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Abstract

The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence
chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface
concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms
at five different temperature conditions (5 to 25uC) and in outdoor mesocosms under six differently reduced sunlight
conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds -
dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition
was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon
defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated
to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and
fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both
experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall
bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three
compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations
of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we
conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to
temperatures up to 25uC.
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Introduction

Marine intertidal environments are characterised by large

variation and abrupt shifts in environmental factors. Extreme

conditions like high temperatures, intense sunlight or desiccation

occur relatively often, triggering multiple physiological responses

in intertidal organisms such as the rockweed Fucus vesiculosus
[1,2] and may also cause variation in their capacity for chemical

defences [3,4]. A large body of literature indicates that Fucus and

other macroalgae are generally associated with more or less dense

and highly diverse communities of epibiotic microorganisms [5,6].

Epiphytic Bacteria can have multiple effects upon their host that

can be either beneficial or detrimental [7,8]. Detrimental effects

include – but are not limited to – pathogenicity and attraction of

macrofoulers. In order to limit these negative effects algal hosts

often develop chemical defence strategies to control the colonisa-

tion by unwanted microbial foulers [9,10].

Fucus vesiculosus is known to be capable of chemical defence

against microfoulers. Artificial substrates containing surface

extracts of this alga maintain microbial communities that are

relatively similar to those associated with F. vesiculosus [11].

Furthermore, the alga harbours at its surface fucoxanthin,

dimethylsulfopropionate (DMSP) and proline, which all reduce

bacterial settlement [10,12]. This activity is strain-specific and

while many strains are repelled by those compounds, others can be

attracted [12]. Thus, the mentioned repellents not only influence

bacterial density but also have the potential to influence

epibacterial community composition on Fucus as certain strains

are attracted and others deterred.

The production of defence chemicals is usually expected to

cause energetic costs [13]. For example, the production of the

bacterial colonisation inhibitor 1,1,3,3-tetrabromo-2-heptanone

by the red alga Bonnemaisonia hamifera has been found to be

negatively correlated with its growth [14]. Similarly, the produc-
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tion of phlorotannins - confirmed deterrents of certain herbivores

[15] and suspected deterrents of fouling organisms [16,17] – has

been reported to be negatively correlated with growth of the

rockweed Fucus vesiculosus [18]. However, defence compounds

like phlorotannins have multiple roles in marine plants; including

UV protection.Their production may therefore be driven by other

needs than defence [19]. This could be the case for all three

confirmed anti-bacterial compounds from Fucus, as fucoxanthin is

also the main accessory pigment of photosynthesis, while proline

and DMSP have osmoregulatory functions [20,21]. DMSP also

acts as an antioxidant [22] and proline is also an essential

constituent of most proteins.

Both light limitation stress and temperature shift stress have

been shown to limit the capacity of F. vesiculosus for induced anti-

herbivore defence [3]. The purpose of the present study was to

investigate whether there is a similar effect of environmental shifts

on the presence of bacterial settlement inhibitors on the algal

surface. To answer this question, surface concentrations of

fucoxanthin, DMSP and proline were quantified after different

temperature and light treatments. To evaluate the potential effect

of changing concentrations upon microbial settlers two different

approaches were chosen: (1) Detected concentrations were

compared to the known necessary doses for half maximal

settlement inhibition of potential bacterial colonisers of Fucus
[10,12]; and (2) detected concentrations were correlated to the

relative abundance of major bacterial groups, that were identified

in both experiments by in-depth sequencing of the 16S-rRNA

gene. The concentration of mannitol, the main primary energy

storage compound of Fucus, was used to quantify the degree of

light limitation stress.

Materials and Methods

General experimental setup
Fucus vesiculosus L. was cultivated in two successive monofac-

torial experiments under independently controlled temperature

and light conditions. The effect of different water temperatures at

identical light conditions was compared in a ‘‘temperature

experiment’’, while the effect of different light intensities at

identical water temperatures was investigated in a ‘‘light exper-

iment’’. Temperature and light experiments differed in several

aspects and hence the results are interpreted within the

experiments and there is limited scope to compare them between

the experiments.

Algal material
Whole individuals of Fucus vesiculosus were collected from the

littoral zone of the Kiel Fjord, Western Baltic (54u279N/10u119E

for the temperature experiment and 54u239N/10u129E for the

light experiment) from a depth between 0.5–1 m in October 2009

and March 2011, respectively. The algae were individually sealed

in zip-lock bags filled with ambient seawater, transported to the

laboratory in a cooler box and subsequently maintained in

individual aquaria. No special permission was required to sample

Fucus vesiculosus from the Kiel fjord.

