorter axons. Since longer axons 
are more severely affected in CMT2A patients (Scherer, 2011), defects in mitochondrial trafficking 
may be at the root of some of the phenotypes associated with the disease.

Mfn2 has been implicated in axonal transport via binding to Miro2. Indeed, knockdown of MIRO2 
in cultured vertebrate neurons affects mitochondrial transport in an identical fashion as loss of MFN2 
(Misko et al., 2010). However, the severity of mitochondrial transport that we observe in Marf mutants 
is much less pronounced than what has been described in dmiro mutants (Guo et al., 2005) and what 
we observe when dmiro is lost. Moreover, removal of dmiro in Marf mutants dramatically enhances the 
Marf phenotype and almost abolishes axonal localization of mitochondria (Figure 3—figure supple-
ment 2), arguing that Marf cannot be solely responsible for mitochondrial transport in Drosophila.

A comparison of the presence of mitochondria at NMJ synapses shows that Marf mutants have 
fewer mitochondria than Drp1 mutants (Figure 3C). Moreover, Marf mutants but not Drp1 mutants 
display a severe increase in small clustered boutons (Figure 2—source data 2, Figures 3C and 5). The 
small and clustered boutons have also been observed in other mutants like endophilin (Dickman et al., 
2006), synaptojanin (Dickman et al., 2006), eps15 (Koh et al., 2007), dap 160 (Koh et al., 2004), 
flower (Yao et al., 2009) and dmiro (Guo et al., 2005). However, unlike in Marf mutants, the bouton 

http://dx.doi.org/10.7554/eLife.03558


Developmental biology and stem cells | Neuroscience

Sandoval et al. eLife 2014;3:e03558. DOI: 10.7554/eLife.03558	 13 of 23

Research article

phenotypes are fully rescued by neuronal expression of the cognate protein within MN in the above 
mentioned mutants. Moreover, knockdown of Marf in neuron, muscle or glia does not recapitulate the 
bouton phenotype observe in Marf mutants (Figure 5B and Figure 5—source data 2), suggesting a 
unique cell non-autonomous requirement of Marf for proper NMJ morphology.

Marf mutants exhibit two obvious phenotypes at NMJs: a severe depletion of mitochondria and a 
doubling of the number of boutons combined with a severe reduction in size whereas Drp1 mutants 
only exhibit a severe reduction in mitochondria. However, our electrophysiological studies show that 
loss of Marf does not affect basal synaptic transmission (Figure 4) similar to what is observed in Drp1 
mutants (Verstreken et al., 2005). Both respond similarly to wild type NMJs when stimulated at 0.2 
Hz and both show a progressive run down at 10 Hz when compared to controls. Moreover, endocytosis 
using FM1-43 and 60 mM K+ is not impaired in Marf and Drp1 mutants, suggesting a defect in reserve 

Figure 7. Human MFN2 restores LD numbers but both human MFN1 and MFN2 are required for steroid-hormone 
production in the ring glands. (A) Rescue of lipid droplets numbers stained by Nile Red in Marf ring glands (RG) by 
MFN2 and MFN1/MFN2 co-expression, but not MFN1. (B) Rescue of Marf bouton morphology by expressing 
MFN1/MFN2 in RGs (Feb36-Gal4). Expression of MFN1 or MFN2 alone does not rescue the phenotype. (C–E) 
Quantification in control and Marf mutants for: (C) LDs (D) Boutons and (E) Ecdysone (20E levels) as described in 
Figures 5 and 6. Error bars represent ± SEM.
DOI: 10.7554/eLife.03558.018
The following figure supplements are available for figure 7:

Figure supplement 1. RG expression of human MFN2 restores organelle contact lengths in Marf mutants. 
DOI: 10.7554/eLife.03558.019

Figure supplement 2. Muscle expression of either human MFN2 or MFN1 does not fully restores mitochondrial 
morphology in Marf mutants. 
DOI: 10.7554/eLife.03558.020
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pool mobilization in both mutants (Verstreken et al., 2005, 2008). The data also show that the bouton 
defects observed in Marf mutants do not contribute to the run down in synaptic transmission since 
Drp1 boutons are normal in number and size yet also have a run down in synaptic transmission (Figure 
2—source data 2, Figures 3 and 4; [Verstreken et al., 2005]).

