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The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with amino-
arabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the
antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack
aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-
regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive
to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A
plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by
establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the
incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists
of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the
putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile
and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with
aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.

Polymyxin B is a cyclic antimicrobial lipopeptide produced
by the soil bacterium Paenibacillus polymyxa (33). While the
mechanism of killing of polymyxin B is not completely under-
stood, the cationic polymyxin B is believed to bind initially to
the anionic surfaces of gram-negative bacteria, in particular to
the lipopolysaccharide (LPS) (46). This electrostatic interac-
tion apparently allows polymyxin B to gain access to the bac-
terial inner membrane, which is its presumed target. Gram-
negative bacteria that are resistant to polymyxin B possess
mechanisms that modify the LPS by neutralizing its negative
charge, which decreases the binding of polymyxin B (30, 37,
45). Strains that exhibit resistance to polymyxin B also display
resistance to antimicrobial peptides and proteins from human
neutrophils (36).

In Salmonella enterica serovar Typhimurium, polymyxin B
resistance is controlled primarily by the PmrA/PmrB regula-
tory system (35, 44). A polymyxin B-resistant strain that ex-
presses a constitutively active PmrA protein displays increased
levels of aminoarabinose and phosphoethanolamine in the
lipid A portion of the LPS (20), suggesting that these PmrA-
controlled modifications are required for polymyxin B resis-
tance. Consistent with this notion, the PmrA-activated ugd
gene and pbg operon (designated pmrF by Gunn et al. [13] and
arn by Trent et al. [43]) are necessary for both the biosynthesis
and incorporation of aminoarabinose into lipid A (13) and for
polymyxin B resistance (12, 13). Yet, pbgP and ugd mutants are
not as polymyxin sensitive as a pmrA null mutant (24), indicat-

ing that an additional PmrA-regulated gene(s) is required for
polymyxin B resistance. pmrA null mutants produce lipid A
species that lack aminoarabinose and phosphoethanolamine,
whereas strains with a block in the synthesis pathway for ami-
noarabinose due to mutations in the pbgP operon have in-
creased levels of phosphoethanolamine-modified lipid A (52).
While this indicates that the PmrA/PmrB system is absolutely
needed for decorating lipid A with aminoarabinose and phos-
phoethanolamine, the PmrA-regulated determinant(s) respon-
sible for the modification of lipid A with phosphoethanolamine
and the role that such a modification plays in polymyxin resis-
tance have remained unknown.

Transcription of PmrA-activated genes is promoted by Fe3�,
which is sensed by the sensor protein PmrB (48), and by low
levels of Mg2� in a process that requires the PhoP/PhoQ reg-
ulatory system (41) and the PhoP-activated PmrD protein (24).
In addition to the increased susceptibility towards polymyxin B
(12), pmrA null mutants are hypersusceptible to killing by Fe3�

(2) and mildly attenuated for virulence in mice (15). The
PmrA/PmrB system is encoded by the pmrCAB operon and is
apparently expressed from both a PmrA-activated promoter
upstream of the pmrC gene (47) and a constitutive promoter
within the pmrC coding region (14, 41).

In this paper, we demonstrate that the PmrA-activated pmrC
gene encodes an inner membrane protein that is required for
polymyxin resistance and for the incorporation of phosphoeth-
anolamine into lipid A. We determined that the inactivation of
both the pbgP and pmrC genes results in a strain that resembles
a pmrA mutant both in its susceptibility to polymyxin B and in
its lipid A profile. Our results indicate that the PmrA-regulated
incorporation of aminoarabinose and phosphoethanolamine
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into lipid A is responsible for PmrA-mediated polymyxin B
resistance in S. enterica.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. The bacterial strains and
plasmids used for this study are listed in Table 1. All S. enterica serovar Typhi-
murium strains used for this study were derived from the wild-type strain 14028s.
Phage P22-mediated transductions were performed as described previously (7).
Bacteria were grown at 37°C with aeration in Luria-Bertani (LB) broth or in N
minimal medium, pH 7.7 or 5.8, supplemented with 0.1% Casamino Acids, 38
mM glycerol, and 10 �M or 10 mM MgCl2 (39). When necessary, antibiotics were
added to the following final concentrations: ampicillin, 50 �g/ml; chloramphen-
icol, 20 �g/ml; kanamycin, 50 �g/ml; and tetracycline, 10 �g/ml. Escherichia coli
DH5� (18) was used as a host for the preparation of plasmid DNA.

Plasmid constructions. For construction of the single-copy plasmid
pBAC108L-pmrC (ppmrC), the pmrC coding and promoter regions were PCR
amplified with primers 3109 (5�-GATTGGATCCGTCGCGTTTGTGTATTGC
ATCTGG-3�) and 2208 (5�-CCCAAGCTTCATTCGCTTAGTCTCCTGCACG
G-3�), and 14028s genomic DNA as the template. The amplified PCR fragment
was digested with BamHI and HindIII and cloned between the BamHI and
HindIII sites of plasmid pBAC108L (38). For the construction of plasmid
pBAC108L-pmrCflag (ppmrCFLAG), the pmrC coding region with its own pro-

moter and a FLAG epitope sequence right before the stop codon was PCR
amplified with primers 3109 and 3179 (5�-TCAGAAGCTTCACTTGTCATCG
TCGTCCTTGTAGTCTTCGCTTAGTCTCCTGCACGGTTG-3�) and 14028s
genomic DNA as the template (the DNA sequence encoding the FLAG epitope
is underlined). The amplified PCR fragment was digested with BamHI and
HindIII and cloned between the BamHI and HindIII sites of plasmid
pBAC108L. DNA sequencing verified that the cloned segment had the expected
pmrC sequence.