Temperature experiment
Twenty-five Fucus vesiculosus individuals were maintained

separately in 25 indoor aquaria (25 L) in a temperature constant

room (15uC) for 28 d. Water was replaced once a week by

seawater composed of one third filtered fjord water (16 psu) mixed

with two thirds of artificial seawater (Instant Ocean, Blacksburg,

VA, 16 psu). This was done to limit diatom growth by nutrient

dilution. Five different water temperature levels were tested: 5, 10,

15, 20 and 25uC (60.5) with n = 5 per treatment level. Five

replicate aquaria of each individual temperature treatment were

maintained in a large water bath heated or cooled to the desired

temperature. Higher temperatures were obtained through aquaria

heaters (Schego 600, Schemel & Goetz GmbH and Co KG), while

lower temperatures were obtained through coolers (Aqua Medic

Titanium 1500, Aqua Medic GmbH, Bissendorf). Water was

circulated in the water baths and aquaria with pumps (Aqua EL

Circulator 350; Aqua EL GmbH, Germany), in order to ensure

homogenous temperatures (see [6] for more details). All aquaria

were maintained at a light intensity of 100 mmol m22 s21 (SD

65), with 8:16 light: dark cycle. This daily dose is well above low-

irradiation and below high-irradiation stress levels [3].

Light experiment
The setup consisted of an outdoor seawater system of 30 aquaria

(20 L each). Natural and unfiltered seawater of, on average, 5uC
(SD 60.09) from the Kiel fjord was continuously circulated

through these aquaria at a rate of 40 L h21. Side and bottom walls

of the aquaria were covered with black plastic bags, in order to

exclude diffused light. Six different treatment levels were tested:

full sunlight (28 d – mean of 247 mmol m22 s21; SD 64.24), 44%

sunlight (achieved through shading with 1 layer of mosquito gauze

(Max Bahr GmbH, Kiel), 23% sunlight (2 layers), 13% sunlight (3

layers), 5% sunlight (4 layers) of natural sunlight and complete

darkness (by covering with a black plastic bag). Five replicate

aquaria were maintained at each of these light conditions with

random spatial distribution. The water temperature and light

intensity were logged at 30 min intervals (HOBO, Onset

Computer Corporation, USA) in two out of five replicates of

each treatment level. The algae were placed individually into these

aquaria and acclimatized to the new environmental conditions for

4 days before the start of the experiment. The duration of the

treatment was 18 d.

Quantification of defence chemicals
At the end of each experiment, algal branches of approximately

4–5 cm length (measuring from the tip) were surface extracted by

dipping them for 10 s into a stirred mixture of 1:1 MeOH:hexane.

This method is non-destructive to the epidermal cells of Fucus
vesiculosus (see [10], online supplementary material). The extracts

were vacuum-dried in a rota-evaporator and fractionated into

non-polar (hexane) and polar (MeOH) extracts as described in

[10] and stored at 220uC until further use. Fucoxanthin was

quantified using a Macherey- Nagel (Düren, Germany) Nucleodur

analytical normal phase Si column (4.6 mm625 cm) on a Varian

(Palo Alto, Cal.) 940-LC (gradient: 100% n-heptane, 10 min;

linear gradient to 100% Ethylacetate for a further 20 min; flow

rate 1 ml min21) with integrated photodiode array detector (PDA)

at a wave length of 450 nm. A calibration curve of peak areas with

eight concentrations of standard fucoxanthin (Cayman Chemicals,

Hamburg, Germany) was used. Quantification of DMSP was done

by LC-MS according to [23]. Proline quantification was done

using the same LC-MS parameters and external calibration with

three concentrations.

Bacterial community composition vs. surface
concentration of defence chemicals

In order to test whether concentrations of fucoxanthin, DMSP

or proline in surface extracts of F. vesiculosus affect the presence

or absence of specific groups of bacteria on the algal surface, the

bacterial community composition was analyzed by in depth-

sequencing of 16SrRNA. Then, the relative abundances of
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bacterial taxa were correlated to the surface concentration of the

three defence chemicals.

DNA samples for the temperature and light treatment were

generated after 14 and 10 d of treatment, respectively. Surface

extracts were generated from the same Fucus individual at the end

of the treatment phase in both experiments. Different algal

branches of the same individual were used for sampling in order to

avoid false compound concentration(s) that may have resulted

from the swabbing of the thallus surface for the purpose of

bacterial DNA sampling.