Loss of Marf in RG recapitulates the bouton phenotype observed in Marf mutants and expression 
of Marf in RG fully rescues this phenotype (Figure 5 and Figure 5—source data 1). Interestingly, 
both Marf and Opa1 are required for steroid hormone production and both lead to extended 
larval lifespan when knocked down in the RG only (8–10 days), whereas Drp1 mutations do not 
affect steroid hormone synthesis. Reduction of ecdysone production by knockdown of the protho-
racicotropic hormone receptor (torso) in the RG also leads to an extended larval lifespan (9 days) 
(Rewitz et al., 2009) and an increased growth of NMJs (Miller et al., 2012). Interestingly, knock-
down of Drosophila SUMO (dsmt3) in RG lead to a defect in cholesterol import in the RG, reduced 
20E levels and an extended larval lifespan (19 days) (Talamillo et al., 2008). Hence, the severe 
reduction in ecdysone synthesis in Marf mutant RG underlies the prolonged larva stages and NMJ 
morphological defects.

The reduction in the number of LDs in RGs when Marf is lost suggests that these RGs are unable to 
store cholesterol (Figure 6B,C). This storage of cholesterol esters probably permits the RG to produce 
large amounts of ecdysone when needed, especially at the larval stage and larval to pupal transitions. 
Cholesterol storage and steroid hormone biosynthesis requires both the ER and mitochondria in ver-
tebrates (Miller, 2013) but loss of MFN1 or MFN2 have not been shown to affect LD synthesis. Defects 
of anchoring mitochondria to the ER and LDs in Marf RGs argue that these defects lead to the loss of 
LD and production of ecdysone (Figure 6). In agreement with this hypothesis, expression of human 
MFN2, which tethers ER to mitochondria (de Brito and Scorrano, 2008), in Marf mutants restores LD 
synthesis and organelle contacts (Figure 7A, Figure 7C and Figure 7—figure supplement 1). 
Moreover, expression of human MFN2 in RNAi mediated Marf knockdown in neurons and muscles 
rescues ER morphology and stress (Debattisti et al., 2014). However, MFN2 expression alone in Marf 
mutant RG did not restore ecydsone synthesis (Figure 7E), arguing that there are other mitochondrial 
defects associated with the loss of Marf (Figure 8).

Figure 8. Model of Marf dual function in steroid synthesis in the ring glands. (A) In wild type ring glands (RG), 
cholesterol must enter the cell first. Then, cholesterol undergoes a series of modifications in endosomes and along 
the ER to become free-cholesterol. Then, free-cholesterol is transferred into the mitochondrial inner matrix, where 
it is processed from free-cholesterol to steroid hormone by p450 enzymes. The steroid hormone is then secreted. 
As Drosophila larva develops it stores cholesterol in the form of cholesterol ester in lipid droplets (LDs) in order to 
accumulate a reserve of substrate so it can generate bursts of steroid hormone when needed. These LDs require the 
ER for synthesis. (B) In Marf mutants, the ER is fragmented and LD formation is severely reduced. (C) RG-specific 
expression of MFN2 in Marf mutant restores LD numbers but does not rescue hormone synthesis, suggesting that 
Marf has a second function within the mitochondria.
DOI: 10.7554/eLife.03558.021
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Our data show that co-expression of human MFN1 and MFN2 fully rescue the observed pheno-
types in Marf mutants (Figure 7). Although RG-specific expression of MFN1 in Marf mutants did not 
restore LD numbers or organelle contacts (Figure 7—figure supplement 1), MFN1 is still necessary 
for ecdysone synthesis together with MFN2, suggesting a role downstream of cholesterol ester storage 
for both proteins (Figure 8). Moreover, knockdown of Opa1 in RG did not alter LD numbers but causes 
reduced 20E levels and aberrant NMJs (Figure 6). Opa1 resides within the inner mitochondrial 
membrane, suggesting its role in ecdysone synthesis is within the mitochondria. Ecdysone synthesis 
within the mitochondria requires two cytochrome p450 enzymes encoded by disembodied (Chavez 
et al., 2000) and shadow (Warren et al., 2002). Hence, it is likely that impairment in fusion but not 
fission affects the function of these enzymes (Figure 8).

