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Yersinia enterocolitica biovar 1B contains two type III secretion systems (TTSSs), the plasmid-encoded
Ysc-Yop system and the chromosomally encoded Ysa-Ysp system. Proteins secreted from the Ysa TTSS (Ysps)
have only been detected in vitro when cells are cultured at 26°C in a high-NaCl medium. However, the exact
role of the Ysa TTSS is unclear. Thus, investigations into the regulation of this system may help elucidate the
role of the Ysps during the life cycle of Y. enterocolitica. Here we present evidence that the AraC-like regulator
YsaE acts together with the chaperone SycB to regulate transcription of the sycByspBCDA operon, a phenom-
enon similar to that seen in the closely related Salmonella SPI-1 and Shigella flexneri Mxi-Spa-Ipa TTSSs.
Deletion of either sycB or ysaE results in a twofold reduction in the activity of a sycB-lacZ fusion compared to
the wild type. In a reconstituted Escherichia coli system, transcription of sycB was activated sixfold only when
both YsaE and SycB were present, demonstrating that they are necessary for activation. ysrR and ysrS are
located near the ysa genes and encode a putative two-component regulatory system. Mutations in either gene
indicated that both YsrR and YsrS were required for secretion of Ysps. In addition, transcription from
sycB-lacZ and ysaE-lacZ fusions was decreased 6.5- and 25-fold, respectively, in the ysrS mutant compared to
the wild type. Furthermore, in the absence of NaCl, the activity of ysaE-lacZ was reduced 25-fold in the wild-type
and �ysrS strains, indicating that YsrS is probably required for the salt-dependent expression of the ysa locus.
These results suggest that the putative two-component system YsrRS may be a key element in the regulatory
cascade for the Ysa TTSS.

The genus Yersinia has three species that are pathogenic to
humans. Y. pestis is the causative agent of bubonic and pneu-
monic plagues, and Y. enterocolitica and Y. pseudotuberculosis
primarily cause gastroenteritis. Most prevalent of the yersiniae
in humans, the Y. enterocolitica infection is usually self-limiting
to the gastrointestinal tract and mesenteric lymph node, caus-
ing gastroenteritis and lymphadenitis (12). However, in immu-
nocompromised individuals, Y. enterocolitica can become sys-
temic, and it has a 50% mortality rate in such cases (12).

Consumption of contaminated food or water is the primary
source of Y. enterocolitica infection. Ingested bacteria are ca-
pable of surviving the gastric barrier and then migrate to the
terminal ileum, where they attach to and subsequently invade
the M cells that overlie the Peyer’s patches (9, 25). Once inside
the Peyer’s patches, the bacteria replicate to high titers and can
then disseminate to the mesenteric lymph nodes, spleen, and
other organs, resulting in systemic disease (6, 8, 42, 51). The
ability of Yersinia spp. to survive and replicate within the host
is linked to the presence of a large virulence plasmid (43). This
plasmid carries genes encoding the Ysc type III secretion ap-
paratus as well as translocators, regulators, and effector pro-
teins (Yops). At 26°C, the optimal growth temperature for
Yersinia spp. outside the host, several copies of the secretion
apparatus, called injectisomes, are detectable on the surface of
the bacterium (37). At 37°C, in response to contact with target
cells (in vivo) or to loss of Ca2� ions (in vitro), the Yops are

secreted. The functions of several Yops have been identified;
these include translocation of effector Yops into host cells,
impairment of phagocytosis, and downregulation of the host’s
inflammatory response (reviewed in reference 10).

While the virulence plasmid is necessary for full virulence, it
is not sufficient, and several chromosomal genes have been
identified as being important for the progression of disease.
The genes encoding invasin, the primary invasion factor for Y.
enterocolitica and Y. pseudotuberculosis, and its regulator,
RovA, are located on the chromosome (26, 39, 40, 44). The
highly virulent strains of biotype 1B have a high-pathogenicity
island that contains genes involved in iron uptake (7). In ad-
dition, several genes have been identified through various
means as having a role in virulence, but their functions are not
yet understood (reviewed in reference 45).