Construction of pmrC mutants. For the generation of the �pmrC1 strain,
which harbors a 1,096-bp deletion of the 1,641-bp pmrC gene, a DNA fragment
containing a chloramphenicol resistance cassette was PCR amplified with prim-
ers 2635 (5�-GCCTGAACATTGCGTTCTACAAGCAGGTACTACAAGACC
TGTGTAGGCTGGAGCTGCTTC-3�) and 2636 (5�-GGTGTTGATCAACTG
CTCTTGGGAACAGTTCTGAATTTCGCATATGAATATCCTCCTTAG-
3�) and plasmid pKD3 (6) as the template, and was used to transform a derivative
of strain 14028s as described previously (23). The �pmrC1.1 strain, in which the
chloramphenicol resistance cassette was removed from the �pmrC1 strain by
using plasmid pCP20 (3), was used as a host for plasmid pBAC108L, ppmrC, or
ppmrCFLAG. Strains �pmrC1 and �pmrC1.1 exhibited the same lipid A profile
and polymyxin B susceptibility.

For construction of the pmrA505 �pmrC1.1 strain, a DNA fragment containing
a kanamycin resistance cassette was PCR amplified with primers 2807 (5�-GCC
TGAACATTGCGTTCTACAAGCAGGTACTACAAGACCT CATATGAAT

TABLE 1. Bacterial strains and plasmids used for this study

Strain or plasmid Descriptiona Reference or source

Strains
S. enterica

14028s Wild type 9
EG13927 �pmrC1::Cmr, partial deletion (1,096 bp of the 1,641-bp pmrC gene) This study
EG14590 �pmrC1.1, Cmr removed from strain EG13927 This study
EG13633 �pmrC2::Cmr, complete deletion of the pmrC open reading frame This study
EG9241 pbgP1::MudJ 40
EG14372 pbgP1::MudJ �pmrC1 This study
EG14375 pbgP1::MudJ �pmrC2 This study
EG9492 pmrA505 zjd::Tn10d-Cmr 12
EG9868 pmrA505 pbgP1::MudJ zjd::Tn10d-Cmr 12
EG14367 pmrA505 �pmrC::Kmr zjd::Tn10d-Cmr This study
EG14368 pmrA505 �pmrC1 zjd::Tn10d-Cmr This study
EG14369 pmrA505 pbgP1::MudJ �pmrC1 zjd::Tn10d-Cmr

EG7139 pmrA::Cmr This study
EG14286 phoN::Cmr 41
EG14656 EG14590 containing pBAC108L plasmid This study
EG14595 EG14590 containing ppmrC plasmid This study
EG14592 EG14590 containing ppmrCFLAG plasmid This study

E. coli
DH5� supE44 �lacU169 (�80 lacZ�M15) hsdR17recA1 endA1 gyrA96 thi-1 relA1 (18)

Plasmids
pBAC108L Mini-F, Cmr 38
ppmrC pBAC108L harboring pmrC coding region with its own promoter This study
ppmrCFLAG pBAC108L harboring the pmrC coding region with its own promoter and

harboring sequences encoding a FLAG epitope sequence at the 3� end
This study

pKD3 repR6K � FRT Cmr FRT Apr 6
pKD4 repR6K � FRT Kmr FRT Apr 6
pKD46 reppSC101

ts paraBAD � � Exo Apr 6
pCP20 reppSC101

ts Cmr cI857 	PR Apr 3
pCE36 repR6K� FRT lacZY this Kmr 8
pCL1920 reppSC101

ts Spr 27
pPmrC150 pCL1920 harboring truncated pmrC150 This study
pPmrC181 pCL1920 harboring truncated pmrC181 This study
pPmrC295 pCL1920 harboring truncated pmrC295 This study
pPmrC150lacZ� pPmrC150, fusion of pmrC150 and lacZ fragment This study
pPmrC150phoA� pPmrC150, fusion of pmrC150 and phoA fragment This study
pPmrC181lacZ� pPmrC181, fusion of pmrC181 and lacZ fragment This study
pPmrC181phoA� pPmrC181, fusion of pmrC181 and phoA fragment This study
pPmrC295lacZ� pPmrC181, fusion of pmrC295 and lacZ fragment This study
pPmrC295phoA� pPmrC181, fusion of pmrC295 and phoA fragment This study

a FRT, FLP recognition target.
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ATCCTCCTTAG-3�) and 2808 (5�-GGTGTTGATCAACTGCTCTTGGGAAC
AGTTCTGAATTTCG GTGTAGGCTGGAGCTGCTTC-3�) and plasmid
pKD4 (6) as the template, and was used to transform the pmrA505 strain to
generate a pmrA505 �pmrC:Kmr strain. The kanamycin resistance cassette was
removed from this strain by using plasmid pCP20 (3) to generate the pmrA505
�pmrC1.1 strain. To construct the �pmrC2 strain, which has a deletion of the
entire pmrC coding region, we followed the strategy described above, using
primers 2147 (5�-CTTTGTCACGATTAGCGTCACCGAATCGATGGACGC
ATCAACGTGTAGGCTGGAGCTGCTTC-3�) and 2148 (5�-CCCCTGTAAT
AATAGCGTGTCGTCTTCAACAATCAGTATCTTCATCATATGAATATC
CTCCTTA-3�). The structure of the pmrC region in the generated mutants was
confirmed by Southern blot hybridization and/or PCR analysis.

�-Galactosidase assays. �-Galactosidase assays were performed in duplicate
and the activity was determined as described previously (29).

Polymyxin B killing assay. Cells were harvested from an overnight culture
grown in N minimal medium at pH 7.7 with 10 mM MgCl2, washed three times
with N minimal medium at pH 7.0 without MgCl2, and diluted 1:100 in N
minimal medium, pH 5.8, with 10 �M MgCl2. Bacteria were grown for 4 h at
37°C with aeration to an optical density at 600 nm (OD600) of 0.3 to 0.4 and were
then diluted 1:100 in LB broth. Fifty microliters of the diluted bacterial culture
was mixed with 50 �l of polymyxin B dissolved in a phosphate-buffered saline
(PBS) solution and was placed in a 96-well plate (Cell Culture Cluster; Costar).
After 1 h of incubation at 37°C with aeration, cultures were serially diluted in
PBS and plated onto LB agar plates to determine the number of CFU after an
overnight incubation. The percent survival was calculated as follows: (CFU of
polymyxin B-treated culture/CFU of PBS-treated culture) 
 100 (11). The sta-
tistical significance of the polymyxin B susceptibility data was analyzed by a
two-tailed Student’s t test by using Excel software. The null hypothesis was zero
for mean difference comparisons, and P values are reported for this analysis (see
Fig. 3).