Opa1 and MFN2 but not Drp1 have been implicated in vertebrate steroidogenesis (Issop et al., 
2012). Interestingly, in placental trophoblast cells (BeWO) in culture the loss of OPA-1 promotes 
progesterone production by 70% whereas loss of MFN2 has been reported to lead to a 20% decrease 
in progesterone production (Wasilewski et al., 2012). In contrast, testosterone production in MA-10 
Leydig cells was unaffected by loss of OPA1 (Rone et al., 2012) whereas loss of MFN2 did affect tes-
tosterone production by 40% in MA-10 Leydig cells (Duarte et al., 2012). Hence, in both vertebrate 
endocrine cells, loss of MFN2 or OPA-1 affected steroids very differently as we observe very similar 
phenotypes associated with the loss of either protein. Our study also suggests that MFN2 functions 
upstream of cholesterol entry into the mitochondria at the cholesterol storage stage, since MFN2 
restores LD synthesis in Drosophila RG. However, rescuing LD production is not sufficient to restore 
ecdysone synthesis, suggesting a secondary defect (Figure 8C). In summary, our data indicate that 
MFN1 and MFN2 have separate functions in vivo that are integrated in a single protein in fly Marf.

Materials and methods
Fly Strains, maintenance of flies and larvae
Flies were obtained from the Bloomington Drosophila Stock Center at Indiana University (BDSC) 
unless otherwise noted. All flies were kept in standard media and stocks were maintained at room 
temperature (21–23°C). For all the larvae experiments described, flies were allowed to lay embryos for 
48 hr on grape juice plates with yeast paste. Hemizygous mutant larvae and wild type controls were 
isolated via GFP selection at the first instar phase and transferred to standard fly food for the duration 
of their development.

The following stocks were used in this study:
 
1.	 y1 w* P{neoFRT}19A
2.	 y1 w* MarfA,B,C,E,F,G or H P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP,sn+

3.	 yw eyFLP GMR-LacZ; y+; Drp12 FRT40A/CyO, Kr-Gal4 UAS-GFP
4.	 cl(1) P{neoFRT}19A/Dp(1;Y)y+ v+ ey-FLP
5.	 y1w118 ey-FLP; Drp12 FRT40A/CyO, Kr-Gal4 UAS-GFP
6.	 y1 w* MarfB or E P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; Genomic Marf-HA/TM6B,Tb+
7.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; UAS-MarfHA/TM6B,Tb
8.	 y w;; D42-Gal4, UAS-mito-HA-GFP, e/TM6B,Tb
9.	 y w; Drp12 FRT40A/CyO, Kr-Gal4 UAS-GFP; D42-Gal4, UAS-mito-HA-GFP, e/TM6B,Tb