Recently, a chromosomally encoded type III secretion sys-
tem (TTSS) was discovered in Y. enterocolitica and designated
Ysa, for Yersinia secretion apparatus (23). This system is only
present in a subset of Y. enterocolitica strains, the highly viru-
lent biotype 1B strains (serotypes O:4, O:8, O:13, and O:21)
(19). A recent phylogenetic analysis of TTSSs revealed that the
Ysa system is closely related to the Salmonella SPI-1 and Shi-
gella flexneri Mxi/Spa TTSSs (19). Interestingly, there is a TTSS
on the chromosome of Y. pestis, but it is more closely related to
the Salmonella SPI-2 TTSS, indicating that the chromosomal
TTSSs of Y. enterocolitica and Y. pestis were acquired after
divergence of the species (19).

Several proteins, referred to as Ysps (Yersinia secreted pro-
teins), can be detected in the supernatants of cultures grown at
26°C in the presence of high NaCl concentrations (20, 23). No
proteins were detected when genes encoding putative Ysa ap-
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paratus components were disrupted or when cultures were
grown at 37°C (20, 23, 55). Analysis by 50% lethal dose of a
strain carrying a mutation in a putative apparatus gene, ysaV,
showed no attenuation by intraperitoneal injection. However,
by an oral route it was attenuated 10-fold, suggesting that the
Ysa TTSS played a role in the early stages of infection (23).
Seven Ysps have been identified to date. Three were identified
as YopE, YopN, and YopP, which are encoded by the viru-
lence plasmid (20, 54). The amounts of these Yops secreted
under Ysa secretion conditions are significantly less than under
Yop secretion conditions, and the relevance of their secretion
is not understood. However, YopP, secreted only through the
Ysa TTSS, was able to suppress the production of tumor ne-
crosis factor alpha by infected macrophages (54). The other
identified Ysps are encoded by the yspBCDA genes just down-
stream of the ysa apparatus genes (20). YspB, YspC, and YspD
are homologous to proteins involved in translocation, but
YspA is a unique protein (20). In addition, SycB has been
demonstrated to function as a chaperone for YspB (20).

While a number of the proteins secreted by the Ysa TTSS
have been identified and the functions for many genes in the
locus have been inferred based on homology, nothing is known
about the regulation of this system other than a requirement
for growth at 26°C in high NaCl concentrations (23). The
closely related Salmonella SPI-1 and S. flexneri Mxi/Spa TTSSs
have an interesting regulation system that has not been ob-
served in other TTSSs: each utilizes an AraC-like regulator
and a chaperone to regulate the transcription of genes encod-
ing secreted effectors (14, 15, 34). In Salmonella spp., it has
been shown that InvF (AraC-like regulator) and SicA (chap-
erone) interact, and this interaction is likely to be required for
the transcriptional activation because InvF alone can bind
DNA but not activate transcription (15). The ysa locus has
homologs of InvF and SicA, designated YsaE and SycB, re-
spectively, and the genetic organization of these and surround-
ing genes is very similar (Fig. 1). Transcription of the TTS
apparatus genes is regulated by HilA in Salmonella spp. (3, 31)
and by VirB in S. flexneri (4), both of which are themselves
regulated by various environmental conditions (reviewed in
references 17 and 32). It appears that HilA and VirB serve as

the focal point for transmitting the environmental signals that
lead to expression of these type III secretion systems and their
effectors. These regulators do not show any homology to each
other, and no homologue of either protein exists in Y. entero-
colitica. Therefore, identifying regulators upstream of the Ysa
system is of interest and may facilitate an understanding of the
role of the Ysa TTSS.

In this work, we investigated the transcriptional regulation
of the ysa and ysp genes. We show that the AraC-like protein,
YsaE, and chaperone, SycB, are both required to activate
transcription of the sycByspBCDA operon, a phenomenon sim-
ilar to that seen in Salmonella spp. and S. flexneri (13–15, 27,
34). In addition, we show that YsrS, the putative sensor protein
of a two-component system, is required for expression of the
ysaE promoter and that this activation is NaCl dependent.
These results indicate that the putative two-component system
YsrRS may be a key component in the regulatory cascade for
the Ysa secretion apparatus.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains and plasmids
used in this work are listed in Table 1 and described in detail below. Overnight
cultures were typically grown in Luria broth (LB) (170 mM NaCl; Difco) at 26°C
for Y. enterocolitica or 37°C for Escherichia coli, unless otherwise stated. For
examination of secreted proteins, cultures were grown overnight in L-broth (1%
tryptone, 0.5% yeast extract; referred to hereafter as LB-0) and subcultured into
L-broth containing 290 mM NaCl (referred to hereafter as LB-290). Antibiotics
were added as needed at the following concentrations: ampicillin, 100 �g/ml;
kanamycin, 100 �g/ml; nalidixic acid, 20 �g/ml; chloramphenicol, 12.5 �g/ml;
spectinomycin, 50 �g/ml; streptomycin, 50 �g/ml; and tetracycline, 7.5 �g/ml.
5-Bromo-4-chloro-3-indolyl-�-D-galactopyranoside (X-Gal) was added to a final
concentration of 40 �g/ml.