The protocols for sampling of the epiphytic bacterial commu-

nity, for DNA extraction of bacteria, and for 454 pyrosequencing

of this DNA for community analysis in the temperature

experiment have already been published [6]. Also, the bacterial

community in the light experiment was sampled and analysed

according to [6] and references therein. Only the number of cycles

in the PCR differed (30 cycles in the light treatment instead of 25

in the temperature treatment). Briefly, two young fronds per Fucus
individual were swabbed with a sterile cotton swab in order to

harvest the natural bacterial community. DNA was extracted

using the QIAamp DNA Mini Kit (Qiagen GmbH, Hilden,

Germany) and was stored at 220uC until 454-pyrosequencing.

Here, fragments of ,450 base pairs (bp) of the V1–V2

hypervariable region of the 16S rRNA gene were amplified.

Amplicon libraries were sequenced with a 454 GS-FLX

pyrosequencer using the Titanium Sequencing Kit (Roche,

Penzberg, Germany) at the Institute of Clinical Molecular Biology

(ICMB), Kiel, Germany. Sequences were denoised, grouped at

97% sequence similarity to form OTUs (Operational Taxonomic

Units), and classified in the Greengenes 16S rRNA reference

database (DeSantis et al. 2006) following the steps in Stratil et al.

(2013b). A random subsample of 1024 (light treatment) and 1352

(temperature treatment) high-quality sequences per sample was

drawn for further analysis. The detection frequency of OTUs

within samples varied and was regarded as an indicator of their

relative abundances. Sequences were submitted to the sequence

read archive of NCBI under accession numbers SRX204294-

SRX204322 (light) and SRX195663-SRX195687 (temperature).

In the temperature experiment the bacterial community

composition clearly differed among treatments [6]: approximately

20% of the overall variability among individual samples could be

explained by temperature and numerous OTUs occurred only at

certain temperature conditions. Compositional variability was also

observed among treatments in the light experiment (data not

shown). Any indirect treatment effects upon bacteria through

modulation of the host’s defence behaviour were in both

experiments necessarily confounded with direct temperature or

light effects upon bacterial growth rates and recruitment/

competition between OTUs. Correlations between bacterial

relative abundances and concentrations of defence compounds

were for this reason only assessed within each treatment level.

Spearman correlation coefficients were calculated for each group

of five algal replicates of a given treatment level between the

relative abundance of each detected OTU and the surface

concentrations of fucoxanthin, DMSP and proline. In this way,

OTUs that either consistently exhibited negative or consistently

exhibited positive correlations between relative abundance and

presence of one of the investigated defence compounds could be

identified and grouped. For example, in the light experiment

31.1% of all OTUs consistently exhibited a negative correlation

between their abundance and presence of proline (hereafter called

‘‘Proline-negative’’), while 29.9% always correlated positively

(‘‘Proline-positive’’). The remaining 38.9% of all OTUs exhibited

positive correlations in some treatment levels and negative

correlations in other levels and were therefore considered as

‘‘Proline-neutral’’. Similar patterns were also observed in the light

experiment for DMSP (‘‘DMSP-positive’’, ‘‘-negative’’ and ‘‘-

neutral’’) and Fucoxanthin (‘‘Fucoxanthin-positive’’, ‘‘-negative’’

and ‘‘neutral’’) and in the temperature treatment for all three

compounds.

While negative correlations hint at a potentially deterring effect,

positive correlations might indicate attraction. Inhibitors of

bacterial settlement often only target a limited spectrum of

phylogenetic groups of bacteria [9]. We therefore hypothesized

that certain phylogenetic clades may be over- or underrepresented

within the groups of deterrent-positive and deterrent-negative

OTUs, as related to their prevalence within the total microbial

community. To test this hypothesis the odds of presence of each

clade within deterrent-positive and deterrent-negative subgroups

were calculated following [24] as

Odds of presence ~

number of OTUs of clade present in subgroup z 0:5

number of OTUs of other clades present in subgroup z 0:5

total number of OTUs of clade detected in experiment z 0:5

total number of OTUs of other clades detected in experiment z 0:5

Odds of presence .1 indicate a higher abundance of a given

clade within a subgroup than within the total bacterial community,

while odds of presence ,1 indicate the inverse. Geometric means

with 95% confidence intervals were calculated from the odds of

presence obtained for each treatment level in the temperature

treatment and the light treatment as described in [24]. 95%

confidence intervals excluding 1 hint at odds of presence that are

significantly larger or smaller than 1 and thereby different between

subgroup and total bacterial community. In addition X2 statistics

were used according to [24] in order to test whether the detected

abundance of phylogenetic clades within subgroups diverged from

their expected abundance ( = their abundance within the total

community).