Subcellular localization of PmrC protein. Inner and outer membranes were
prepared as follows. A pmrC strain harboring the ppmrCFLAG plasmid, which
carries the pmrC gene with its own promoter and a sequence encoding a FLAG
epitope at the 3� end immediately upstream of the stop codon, was grown
overnight in N minimal medium, pH 7.7, with 10 mM MgCl2. The next day, the
cells were harvested; washed three times with N minimal medium, pH 7.0,
without MgCl2; diluted 1:100 in 200 to 300 ml of N minimal medium, pH 7.7, with
10 �M MgCl2; and grown for 4 h at 37°C with aeration. The cells were then
harvested, washed once with PBS, and resuspended in 4 ml of PBS containing
sucrose (20%) and lysozyme (100 �g/ml). After being incubated on ice for 30
min, the cells were opened by sonication. A sucrose gradient ultracentrifugation
procedure (32, 49) was used, with modifications (www.cmdr.ubc.ca/bobh
/methodsall.html), to isolate the inner and outer membranes. Cell debris was
removed by centrifugation at 4,000 
 g for 15 min, and the whole-cell lysate
was loaded on top of a sucrose gradient made with 4 ml each of 60 and 70%
sucrose in a Beckman Ultra-Clear centrifuge tube followed by centrifugation
in an SW41 rotor at 38,000 rpm for 20 h at 4°C. Bands between 20 and 60%
(upper, reddish band) and between 60 and 70% (lower, white band) sucrose,
corresponding to the inner and outer membranes, respectively, were collected
and dialyzed overnight against PBS. Protein concentrations were determined
by a modified Lowry method (1), with bovine serum albumin used as a
standard protein. NADH oxidase activity, which was measured as described
previously (32), was used as a marker for inner membrane purity. Inner and
outer membrane preparations (20 �g of protein each) were run in a sodium
dodecyl sulfate (SDS)–10% polyacrylamide gel, transferred onto a nitrocel-
lulose membrane, and developed by using an anti-FLAG M2 monoclonal
antibody (Sigma), an anti-mouse immunoglobulin G horseradish peroxidase-
linked antibody, and the ECL detection system (Amersham Biosciences).

Construction of genes encoding chimeric PmrC-LacZ and PmrC-PhoA pro-
teins. A lacZ DNA fragment missing nine codons at the 5� end (lacZ�) (26) was
PCR amplified by using E. coli MG1655 genomic DNA as a template and the
following primer pairs: 4140 (5�-GATCCCTAGGGCCGTCGTTTTACAACGT
CGTGAC-3�) and 4141 (5�-CCGGAAGCTTTTATTTTTGACACCAGACCA
ACTG-3�), introducing AvrII (CCTAGG) and HindIII (AAGCTT) restriction
sites, respectively; or 4142 (5�-GATCGCTAGCGCCGTCGTTTTACAACGTC
GTGAC-3�) and 4141, introducing NheI (GCTAGC) and HindIII (AAGCTT)
restriction sites, respectively. A phoA gene segment missing 13 codons at the 5�
end (phoA�) (21) was PCR amplified by using E. coli MG1655 genomic DNA as
a template and the following primer pairs: 4143 (5�-GATCCCTAGGCTGTTT
ACCCCTGTGACAAAAGCC-3�) and 4144 (5�-GGGCAAGCTTTTATTTCA
GCCCCAGAGCGGCTTT-3�), introducing AvrII (CCTAGG) and HindIII
(AAGCTT) restriction sites, respectively; or 4145 (5�-GATCGCTAGCCTGTT
TACCCCTGTGACAAAAGCC-3�) and 4144, introducing NheI (GCTAGC)

and HindIII (AAGCTT) restriction sites, respectively. (Restriction sites in the
primers are underlined.)

DNA fragments encoding the truncated PmrC proteins PmrC1-150, PmrC1-181,
and PmrC1-295 were PCR amplified by using 14028s genomic DNA as a template
and the following pair of primers: 3109 (5�-GATTGGATCCGTCGCGTTTGT
GTATTGCATCTGG-3�) and 4146 (5�-GATCCTGCAGCCTAGGCGTCGCC
GGACGGATTTTGACCCA-3�) for PmrC1-150, 3109 and 4147 (5�-GATCCTG
CAGGCTAGCGTAATCTTTATAGAAAAAGGCGGC-3�) for PmrC1-181, and
3109 and 4148 (5�-GATCCTGCAGCCTAGGCATATCAGAAAACATGCAG
GGAAC-3�) for PmrC1-295 (the following restriction sites in the primers are
underlined: AvrII [CCTAGG], BamHI [GGATCC], NheI [GCTAGC], and PstI
[CTGCAG]). The PCR-amplified DNA fragments were first digested with
BamHI and PstI and cloned between the BamHI and PstI sites of plasmid
pCL1920 (27) to generate plasmids pPmrC150, pPmrC181, and pPmrC295. The
fragments harboring the lacZ� and phoA� genes digested with AvrII and HindIII
were cloned between the AvrII and HindIII sites of plasmids pPmrC150 and
pPmrC295 to generate plasmids pPmrC150-lacZ�, pPmrC150-phoA�, pPmrC295-
lacZ�, and pPmrC295-phoA�. The fragments digested with NheI and HindIII were
cloned between the NheI and HindIII sites of plasmid pPmrC181 to generate
plasmids pPmrC181-lacZ� and pPmrC181-phoA�. In plasmids pPmrC150-lacZ� and
pPmrC150-phoA�, the lacZ� and phoA� genes were fused in frame to pmrC right
after the sequence encoding the fourth predicted transmembrane domain. In
plasmids pPmrC181-lacZ� and pPmrC181-phoA�, the lacZ� and phoA� genes were
fused in frame to pmrC right after the sequence encoding the fifth predicted
transmembrane domain. In plasmids pPmrC295-lacZ� and pPmrC295-phoA�, the
lacZ� and phoA� genes were fused in frame to pmrC right after the sequence
encoding the sixth predicted transmembrane domain. These plasmids were trans-
formed into a Salmonella strain with a deletion of the phoN gene, which was
constructed as described previously (6), with plasmid pKD3 as the template and
with primers 2935 (5�-GGATTACATCTGTTTATTATTGCCTGATCCGGAG
TGAGTCTTTGTGTAGGCTGGAGCTGCTTC-3�) and 2936 (5�-GTTTGGG
GTGATCTTCTTTACTCAATAAATTATTTTTGTCGTCATATGAATATCC
TCCTTA-3�). The production of alkaline phosphatase by strains expressing
PmrC-PhoA proteins was determined on LB agar plates containing 5-bromo-4-
chloro-3-indolylphosphate (XP; 40 �g/ml). The production of �-galactosidase by
strains expressing PmrC-LacZ proteins was determined on LB agar plates con-
taining 5-bromo-4-chloro-3-indolyl-�-D-galactoside (X-Gal; 40 �g/ml).