10.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP; Drp12 FRT40A/CyO, Kr-Gal4 UAS-GFP
11.	 y w; Df(2L)burK1, eps15[e75]/Cyo; twi-Gal4 UAS-2xEGFP
12.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; Tub-Gal4/TM6B,Tb
13.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP; DA-Gal4
14.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; Mef-Gal4/TM6B,Tb
15.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP; Feb36-Gal4/CyO, Kr-Gal4 UAS-GFP
16.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; Mai60-Gal4/TM6B,Tb
17.	 y w;; UAS-Marf IR/T(2;3)TSTL,Cyo:TM6b,Tb
18.	 y w;; UAS-Drp1 IR/T(2;3)TSTL,Cyo:TM6b,Tb
19.	 y w;; UAS-dmiro IR/T(2;3)TSTL,Cyo:TM6b,Tb
20.	 y1 w* MarfB P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; UAS-MFN1/TM6B,Tb
21.	 y1 w* Marf alleles P{neoFRT}19A/FM7c,Kr-Gal4 UAS-GFP;; UAS-MFN2/TM6B,Tb
22.	 yw eyFLP GMR-LacZ; y+; Drp11 FRT40A/CyO, Kr-Gal4 UAS-GFP
23.	 Drp1[T26] cn bw sp/CyO, Kr-Gal4 UAS-GFP
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24.	 y; Drp1[KG03815]/CyO; ry
25.	 w; UAS-Drp1/TM6C, Sb Tb
26.	 Gal4 BDSC fly lines listed on Figure 5—figure supplement 1
 

Screen and mapping of Marf
y,w,P{neoFRT}19Aisogenized (iso) male flies were treated with low concentration of ethylmethanesulfonate 
to induce mutations, and mutant alleles which showed ERG defects were isolated as described (Xiong 
et al., 2012; Zhang et al., 2013; Yamamoto et al., 2014).

For mapping of the Marf group, male large duplications (∼1–2 Mb) covering the X chromosome 
(Haelterman et al., 2014) were crossed with female y,w mut*,P{neoFRT}19Aisogenized flies that were 
balanced with FM7c,Kr-GAL4,UAS-GFP(Kr > GFP). For the Marf group, the lethality of all alleles were 
rescued by Dp(1;Y)dx[+]5,y[+]/C(1)M5 (4C11;6D8 + 1A1;1B4). Marf alleles complemented with all the 
available deficiencies covered by Dp(1;Y)dx[+]5,y[+]/C(1)M5 except Df(1)Exel6239 (Parks et al., 2004; 
Cook et al., 2012). We then performed Sanger sequencing for genes located to this region and identi-
fied mutations in Marf.

Marf genomic and cDNA constructs
A 6.1 kb genomic rescue fragment (X: 6259600…6265700, Drosophila melanogaster Release 5.7) was 
amplified using PCR from the P[acman] CH322-102K19 (Venken et al., 2009). This DNA fragment was 
then subcloned into the HindIII and KpnI sites of the P element transformation vector P{CaSpeR-4-HA} 
(Yao et al., 2009) and sequenced. For cDNA constructs, the CDS of Marf was retrieved from cDNA 
clones RE04414 (Stapleton et al., 2002), respectively, and subcloned into pUAST-HA vector (Ohyama 
et al., 2007) using NotI and XbaI sites. Cloning and DNA purification were performed based on stand-
ard protocols. All constructs were sequenced before injection.

Generation of transgenic miRNAi lines for Drosophila Marf, Drp1  
and dmiro
As previously described in Yao et al. (2008), we chose the 22 nucleotides of the coding sequence of 
Marf, Drp1, or dmiro as target sequences listed in lowercase and bold in the sequences shown below. 
In oligo-1, the third nucleotide from 3ʹ end was changed to C. To synthesize essential backbone for 
miRNAi production, four long primers were designed. The first PCR product was generated by oligo-1 
and -2. With the first PCR template, the final construct was generated by using common oligo-3 and -4 
then digested with EcoRI and NotI and cloned into the pUAST transformation vector.