Quantitative analysis of biofilm
To investigate whether there is an effect of different temperature

and light treatments upon the abundance of diatoms and bacteria

on the Fucus surface, microfoulers were quantified on the 28th day

for the temperature experiment and the 10th and 18th day for the

light experiment. For the temperature experiment, bacterial cell

abundance was determined through direct cell counts at the algal

surface at a magnification of 6306after DNA staining with DAPI,

using epifluorescence microscopy (details in [6]). For the light

experiment, biofilms from 1 cm2 of algal surface (1 cm from the

tips) were harvested by swabbing with a sterile cotton tip, followed

by vortexing the cotton tip for 30 sec in an Eppendorf vial

containing 1 ml of sterile-filtered seawater (SSW). The relative

abundance of diatoms (and any other possible photoautotrophs) in

100 mL of subsample was determined by measuring the fluores-

cence of chlorophyll a at 477–491 nm (excitation) and 677 nm

(emission), using a plate reader (Hidex Chameleon IV, Turku,

Finland) and 96-well microtiter well plates (Greiner). Subsequent-

ly, the relative density of all microfoulers (including bacteria and

diatoms) was determined by staining all the particles in the same

100 mL subsample with the fluorescent DNA–binding dye Syto 9,

0.005 mM (Invitrogen GmbH). Following an incubation time of

10 min in darkness, fluorescence was subsequently measured

(excitation 477–491 nm, emission 540 nm), using the same plate

reader. Replication was 10 fold per treatment (n = 9 for bacterial

Light and Temperature Effects on Antifouling Chemicals
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abundance quantification). The first measurements provided data

on treatment effects on the relative microalgal density at the algal

surface, while the second measurement provided similar informa-

tion on all epibiotic cells.

Analysis of mannitol
The mannitol concentration was quantified in order to

determine whether light reduction resulted in carbon limitation

[3]. After the light experiment, six individuals, each kept at

different light treatment level, were freeze-dried, ground and

stored at 220uC. Mannitol was extracted and analysed as

described in [25], but periodate oxidation was stopped after 10 s.

Statistical analysis
One-way ANOVA was used to analyse the effects of temper-

ature and light on the DMSP, proline and fucoxanthin concen-

tration separately. One-way ANOVA was further used to analyse

quantitative differences in microfouling during the light treatment.

Shapiro–Wilk’s test was used to test for normal distribution, while

Levene’s test was used to test for homogeneity of variances.

Datasets not fulfilling the criterion of homoscedasticity were Box-

Cox transformed using the software Minitab 12.2 (Minitab Inc.,

State College, PA, USA). Post hoc comparisons of DMSP, proline

and fucoxanthin concentration variation among different temper-

ature or light treatments were made using Tukey’s honest

significant difference (HSD) test (p,0.05). Correlation analysis

was used to analyse the relationship between diatom abundance

and fucoxanthin concentration. The computer program Statistica

(StatSoft, Tulsa, OK, U.S.A.) was used to conduct all statistical

tests.

Results

Temperature experiment
General algal response. After two weeks of incubation, the

highest tested water temperature of 25uC visibly exerted stress

upon F. vesiculosus, as the apical tips in one out of five individuals

started to decay. Such decay was detected in four out of five

individuals after three weeks and the symptom progressed further,

so that mainly old parts were alive in all five individuals at 25uC
after four weeks of incubation (data not shown). No decay was

observed at 5, 10 and 20uC, while one individual at 15uC also

showed the symptom from the 2nd week on, although to a lesser

degree.

Quantification of defence chemicals. In the temperature

experiment, healthy apical branches exhibited, on average, surface

concentrations of DMSP and proline ranging from 0.16 to

0.96 ng cm22 and from 0.004 to 0.01 ng cm22, respectively.

Fucoxanthin concentrations ranged from 18 to 400 ng cm22.

However, there was often considerable variability of concentra-

tions within treatment levels (Figs. 1(i) to (iii)). Nonetheless, the

surface DMSP concentration also varied moderately between

temperature levels (1-way ANOVA, F = 3, p = 0.03) and was

higher at 20uC than at 25uC (Tukey’s HSD test, p,0.05, Fig. 1(i)).

The surface proline concentration did not vary significantly with

temperature (1-way ANOVA, p = 0.05, Fig. 1 (ii)), however it

tended to decrease with warming. In contrast, the fucoxanthin

surface concentration increased significantly with temperature (1-

way ANOVA, F = 42, p,0.001, Fig. 1 (iii)), with a five-fold

increase between 20uC and 25uC (Table 1, Fig. 1 (iii)).