Preparation of lipid A samples for MALDI-TOF mass spectrometry analysis.
Lipid A samples were prepared as described previously (50), with a slight mod-
ification: cells were harvested from overnight cultures grown in N minimal
medium, pH 7.7, with 10 mM MgCl2; washed three times with N minimal
medium, pH 7.0, without MgCl2; and diluted 1:100 in N minimal medium, pH
5.8, with 10 �M MgCl2. After growth for 4 h at 37°C with aeration, the cells were
harvested, washed once with PBS, and resuspended in 300 �l of Tri-Reagent
(Molecular Research Center) for the amount of cells harvested from 30 ml of
culture at an OD600 of �0.4. After an incubation for 20 min at room tempera-
ture, 30 �l of chloroform was added, and the samples were vortexed vigorously
and incubated for 15 min at room temperature. The phases were separated by
centrifugation at 12,000 
 g for 10 min, and the upper phase was transferred to
a new tube. One hundred microliters of water was added to the lower phase,
vortexed, incubated for 15 min, and centrifuged at 12,000 
 g for 10 min. The
upper phase was combined with the upper phase recovered as described above.
This extraction was performed twice. The combined upper phases were dried in
a speed-vac apparatus (model RC10.22; Jouan, Winchester, Va.) and dissolved in
500 �l of hydrolysis buffer, pH 4.5, containing 12.5 mM sodium acetate and 1%
SDS. For the release of lipid A from the LPS, samples were boiled for 1 h at
100°C, dried in a speed-vac, and resuspended in a mixture of 100 �l of water and
500 �l of acidified ethanol (made by mixing 100 �l of 4 M HCl with 20 ml of 95%
ethanol). The pellet was harvested by centrifugation at 2,060 
 g for 10 min,
washed with 500 �l of 95% ethanol, and centrifuged again at 2,060 
 g for 10
min. The washing steps were repeated to completely remove SDS. The pellet was
dried at room temperature for 5 min, and lipid A was dissolved by the addition
of 100 �l of chloroform and methanol (3:1) and was used for matrix-assisted laser
desorption–ionization time-of-flight (MALDI-TOF) mass spectrometry analysis.
MALDI-TOF mass spectrometry analyses of lipid A were performed with the
negative-ion mode of a Voyager DE STR mass spectrometer (PerSeptive Bio-
systems, Framingham, Mass.) equipped with a 337-nm nitrogen laser with de-
layed extraction. Analyses were carried out in the reflector mode at a mass range
of m/z 1,500 to 3,000, with an accelerating voltage of 20 kV and a delay time of
300 ns. The instrument was externally calibrated. A low-mass gate value of m/z
500 was selected to avoid saturation of the detector. 2,5-Dihydroxybenzoic acid
at 10 �g/�l in 70% acetonitrile–0.1% trifluoroacetic acid was used as a matrix.
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The final mass spectra were obtained from an average of 5 to 10 spectra, and
each spectrum was a collection from 200 laser shots.

RESULTS

The Salmonella PmrC protein exhibits sequence identity
with Neisseria proteins implicated in the incorporation of
phosphoethanolamine into LPS. To identify Salmonella genes
responsible for the phosphoethanolamine modification of lipid
A, we conducted a BLAST search of the Salmonella genome by
using as the query the amino acid sequence of the Neisseria
meningitidis Lpt-3 protein, which had been implicated in the
phosphoethanolamine modification of the heptose residue in
the core oligosaccharide portion of the LPS (28). We recov-
ered four open reading frames (PmrC, YbiP, YhjW, and YijP)
(Table 2) and decided to focus on the PmrC protein because it
is encoded in the PmrA-dependent pmrCAB operon (41) and
because we were interested in phosphoethanolamine modifi-
cations that are regulated by PmrA. We then used the amino
acid sequence of the PmrC protein to query the Neisseria
genome and obtained three genes: the expected NMB2010
gene (lpt-3), NMB0415, which appears to be a pseudogene,
and NMB1638 (lptA), which has been shown to be required for
the incorporation of phosphoethanolamine into the lipid A
moiety of the LPS (5). The Salmonella PmrC protein exhibited
the highest identity with the NMB1638 gene product (42%
identity and 60% similarity). However, the regions of sequence
identity and similarity were not evenly distributed: these pro-
teins were 48% identical (65% similar) in the C-terminal 340
residues but only 30% identical (53% similar) in the N-termi-
nal 176 amino acids. This analysis suggested that the PmrA-
regulated pmrC gene might be involved in the phosphoethano-
lamine modification of the LPS.