Marf-oligo-1
GGCAGCTTACTTAAACTTAATCACAGCCTTTAATGTtaaatgtggtgaacatcaaCca TAAGTTAATATACCATATC

Marf-oligo2
AATAATGATGTTAGGCACTTTAGGTACtaaatgtggtgaacatcaaacaTAGATATGGTATATTAACTTATGGT

Drp1-oligo1
GGCAGCTTACTTAAACTTAATCACAGCCTTTAATGTcaacgcacgtggtcaacctCacTAAGTTAATAT 
ACCATATC

Drp1-oligo2
AATAATGATGTTAGGCACTTTAGGTACcaacgcacgtggtcaacctaacTAGATATGGTATATTAACTTAGTGA

Miro-oligo1
GGCAGCTTACTTAAACTTAATCACAGCCTTTAATGTgaatgtggttaattgcatcCacTAAGTTAATATA 
CCATATC

Miro-oligo2
AATAATGATGTTAGGCACTTTAGGTACgaatgtggttaattgcatcaacTAGATATGGTATATTAACTTAGTGG

Common oligos
Oligo-3
GGCGAATTCATGTTTAAAGTCCACAACTCATCAAGGAAAATGAAAGTCAAAGTTGGCAGCTTACTT 
AAACTTAATCA
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Oligo-4
GGCGCGGCCGCATCCAAAACGGCATGGTTATTCGTGTGCCAAAAAAAAAAAAAATTAAATAA 
TGATGTTAGGCACTT

Electroretinograms
For ERG recording, y w *mut (lethal) FRT19A/FM7c, Kr-Gal4, UAS-GFP flies were crossed to y w P{w+} 
cl(1) FRT19A/Dp(1;Y)y+; eyFLP or y w; Drp12 FRT40A/CyO crossed to y w, eyFLP; Drp12 FRT40A/CyO 
to generate flies with mutant clones in the eyes and ERGs were performed as previously described 
(Ly et al., 2008). Briefly, adult flies were glued to glass slides. A recording probe was placed on the 
surface of the eye, and a reference probe was inserted in the thorax. A 1-s flash of white light was 
given, and the response was recorded and analyzed by the AXON™-pCLAMP8 software.

Transmission electron microscopy (TEM) of laminas and ring glands
TEM of photoreceptor terminals (Verstreken et al., 2003) and ring glands (Bellen and Budnik, 2000) 
was performed as described. TEM of photoreceptor terminals and ring glands were done using a Ted 
Pella Bio Wave processing microwave with vacuum attachments. Briefly, fly heads or third instar larva 
were dissected and fixed at 4°C in 4% paraformaldehyde, 2% glutaraldehyde, 0.1 M sodium caco-
dylate, and 0.005% CaCl2 (PH 7.2) overnight, post-fixed in 1% OsO4, dehydrated in ethanol and pro-
pylene oxide, and then embedded in Embed-812 resin (Electron Microscopy Sciences, Hatfield, PA). 
Photoreceptors or ring glands were then sectioned and stained in 4% uranyl acetate and 2.5% lead 
nitrate. TEM images of PR sections were taken using a JEOL JEM 1010 transmission electron micro-
scope with an AMT XR-16 mid-mount 16 mega-pixel digital camera.

Mitochondria functional assays for Marf and Drp1 mutants
Staining of mitochondria membrane potential (MMP) by Tetramethylrhodamine ethyl ester (TMRE; 
Molecular Probes, Life Technologies, Grand Island, NY) and ROS by dihydroethidium dye (DHE; 
Sigma, St. Louis, MO) in live muscles, larvae were prepared and stained as described in Shidara and 
Hollenbeck (2010). Live images were acquired using a 40× water immersion lens and a Zeiss LSM510 
confocal microscope. ATP levels in larvae was determined as described (Park et al., 2006) using a 
kit (Invitrogen, Life Technologies, Grand Island, NY). Quantification of ETC enzymatic activity assay 
and aconitase assay were performed on isolated mitochondria extracted as previously described 
(Graham et al., 2010; Zhang et al., 2013). Enzymatic activity assays were performed as previously 
described (Emptage et al., 1983; Das et al., 2001; Graham et al., 2010; Zhang et al., 2013). 
Aconitase activity assays were performed as previously described in Graham et al. (2010); Zhang 
et al. (2013).