Quantitative analysis of biofilm. Epiphytic algae – mainly

diatoms of the genus Melosira were observed in all treatments.

Their density generally increased during the first three weeks of

the experiment. Epiphytism increased with temperature: after

three and four weeks the algae incubated at 5uC still appeared

relatively clean (bearing only few macroscopically visible algal

filaments), while those incubated at 25uC were massively

overgrown. Temperature had no significant influence on bacterial

cell density [6].

Qualitative analysis of biofilm. Altogether, pyrosequenc-

ing detected 4348 different OTUs that were associated with F.
vesiculosus in the temperature experiment. More than 40% of

them belonged to the Alpha-Proteobacteria, with Rhodobacter-

aceae alone contributing approximately 25% (Fig. S1). Other

important taxa were Gammaproteobacteria, Flavobacteriaceae

and Saprospiraceae (Fig. S1)

Light experiment
General algal response. Symptoms of decay, as those

observed in the temperature experiment, did not occur in the

light experiment. Regression analysis showed that there was a

significant positive relationship between available light energy and

mannitol concentration in differently light treated individuals of F.
vesiculosus (y = 20.025x+0.765, r2 = 0.88, P,0.05, Fig. S2).

Quantification of defence chemicals. The mean concen-

trations of DMSP and proline on surfaces of the apical branches of

light treated algae were in the range of 0.03–0.45 ng cm22 and

0.01–0.03 ng cm22, respectively. Fucoxanthin concentrations on

these branches ranged from 146 to 353 ng cm22. As in the

temperature experiment the variability of concentrations within

treatments was considerable in some cases. The surface DMSP

concentration varied among light intensities (1-way ANOVA,

F = 4, p = 0.009, Tukey’s HSD test, Fig. 1 (iv)), with particularly

high concentrations under dark conditions (Table 1). In contrast,

there was no significant variation of proline surface concentrations

among differently light treated individuals (1-way ANOVA,

F = 0.75, p = 0.59, Fig. 1 (v)). Fucoxanthin varied moderately

among different light intensities, with the highest concentration at

the 23% light regime (1-way ANOVA, F = 4, p = 0.01, Tukey’s

HSD test, Fig. 1 (vi)). See table 1 for details.

Quantitative analysis of biofilm. The diatom density did

not differ significantly among the light levels (1-way ANOVA,

F = 1.6, p = 0.17, Fig. S3). However, diatom density correlated

positively with the concentration of fucoxanthin (y = 22.279+
0.10376x, r2 = 0.92, p,0.05, Fig. S4). The total density of

bacterial cells per cm22 of algal surface did not differ significantly

among the light levels (1- way ANOVA, F = 2.3, p = 0.06, Fig. S5).

Qualitative analysis of biofilm. Altogether, 3182 OTUs

were associated with F. vesiculosus in the light experiment.

Approximately 30%, 25% and 10% of them belonged to the

family Flavobacteriaceae, Rhodobacteraceae and Saprospiraceae,

respectively (Fig. S1).

Bacterial community composition vs. surface

concentration of defence chemicals in both

experiments. The distribution of many of the higher phyloge-

netic taxa of bacteria was not significantly different among the

total bacterial community and the six subgroups of deterrent-

positive or deterrent negative OTUs (Fig. 2). However, some taxa

were significantly over- or underrepresented in each of these

subgroups; and this was in all cases not only indicated by the x2

statistics but also by 95% confidence intervals that excluded 1

(Fig. 2). Among the bacteria that were Fucoxanthin-positive,

Flavobacteriaceae and other Flavobacteria were overrepresented,

as indicated by the significantly increased odds for their presence

in this subgroup (Fig. 2a). At the same time, some Flavobacteria

were significantly and other Flavobacteria were non-significantly

underrepresented among the bacteria that were Fucoxanthin-

negative. This suggests that Flavobacteria tend to be attracted by

Light and Temperature Effects on Antifouling Chemicals
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Fucoxanthin. In contrast, Saprospiraceae, Thiotrichales and

Firmicutes were significantly underrepresented in the subgroup

of Fucoxanthin-positive bacteria and therefore tend not to be

attracted by fucoxanthin. However, none of these taxa exhibited

significantly increased odds for presence in the subgroup of

Fucoxanthin-positive bacteria. Thus, fucoxanthin affected the

community composition through attraction of specific taxonomic

groups, as an overall deterring effect towards taxonomic groups

could not be detected.