Construction of a nonpolar pmrC mutant. To examine the
function of the pmrC gene, we constructed a nonpolar pmrC
mutant that lacked 1,096 of the 1,641 bp of the pmrC gene (Fig.
1A). This mutant retained 185 bp at the 5� end of the pmrC
coding region as well as the last 360 bp of the pmrC open
reading frame. The latter region contains a putative promoter
that apparently directs the constitutive expression of the down-
stream pmrA and pmrB genes (13, 41) (Fig. 1A). The generated
mutation (designated �pmrC1) was not polar on the pmrA and
pmrB genes because the same levels of transcription of the
PmrA-activated pbgP gene were displayed by isogenic wild-
type and �pmrC1 strains (Fig. 1B). Moreover, a PmrC-FLAG
protein that was expressed from the pmrC promoter carried by
a single-copy-number plasmid exhibited normal regulation in
the �pmrC1.1 mutant: the protein was produced when bacteria
were grown in low, but not high, levels of Mg2� (Fig. 1C). The
behavior of the �pmrC1 mutant contrasted with that exhibited

by a strain with a deletion of the complete pmrC coding region
(�pmrC2) (Fig. 1A), which showed levels of pbgP transcription
that were 10 times lower than those displayed by the wild-type
strain (Fig. 1B). These results support the notion that there is
a promoter within the pmrC coding region that promotes the
transcription of the downstream pmrA and pmrB genes. Fur-
thermore, they indicate that the generated �pmrC1 and

FIG. 1. (A) Schematic representation of the pmrCAB operon in
wild-type Salmonella and in mutants with a partial (�pmrC1 and
�pmrC1.1) or complete (�pmrC2) deletion of the pmrC open reading
frame. (B) �-Galactosidase activity (in Miller units) expressed by
strains harboring a chromosomal lac transcriptional fusion to the
PmrA-activated pbgP gene that were grown logarithmically in N-min-
imal medium, pH 5.8, with 10 �M MgCl2. Transcription was investi-
gated in wild-type (14028s), �pmrC1 (EG13927), and �pmrC2
(EG13633) genetic backgrounds. Data correspond to mean values
from three independent sets of experiments performed in duplicate.
Transcription of the PmrA-activated pbgP gene was similar in the
wild-type and �pmrC1 strains, but it was decreased in the �pmrC2
mutant. (C) Western blot analysis of cell extracts prepared from the
�pmrC1.1 mutant (EG14592) containing the ppmrCFLAG plasmid,
which expresses the pmrCflag gene from its own promoter, after log-
arithmic growth in N-minimal medium, pH 7.7, with 10 �M (L) or 10
mM (H) MgCl2. The total protein from equal amounts of bacterial
cells, as adjusted by the OD600, was run in an SDS–10% polyacryl-
amide gel, transferred onto a nitrocellulose membrane, and developed
by using anti-FLAG antibodies. The �pmrC1.1 mutant displays normal
PmrA regulation, as the PmrC-FLAG protein is produced by bacteria
grown in a low Mg2� concentration but is not detected when bacteria
are grown in a high Mg2� concentration.

TABLE 2. Salmonella open reading frames exhibiting sequence
similarity to the lpt-3 gene product of N. meningitidis MC58

Locus Gene
name

% Amino acid identity
(no. with identity/total)

% Amino acid similarity
(no. with similarity total)

STM3635 yhjW 24 (137/562) 41 (236/562)
STM4293 pmrC 25 (71/279) 43 (122/279)
STM4118 yijP 23 (64/272) 38 (104/272)
STM0834 ybiP 23 (61/260) 41 (107/260)
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�pmrC1.1 mutations do not affect the expression of the pmrA
and pmrB genes, and this allowed us to examine the pheno-
types resulting from the absence of a functional pmrC gene.

Mutation of the pmrC gene results in lipid A that lacks
phosphoethanolamine. To examine whether the pmrC gene is
necessary for the incorporation of phosphoethanolamine into
lipid A, we used negative-ion-mode MALDI-TOF mass spec-
trometry to analyze the lipid A species from wild-type pbgP,
�pmrC1.1, and pmrA strains and strains grown at a low pH and
with a low level of Mg2�, which are conditions that promote
the transcription of PmrA-activated genes (41). Because the
chemical structures and m/z values for most of the lipid A
species in S. enterica had been previously assigned (16, 51–53),
we focused on the differences in lipid A profiles between wild-
type and mutant strains, putting particular emphasis on the
representative molecular ions ([M � H]�) of lipid A species
modified with phosphoethanolamine or aminoarabinose,
which are governed by the PmrA/PmrB system.

A molecular ion ([M � H]�) at m/z 1,796 was considered to
be the prototype lipid A, a hexa-acylated lipid A 1,4�-bisphos-
phate (i.e., diphosphorylated lipid A) (Fig. 2A). The m/z values
corresponding to phosphoethanolamine-modified lipid A mo-
lecular ions ([M � H]�) are as follows: m/z 1,919, a diphos-
phorylated lipid A (m/z 1,796) bearing a phosphoethanolamine
of 124 average mass units (amu) at the 1 or 4� phosphate of
lipid A; m/z 1,935, a hydroxylated form of m/z 1,919; m/z 2,157,
a palmitoylated form of m/z 1,919; and m/z 2,173, a palmitoy-
lated form of m/z 1,935. The molecular ions ([M � H]�) of
lipid A species modified with aminoarabinose are as follows:
m/z 1,928, a diphosphorylated lipid A (m/z 1,796) bearing an
aminoarabinose (132 amu) at the 1 or 4� phosphate of lipid A;
m/z 1,944, a hydroxylated form of m/z 1,928; m/z 2,166, a
palmitoylated form of m/z 1,928; and m/z 2,182, a hydroxylated
form of m/z 2,166. m/z 1,812 represents a hydroxylated form of
the prototype lipid A (m/z 1797), and m/z 2,035 and 2,051
represent a diphosphorylated lipid A molecular ion ([M �
H]�) bearing a palmitate group and a hydroxyl group, respec-
tively (Fig. 2A). The latter modifications are known to be
regulated by the PhoP/PhoQ system (10, 16, 17), which is
activated under the low-Mg2� conditions used to grow the
organisms (39), and were used as internal controls for our lipid
A analyses.