Dissection, immunostaining and lipid droplet staining by Nile Red
For muscle or NMJ immunostaining, dissection and immunostaining of third instar larvae were 
performed as described in Bellen and Budnik (2000). Briefly, third instar larvae were fixed in 3.7% 
formaldehyde for 20 min at room temperature and washed in 0.4% Triton X-100. Primary anti
bodies were used at the following dilutions: mouse anti- ATP5A 1:500 (Abcam, Cambridge, MA), 
chicken anti-GFP 1:1000 (Abcam, Cambridge, MA), mouse anti-DLG 1:250 (DSHB, [Parnas et al., 
2001]), guinea pig anti-EPS15 1:2000 (Koh et al., 2007), mouse anti-BRP 1:1000 (Wagh et al., 
2006), rabbit anti-α-adaptin 1:500 (Gonzalez-Gaitan and Jackle, 1997), mouse anti-Glutamate 
receptor IIa (DSHB, Iowa City, IA, [Schuster et al., 1991]), guinea pig anti-Dap160 1:500 (Roos 
and Kelly, 1998), rabbit anti-HRP 1:1500 (Jackson ImmunoResearch, West Grove, PA), guinea pig 
anti-endophilin 1:200 (Verstreken et al., 2002), rabbit anti-synaptojanin (Verstreken et al., 2003), 
and rabbit anti-Drosophila vesicular glutamate transporter (DVGlut) 1:2000 (Daniels et al., 2004). 
Alexa 488 conjugated (Invitrogen), and Cy3 or Cy5 conjugated secondary antibodies (Jackson 
ImmunoResearch, West Grove, PA) were used at 1:250. Samples were mounted in VECTASHIELD 
(Vector Labs, Burlingame, CA).

For Lipid Droplet staining, third instar larvae were dissected in cold PBS and fixed in 4% paraform-
aldehyde for 30 min. Larvae were rinsed several times with 1× PBS to remove fixative and incubated 
for 10 min at 1:1000 dilution of PBS with 1 mg/ml Nile Red (Sigma, St. Louis, MO). Subsequently the 
tissues were rinsed with PBS and immediately covered with VECTASHIELD (Vector Labs, Burlingame, 
CA) for same-day imaging.
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All confocal figures were acquired with confocal microscope (LSM510; Zeiss) using Plan Apochromat 
40 × NA 1.4 and Plan Apochromat 63 × NA 1.4 objectives (Zeiss), followed by processing in LSM software 
(Zeiss), ImageJ, and Photoshop (Adobe).

Electrophysiology and FM-143 labeling
Larval electrophysiological recordings were performed as described in Koh et al. (2004). For labeling 
the exo-endo cycling pool (ECP) of vesicles, FM1-43 assays were performed as described (Verstreken 
et al., 2005, 2008). Live images were acquired using a 40× water immersion lens and a Zeiss LSM510 
confocal microscope.

Ecdysteroid (20E) titers
Ecdysteroid levels were quantified by ELISA following the procedure described by Porcheron et al. 
(1976), and adapted by Pascual et al. (1995). For sample preparation, 20 to 30 staged larvae were 
weighed and preserved in 600 μl of methanol. Prior to the assay, samples were homogenized and 
centrifuged (10 min at 18,000×g) twice and the resultant methanol supernatants were combined and 
dried. Samples were resuspended in 50 μl of enzyme immunoassay (EIA) buffer (0.4 M NaCl, 1 mM 
EDTA, 0.1% BSA in 0.1 M phosphate buffer). 20E (Sigma, St. Louis, MO) and 20E-acetylcholinesterase 
(Cayman Chemical, Ann Arbor, MI) were used as the standard and enzymatic tracer. Absorbance was 
read at 450 nm using a FLUOstar Optima Spectrophotometer (BMG Labtech), results are expressed as 
20E equivalents.
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