In contrast, DMSP probably deterred Firmicutes, as they were

clearly overrepresented in the subgroup of DMSP-negative and at

the same time underrepresented in the subgroup of DMSP-

positive bacteria (Fig. 2b). A similar pattern also emerged for

unclassified phyla, although the odds for their presence in the

DMSP-positive group were not significantly reduced (p,0.06).

Also, unclassified Proteobacteria were overrepresented in the

group of DMSP-negative bacteria. Evidence for a promoting effect

of DMSP was apparent for the two most abundant families of

bacteria that are associated with F. vesiculosus, the Flavobacter-

iaceae and the Rhodobacteraceae. Both were significantly

overrepresented among DMSP-positive bacteria, and the Flavo-

bacteriaceae were also underrepresented among DMSP-negative

bacteria.

Flavobacteriaceae were overrepresented among Proline-positive

and underrepresented among Proline-negative bacteria (Fig. 2c),

suggesting that they also tend to be attracted by this compound.

Also overrepresented in the Proline-positive subgroup were

Firmicutes and unclassified Proteobacteria. In contrast, the odds

for presence in the subgroup of Proline-negative bacteria were

significantly increased for ‘‘other’’ ( = rare) Alphaproteobacteria,

for ‘‘other’’ ( = rare) phyla and for unclassified phyla.

Discussion

The surface concentrations of all three bacterial settlement

inhibitors of F. vesiculosus varied considerably among tempera-

ture and light experiments. Despite this background variation

DMSP and fucoxanthin concentrations also varied among

different temperature and among different light conditions. In

contrast, the concentration of proline was not significantly affected

by different treatment levels. Different metabolite concentrations

were also found under comparable factor settings in the two

experiments, possibly resulting from the differences in experimen-

tal set-up and/or in season and/or in sampling site variation.

Overall, DMSP and fucoxanthin were less concentrated in the

light experiment, while the inverse was true for proline.

At least some of the treatment levels applied in both

experiments clearly had direct effects upon F. vesiculosus that

may have caused differences in algal defence chemistry. For

example, in the temperature experiment severe stress - resulting in

the decay of apical thallus parts - was obviously exerted when F.
vesiculosus was incubated for more than one week at 25uC.

Correspondingly, 20uC is considered as the highest surface water

temperature that may pertain for several weeks in natural habitats

of F. vesiculosus [3]. No such morphological symptoms of stress

were observed in the light experiment. However, the mannitol

concentration of F. vesiculosus decreased in a linear manner with

decreasing light, indicating a significant limitation of photosyn-

thetic CO2 fixation under low light conditions [3].

Certain marine heterotrophic bacteria are known to be

attracted by DMSP [26] and some bacteria are known to

metabolize DMSP quickly [27]. Likewise, various bacteria and

other microorganisms have a capacity for uptake and metaboliza-

tion of proline [28]. On the other hand, not only F. vesiculosus,
but also diatoms and some other epiphytic algae are known to

produce DMSP [29] and fucoxanthin [10]. Although the bacterial

Figure 1. Variation of surface DMSP, proline and fucoxanthin concentration, respectively in F. vesiculosus treated under different
temperature and light conditions for 28 d and 18 d, respectively. Different letters indicate different temperature and light treatment
responses in compound concentration (Tukey’s test P,0.05). Median (central symbol), n = 5 (n = 4 for fucoxanthin measurement at 10uC),
interquartile range.
doi:10.1371/journal.pone.0105333.g001
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densities did not differ significantly among different temperature

and among different light treatments, considerable variation in

bacterial community composition was observed [6,30] in the

present study. For example, in the temperature experiment the

relative abundance of the family Rhodobacteraceae varied

between 20 to 50% among treatments and even more among

single samples [6] and in the light experiment significant

differences in terms of OTU richness were also detected [30]. In

this light, variation in the concentrations of those compounds may

not only result from light and temperature effects upon the host,

but also from such effects upon associated microbial taxa that

modulate their production or fate. Also the relatively high

variability within treatment levels could result from differences

in the bacterial community composition.