The �pmrC1.1 mutant lacked peaks at m/z 1,919, 1,935,
2,157, and 2,173, which correspond to phosphoethanolamine-
modified lipid A species (Fig. 2C). On the other hand, this
mutant retained molecular ions corresponding to lipid A spe-
cies modified with aminoarabinose at m/z 1,928, 1,944, 2,166,
and 2,182 (Fig. 2C), which, as expected (14), were absent from
the pbgP mutant (Fig. 2B). The lipid A profile of the �pmrC1.1
mutant was solely due to the absence of the pmrC gene func-
tion, as the phosphoethanolamine-modified lipid A molecular
ions (peaks at m/z 1,919, 1,935, 2,157, and 2,173) were present
in the lipid A species of a �pmrC1.1 strain harboring a plasmid
with a wild-type copy of the pmrC gene (Fig. 2D), but not in a
�pmrC1.1 strain with a vector control (Fig. 2E). These results
demonstrate that the pmrC gene is required for the incorpo-
ration of phosphoethanolamine into lipid A.

The pmrC gene is required for resistance to polymyxin B.
We determined that the �pmrC1.1 mutant was three- to five-
fold more sensitive to polymyxin B than was the wild-type

strain (Fig. 3A). This phenotype was due to the lack of the
pmrC gene function, as a plasmid carrying a wild-type copy of
the pmrC gene restored wild-type levels of polymyxin B resis-
tance to the �pmrC1.1 mutant (Fig. 3A). Moreover, the
�pmrC1.1 mutation decreased polymyxin B resistance even in
the polymyxin-resistant pmrA505 strain (Fig. 3C), which ex-
presses PmrA-regulated genes even under noninducing condi-
tions (24). Because the �pmrC1.1 strain lacked phosphoeth-
anolamine but retained aminoarabinose in lipid A (Fig. 2C),
these results demonstrate that the ability to modify lipid A with
phosphoethanolamine is necessary for polymyxin B resistance.

FIG. 2. Lipid A species profiles from wild-type (14028s) (A), pbgP
(EG9241) (B), �pmrC1.1 (EG14590) (C), �pmrC1.1/ppmrC
(EG14595) (D), and �pmrC1.1/vector (EG14656) (E) strains grown to
logarithmic phase in N-minimal medium, pH 5.8, with 10 �M MgCl2,
and analyzed by negative-ion-mode MALDI-TOF mass spectrometry.
These profiles show that the pmrC mutant lacks lipid A species mod-
ified with phosphoethanolamine.
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A mutant defective in both the pbgP and pmrC genes has the
same lipid A profile and susceptibility to polymyxin B as a
pmrA null mutant. When grown under low-Mg2� and mildly
acidic conditions, mutants defective in the pbgP or pmrC genes
are more sensitive to polymyxin B than the wild-type strain but
are not quite as sensitive as a pmrA null mutant (Fig. 3B) (24).
On the other hand, a pbgP �pmrC1 double mutant displayed
the same level of polymyxin B susceptibility as a pmrA null
mutant (Fig. 3B). Consistent with this result, the inactivation of
both the pmrC and pbgP genes in the polymyxin B-resistant
pmrA505 genetic background reduced polymyxin B resistance
to the levels of the pmrA null mutant (Fig. 3C). These results
indicate that the pbg operon and the pmrC genes are solely
responsible for PmrA-regulated polymyxin B resistance. (This
is in addition to the ugd gene, which exhibits a similar suscep-
tibility phenotype as the pbgP mutant, consistent with these loci
encoding proteins mediating the biosynthesis of aminoarabi-
nose.)

To further explore the association between polymyxin B
resistance and lipid A modifications, we examined the lipid A
profiles of pmrA, pbgP �pmrC1, pmrA505, and pmrA505 pbgP
�pmrC1.1 strains. The lipid A from the pmrA mutant lacked
molecular ions ([M � H]�) corresponding to those modified
with either phosphoethanolamine (peaks at m/z 1,919, 1,935,
2,153, and 2,173) or aminoarabinose (peaks at m/z 1,928 1,944,
2,166, and 2,182) (Fig. 4D), which was consistent with previous
reports (52). Likewise, inactivation of both the pbgP and pmrC
genes in either a pmrA� (Fig. 4C) or pmrA505 (Fig. 4B) back-
ground resulted in a strain with the same lipid A profile as that
exhibited by the pmrA null mutant (Fig. 4D), which lacks the
modifications displayed by the pmrA505 strain (Fig. 4A).
Taken together with the results of the polymyxin susceptibility
assays (Fig. 3), this analysis indicates that PmrA-controlled
polymyxin B resistance is mediated by the aminoarabinose and
phosphoethanolamine modifications of lipid A.

The pmrC gene is dispensable for resistance to Fe3�. The
pmrA mutant exhibits hypersusceptibility to killing by Fe3�, but
the targets of PmrA regulation that are responsible for Fe3�

resistance have remained unknown (48). Thus, we tested the
�pmrC1 and pbgP �pmrC1 mutants for Fe3� sensitivity and
found that they retained wild-type levels of resistance to Fe3�

(data not shown), suggesting that the pmrC gene is not re-
quired for this property.

PmrC is an inner membrane protein with a large periplas-
mic domain. The PSORT-B subcellular localization program

FIG. 3. (A) Polymyxin B killing assay of wild-type (14028s),
�pmrC1.1 (EG14590), �pmrC1.1/vector (EG14656), �pmrC1.1/ppmrC
(EG14595), and pmrA (EG7139) strains grown to logarithmic phase in
N-minimal medium, pH 5.8, with 10 �M MgCl2. Polymyxin B was
added to a final concentration of 10 �g/ml, and the bacteria were
incubated for 1 h at 37°C. The samples were diluted in PBS and plated
on LB agar plates to determine the numbers of CFU. Survival values
given are relative to those of PBS-treated samples. The �pmrC1.1
(EG14590) and �pmrC1.1/vector (EG14656) strains were significantly
more sensitive to polymyxin B than was the wild-type (14028s) strain
(P  0.01). The complemented strain �pmrC1.1/ppmrC (EG14595)
was significantly more resistant to polymyxin B than were strains
�pmrC1.1 (EG14590) and �pmrC1.1/vector (EG14656) (P  0.01).
(B) Polymyxin B killing assay of wild-type (14028s), �pmrC1
(EG13927), pbgP (EG9241), pbgP �pmrC1 (EG14372), and pmrA
(EG7139) strains grown and tested as described above, except that

polymyxin B was added at final concentrations of 1 and 5 �g/ml. The
difference in the polymyxin B (1 �g/ml) susceptibilities of strains pbgP
�pmrC1 (EG14372) and pmrA (EG7139) was not statistically signifi-
cant (P � 0.7), indicating that the pbgP and pmrC loci mediate PmrA-
controlled polymyxin B resistance. (C) Polymyxin B killing assay of
wild-type (14028s), pmrA505 (EG9492), pmrA505 �pmrC1.1
(EG14368), pmrA505 pbgP (EG9868), pmrA505 pbgP �pmrC1.1
(EG14369), and pmrA (EG7139) strains grown and tested as described
for panel A, except that polymyxin B was added at 1, 5, and 20 �g/ml.
Note the logarithmic scale (a linear scale is used in the insets) on the
y axis. The data correspond to mean values from three independent
sets of experiments performed in duplicate. The data demonstrate that
the inactivation of the pmrC gene increases the susceptibility of cells to
polymyxin B and that a pbgP �pmrC1 double mutant exhibits the same
level of polymyxin B susceptibility as the pmrA null mutant.
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(www.psort.org/psortb/index.html) predicted an inner mem-
brane location for the PmrC protein. Thus, to examine the
subcellular location of the PmrC protein, we conducted a
Western blot analysis of inner and outer membrane prepara-
tions from a �pmrC1.1 derivative expressing a C-terminal
FLAG-tagged PmrC protein from the pmrC promoter. The
PmrC protein localized to the inner membrane (Fig. 5A),
which makes physiological sense because that is where the
largest pool of phosphatidylethanolamine in the bacterial cell
is located, and phosphatidylethanolamine is the donor of phos-
phoethanolamine in E. coli (19) and Salmonella (Yixin Shi and
Eduardo A. Groisman, unpublished results).

An analysis of the PmrC protein by the TMpred program
(www.ch.embnet.org/software/TMPRED_form.html) suggested
the presence of five to six transmembrane domains in the
N-terminal region that could mediate membrane association
(Fig. 5B) and of a C-terminal region that could be responsible
for the predicted phosphoethanolamine transferase activity.
The five-transmembrane-domain model predicts that amino
acids 1 to 176 mediate membrane association and that the
C-terminal 371 amino acids are located in the periplasm. On
the other hand, the six-transmembrane-domain model predicts

that amino acids 1 to 291 mediate membrane association and
that the remaining C-terminal region of the PmrC protein is in
the cytoplasm.

To investigate the topology of the PmrC protein, we evalu-
ated the �-galactosidase and alkaline phosphatase activities of
a Salmonella strain with a deletion of the phoN gene and
harboring plasmids with in-frame lacZ or phoA fusions to the
3� end of the pmrC gene truncated at different positions. These
fusions were predicted to generate chimeric proteins with
LacZ or PhoA immediately after the predicted fourth, fifth,
and sixth transmembrane domains of PmrC (Fig. 5C). (The use
a phoN mutant facilitated the detection of alkaline phospha-
tase activity, which can be obscured by the phoN-encoded
nonspecific acid phosphatase.) We detected alkaline phospha-
tase activity in the strains expressing the PhoA chimera har-
boring the N-terminal 181 and 295 residues of PmrC but not in
that expressing a chimera harboring the N-terminal 150 resi-
dues (Fig. 5C). Consistent with these results, the strains ex-
pressing the LacZ chimera harboring the N-terminal 181 and
295 residues of PmrC produced no �-galactosidase activity,
whereas the strain with LacZ fused to the N-terminal 150
residues did (Fig. 5C). These results suggest that the PmrC
protein harbors five transmembrane domains that are followed
by a large periplasmic region.

DISCUSSION

The PmrA/PmrB two-component regulatory system has
been implicated in the modification of the 1 and 4� positions of
lipid A with aminoarabinose and phosphoethanolamine (52).
The synthesis of aminoarabinose is mediated by the PmrA-
activated ugd gene and pbgP operon (43), which are necessary
for resistance to polymyxin B. We have now established that
the PmrA-activated pmrC gene is necessary for the phospho-
ethanolamine modification of lipid A (Fig. 2) and for resis-
tance to polymyxin B (Fig. 3).

The PmrC protein exhibits sequence identity with two Neis-
seria proteins that are implicated in the incorporation of phos-
phoethanolamine into lipid A and the core region of the LPS
(5, 28). There is a higher degree of sequence identity between
the Salmonella PmrC and Neisseria LptA proteins in the C-
terminal region, possibly reflecting the fact that both of these
proteins are necessary for the modification of lipid A with
phosphoethanolamine (Fig. 2) (5). A search of the conserved
domain database (http://www.ncbi.nlm.nih.gov/Structure/cdd
/wrpsb.cgi), using the C-terminal region (amino acids 177 to
547) of PmrC as a query, retrieved the catalytic domains of the
phosphoglycerol transferase and sulfatase families. This makes
sense because phosphoglycerol transferase uses phosphatidyl-
glycerol as a donor of phosphoglycerol in E. coli (22) and
because phosphatidylglycerol and phosphatidylethanolamine
are structurally similar. Moreover, a sulfatase catalyzes the
hydrolysis of a sulfate group, which is similar in size to a
phosphate group (31P versus 32S). Interestingly, the sulfatase is
closely related to the sulfotransferases of mycobacteria in
terms of substrate binding, i.e., binding of a sulfate group (31),
which incorporate a sulfate group into the glycopeptidolipid
(4), the equivalent of the LPS in gram-negative bacteria. Cu-
mulatively, our results suggest that PmrC is a phosphoethano-

FIG. 4. Lipid A species profiles for the pmrA505 (EG9492) (A),
pmrA505 pbgP �pmrC1.1 (EG14369) (B), pbgP �pmrC1 (EG14372)
(C), and pmrA (EG7139) (D) strains grown to logarithmic phase in
N-minimal medium, pH 5.8, with 10 �M MgCl2, and analyzed by
negative-ion-mode MALDI-TOF mass spectrometry. These profiles
show that the pbgP �pmrC1 and pmrA505 pbgP �pmrC1.1 mutants
have the same lipid A profile as the pmrA null mutant.
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lamine transferase that uses phosphatidylethanolamine as a
donor of phosphoethanolamine.