To date few studies have investigated the effect of temperature

upon the production of defence chemicals by macroalgae. In

previous studies with field collected material, DMSP has been

detected on Fucus surfaces at concentrations in the range of 0.12

to 1.08 ng cm22 [12]. In the present study, differently tempera-

ture treated samples of Fucus contained DMSP at similar

concentrations, with the highest concentrations at 20uC (Fig. 1(i),

Table 1). DMSP surface concentrations in F. vesiculosus were low

at 10uC and at the highest temperature that was tested (25uC). The

particularly low surface concentration of DMSP at 25uC despite

particularly strong fouling by epiphytic diatoms indicates that

DMSP was not contributed by these epiphytes. Overall, the

surface DMSP concentration of F. vesiculosus was lower in the

light experiment than in the temperature experiment (Table 1),

with relatively high mean concentrations at 100% sun light and

total darkness. A light limitation thus did not pose any hindrance

to DMSP production in F. vesiculosus, although light reduction

resulted in significantly reduced CO2 fixation. The variability at

100% was particularly high, while significantly less DMSP was

detected on F. vesiculosus that was maintained at 44% of sun light,

as compared to 13% and 0% (Fig. 1(iv)), which suggests that a

certain tendency towards reduced presence of surface DMSP at

high light may exist. Apparently in contrast, in Codium fragile [31]

and many other algae [32], tissue DMSP usually increases with

light intensity, often due to its ecophysiological role as an

antioxidant. Also the increase of Fucus DMSP with temperature

from 10uC up to 20uC contrasts to inverse observations with the

green alga Codium fragile [31]. However, different from the

mentioned reference studies we determined surface concentrations

that are relevant for antifouling and not tissue concentrations of

DMSP that are relevant for cryoprotection and management of

oxidative stress. The relatively low concentration of DMSP under

high temperature conditions corresponds with the environmental

stress hypothesis (EST) and with a similar report for another

defence compound, elatol (tissue concentration) in Laurencia
dendroidea [33]. The EST predicts that the concentration of

defensive compounds can decrease in stressed organisms [34]. On

the other hand, the tendency for high concentration of DMSP

under light limitation seems not to support the EST.

DMSP has previously been shown to inhibit the settlement of

four out of five potential bacterial microfouler strains (Bacillus
aquimaris, Ulvibacter littoralis, Alteromonadaceae E1 and marine

sediment bacterium ISA 7311; all isolated from rockweed

dominated habitats in the Baltic Sea) at a surface concentration

of 0.05 ng cm22 or more. The fifth strain Cytophaga sp.; also

isolated from rockweed dominated habitats, required a higher

DMSP concentration of 0.38 ng cm22 for 50% inhibition [12].

Based upon the mean concentrations that were detected in our

study, the former four strains would be largely inhibited by DMSP

at all tested temperature conditions - including 25uC – and at all
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tested light regimes (Table 1). In contrast, Cytophaga sp. would be

largely repelled by DMSP at a lower temperature of 5uC and at

intermediate temperatures of 15 and 20uC, as well as in complete

absence of light – a response that could also be expected from

other microfouler bacterial strains.

In a former study proline was detected on Fucus apical tips at

concentrations in the range between 0.09 and 0.59 ng cm22 [12].

In the present temperature and light treatment experiments

proline was detected at much lower concentrations (Table 1) with

no significant differences among the treatments (Fig. 1(ii) and 1(v),

Table 1). Proline concentrations of 0.01 ng cm22 or more,

sufficient for a partial inhibition of all but the most resistant strain

Cytophaga sp. [12], were present on the surface of F. vesiculosus
under all conditions in the light experiment, but only at 15uC in

the temperature experiment.

Fucoxanthin has been detected previously at a concentration of

0.7 mg cm22 on Fucus apical tips [10]. But considerably lower

surface concentrations were detected on the younger algal

branches that had been subjected to the temperature treatments

described here. Epiphytic diatoms which contribute to the

fucoxanthin accumulation at the surface of F. vesiculosus [10]

were particularly abundant at 25uC and relatively rare at 5uC.

Likewise, in the light treated algae a significantly higher

concentration of fucoxanthin as well as a particularly high

abundance of diatoms was detected under 23% of sunlight.

Diatoms apparently contributed an important amount of surface

fucoxanthin, as fucoxanthin concentration correlated significantly

and positively to diatom abundance in both experiments.

Fucoxanthin surface concentrations of 1.4 to 6 mg cm22

detected in a former investigation caused a 50% settlement

inhibition in four out of five bacterial test strains (Ulvibacter
littoralis, AlteromonadaceaeE1, Cytophaga sp. and B. aquimaris),
while the fifth isolate (marine sediment bacterium ISA 7311)

showed a similar effect only above 6 mg cm22 [10]. In the

experiments conducted here fucoxanthin was always detected at

concentrations below 6 mg cm22. Only a feeble – if any -

contribution of fucoxanthin to antisettlement defense can, thus,

be assumed based upon its concentrations in both experiments.