The PmrC protein localizes to the inner membrane (Fig. 5A)
and appears to have two distinct domains. The N-terminal
176-amino-acid domain harbors several stretches of hydropho-
bic amino acids that may constitute transmembrane segments
(Fig. 5B) and likely mediates the membrane association of the
PmrC protein. The alkaline phosphatase and �-galactosidase
activities displayed by strains expressing different chimeric
PmrC proteins suggest that the C-terminal 370-amino-acid do-

main is present in the periplasmic side of the inner membrane
(Fig. 5C). The location and topology of the PmrC protein
would allow it to catalyze the incorporation of phosphoethano-
lamine into lipid A by using phosphatidylethanolamine (19),
the most abundant phospholipid in E. coli (34) and Salmonella
(Shi and Groisman, unpublished results), as a substrate.

Mutants in the regulatory protein PmrA that are resistant to
polymyxin B exhibit increased levels of aminoarabinose and
phosphoethanolamine in lipid A (20). We have now estab-
lished that both of these PmrA-controlled modifications are

FIG. 5. (A) Western blot analysis of inner and outer membranes prepared from the �pmrC1.1 strain containing either the pBAC108L vector
(EG14656) or the ppmrCFLAG plasmid (EG14592), which carries a pmrC gene directed by its own promoter and expresses a PmrC protein tagged
with a FLAG epitope at its C terminus. Bacteria were grown to the logarithmic phase in N-minimal medium, pH 7.7, with 10 �M MgCl2. Inner
and outer membranes were prepared by sucrose density gradient centrifugation. Twenty micrograms of protein from the inner and outer
membranes was boiled for 10 min, run in an SDS–10% polyacrylamide gel, transferred onto a nitrocellulose membrane, and developed by using
anti-FLAG antibodies. To examine the purity of the membrane preparations, we determined the NADH oxidase activity by measuring the
oxidation of NADH at 340 nm, and these values are expressed as follows: 100 
 �mol of substrate oxidized/min/mg of protein. The analysis
demonstrates that the PmrC protein localizes to the inner membrane. (B) Kyte-Doolittle hydropathy plot (25) of the PmrC protein generated by
DNA Strider 1.3 software. (C) The left panel shows the predicted topology of the PmrC protein. The numbers correspond to the positions in the
PmrC protein at which in-frame fusions were generated to the PhoA and LacZ proteins. The right panel shows alkaline phosphatase and
�-galactosidase activities displayed by the phoN strain (EG14286) harboring plasmids pPmrC150-lacZ�, pPmrC150-phoA�, pPmrC181-lacZ�, pP-
mrC181-phoA�, pPmrC295-lacZ�, and pPmrC295-phoA� when streaked onto LB agar plates containing either XP (40 �g/ml) or X-Gal (40 �g/ml).
These data suggest that the C-terminal region (amino acids 177 to 547) of PmrC localizes to the periplasm.
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required for polymyxin B resistance, as a pbgP �pmrC1 double
mutant is as susceptible to polymyxin B as a pmrA null mutant
(Fig. 3B) and has a lipid A profile that is identical to that of a
pmrA null mutant, lacking both aminoarabinose and phospho-
ethanolamine (Fig. 4). This is true even when the pbgP and
pmrC genes are mutated in the hyperactive pmrA505 genetic
background (Fig. 3C and 4). While the pmrA null mutant is
�10,000-fold more susceptible to polymyxin B than the wild-
type strain, we were surprised to find that this is more than the
sum of the susceptibilities displayed by mutants defective in
pbgP or pmrC (Fig. 3B). This suggests that when Salmonella
lacks the ability to perform a particular type of lipid A modi-
fication, a different type of modification may be enhanced.
Indeed, phosphoethanolamine-modified lipid A accumulates
to higher levels in a pbgP (pmrF) mutant of E. coli than in the
wild-type strain (52). Taken together, these results establish
that the PmrA-controlled phosphoethanolamine modification
of lipid A is essential for full resistance to polymyxin B.

It has been hypothesized that two promoters mediate the
transcription of the pmrA and pmrB genes: a PmrA-activated
promoter located upstream of the pmrC gene in the pmrCAB
operon and a constitutive promoter located within the pmrC
open reading frame. Whereas the PmrA-regulated promoter
has been defined by S1 mapping experiments (47), evidence for
the constitutive promoter is based on the ability of a 346-bp
fragment from the pmrC coding region to promote transcrip-
tion from a plasmid-linked promoterless reporter gene (14)
and the fact that pmrC-lac fusions generated with the MudJ
transposon near the 3� end, but within the pmrC coding region,
exhibit normal PmrA-dependent transcription (41). We have
now provided genetic evidence for the presence of a promoter
within the pmrC gene by establishing that the deletion of the
complete pmrC open reading frame abolished PmrA-mediated
transcription, whereas a strain retaining 360 bp at the 3� of the
pmrC gene exhibited normal PmrA-controlled transcription
(Fig. 1B). As described for the PhoP/PhoQ two-component
regulatory system (42), this constitutive promoter may provide
the basal levels of PmrA and PmrB proteins that are required
in order to respond to environmental changes.

Finally, the availability of strains that are specifically defec-
tive in the phosphoethanolamine modification of lipid A makes
it possible to examine the role that this modification plays in
resistance to other antimicrobial peptides and in potential in-
terference with signaling by host cells.
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