Overall DMSP appeared as the most relevant defence

metabolite in both the temperature and light treatment, as it

was detected at sufficient concentrations for moderate to strong

inhibition of relevant bacterial microfoulers at all tested temper-

ature and light levels. Proline seemingly contributed to this defence

in the light experiment only, fucoxanthin under none of the test

conditions. Interestingly, this picture – deduced from the

sensitivities of single bacterial isolates - was to some degree

reflected in the relative abundance of bacterial taxa within total

bacterial communities: OTU’s that tended to be more abundant

Figure 2. Odds for the presence of 26 different clades of bacteria within those groups of bacteria that consistently exhibited either
a negative (red) or a positive (green) correlation between OTU abundance and concentration of Fucoxanthin (A), DMSP (B) and
Proline (C). Geometric means of odds calculated for the temperature experiment and the light experiment 695% confidence intervals. Asterisks
indicate odds that are significantly different from 1 (x2-test, * p,0.05, ** p,0.025, *** p,0.001).
doi:10.1371/journal.pone.0105333.g002
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on specimens exhibiting lower surface concentrations of DMSP

were overrepresented within three different bacterial groups and

the same was detected for two groups with respect to proline, but

in no case for fucoxanthin (Fig. 2). Thus, in the current study

fucoxanthin played no apparent role for the deterrence of

microfoulers.

Bacteria that appeared as attracted rather than deterred by

DMSP were overrepresented among the Rhodobacteraceae and

Flavobacteriaceae, two Families which alone contribute 25% and

8 to 30% of all OTU’s of the F. vesiculosus microbiome,

respectively. Attraction of heterotrophic bacteria by DMSP has

been previously reported [27] and in addition to deterrence this

attraction apparently also plays a significant role in the shaping of

Fucus-associated bacterial communities. Attraction by fucoxan-

thin and proline was reflected in terms of overrepresentation

among Flavobacteriaceae. Similar as Rhodobacteraceae, Flavo-

bacteriaceae are generally abundant on seaweeds [35] and they

seemingly include many taxa that are well adapted to the defence

compounds that are present on those hosts. In contrast, Firmicutes

– that are relatively rare on Fucus – at the same time appear as

sensitive towards DMSP. Interestingly the groups of unidentified

Alphaproteobacteria and unidentified Phyla also harboured

numerous taxa that appear as sensitive towards DMSP and

proline.

In conclusion, the defence system of F. vesiculosus against

bacterial foulers is composed of at least three metabolites which

exhibit variable concentrations. However, the effect of light and

temperature – upon these concentrations appears as limited - even

under conditions clearly stressful for the algal host. Moreover,

under all tested conditions the natural surface concentration of at

least one of the defensive metabolites was high enough to warrant

for a reduction of bacterial settlement. Thus, while the concen-

tration of single compounds may be occasionally reduced under

certain adverse conditions –the overall antifouling defence of F.
vesiculosus appears not to be significantly affected by light

limitation stress or disruptive temperature stress, including

complete absence of light for 18 d and 25uC for 4 weeks.

Complex defence systems composed of several (independent)

mechanisms may not only make the antifouling defence more

efficient and less vulnerable to co-adaptation as suggested earlier

[36] but also less sensitive to environmental stress. In addition,

additive or synergistic action of multiple defence compounds could

make them more efficient. For example, the polar compounds

proline and DMSP probably act additively or synergistically.

When total polar surface extract of F. vesiculosus was tested

without prior fractionation and purification it had a stronger

inhibitory effect on bacterial settlement than DMSP and proline

alone, which could be explained through an additive effect among

the identified or even among unidentified components (see [10] for

details).

Supporting Information

Figure S1 Relative contribution [%] of major phyloge-
netic groups to the overall composition of bacterial
communities associated with F. vesiculosus in the
temperature and the light treatment.
(TIF)

Figure S2 Relationship between tissue mannitol con-
centration and light among differently light treated
individuals of F. vesiculosus (r2 = 0.880, p,0.05). Straight

line: best fitting linear function (y = 20.025x+0.765).

(TIF)

Figure S3 Variation of diatom abundance among dif-
ferently light treated F. vesiculosus individuals. Median

(central symbol), n = 10, interquartile range.

(TIF)

Figure S4 Relationship between surface fucoxanthin
concentration and relative diatom abundance cm22 of
algal surface among differently light treated individuals
of F. vesiculosus (r2 = 0.92, p,0.05). Straight line: best fitting

linear function (y = 22.279+0.10376*x). Dotted lines: 95% CI.

(TIF)

Figure S5 Variation of bacteria abundance among
differently light treated F. vesiculosus individuals.
Median (central symbol), n = 9, interquartile range.

(TIF)
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