Construction of plasmids. The plasmids used to generate in-frame deletion
mutants of sycB, ysrR, ysaE, and ysrS were constructed as follows. Primers sycB-
delA and -delB were used to amplify a �500-bp region containing a few N-
terminal codons and upstream sequence. This fragment was digested with SalI
and BamHI and cloned into the same sites of pSR47S. Primers sycB-delC and
-delD were used to generate a similarly sized fragment containing a few C-
terminal codons and additional downstream sequence. This product was digested
with BamHI and NotI and cloned into those sites of pSR47S containing the
upstream fragment, resulting in plasmid pKW10. Plasmid pKW16 was con-
structed in an identical fashion with primer pairs ysrR-delA/delB and ysrR-delC/
delD.

The PCR products generated with ysaE-delA/delB and ysaE-delC/delD were

FIG. 1. Organization of the ysa operon. Black arrows indicate putative apparatus genes, gray arrows indicate genes encoding regulators, and
white arrows indicate genes encoding secreted proteins. Speckled genes and those labeled with numbers are unique. Open reading frames 8 and
9/10 are believed to encode proteins that are part of the TTSS apparatus (19) and are therefore colored black. sycB and sicA have dual functions
as chaperone and regulator. Dotted lines indicate homologous genes between the two systems (only a portion of SPI-1 is shown). The intergenic
region between ysaU and sycB is 96 bp; the analogous region in SPI-1 (spaS to sicA) is 137 bp. No terminator structure was predicted to exist in
a 300-bp region that includes the ysaU-sycB intergenic region with Mfold (http://www.bioinfo.rpi.edu/applications/mfold/).
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TABLE 1. Strains and plasmids used in this work

Strain or plasmid Relevant genotype Reference or
source

E. coli
DH5� F�� 80�lacZM15 �(lacZYA-argF)U169 deoP recA1 endA1 hsdR17 (rK

� mK
�) Invitrogen

S17-1	pir Tpr Strr recA thi pro hsdR hsdM� RP4::2-Tc::Mu::Km Tn7 	pir lysogen 39
CC118	pir araD139 �(ara leu)7697 �lacX74 phoA20 galE galK thi rpsE rpoB argE(Am) recA1 	pir lysogen 24
VM1264 CC118	pir carrying pRW50, pWKS130, pHG329 This work
VM1265 CC118	pir carrying pKW21, pKW22, pKW23 This work
VM1266 CC118	pir carrying pKW21, pWKS130, pKW23 This work
VM1267 CC118	pir carrying pKW21, pKW22, pHG329 This work
VM1272 CC118	pir carrying pKW21, pWKS130, pHG329 This work

Y. enterocoliticaa

JB580v 8081v (r� m� Nalr) 28
JB580c JB580v cured of pYVe8081 Lab strain
YVM1063 JB580c carrying pKW22 This work
YVM1064 JB580c carrying pWKS130 This work
YVM886 JB580v ysaC::pEP185.2 This work
YVM932 JB580v �ysaE This work
YVM981 JB580v �sycB This work
YVM997 JB580v �ysaE �sycB This work
YVM969 JB580v �ysrS This work
YVM1006 JB580v �ysrR This work
YVM917 YVM886c This work
YVM971 YVM932c This work
YVM1025 YVM971 carrying pKW22 This work
YVM1042 YVM971 carrying pWKS130 This work
YVM996 YVM981c This work
YVM1035 YVM996 carrying pKW28 This work
YVM1052 YVM996 carrying pKW27 This work
YVM972 YVM969c This work
YVM1081 YVM972 carrying pKW31 This work
YVM1043 YVM972 carrying pWKS130 This work
YVM1089 YVM1006c This work
YVM1102 YVM1089 carrying pKW24 This work
YVM1103 YVM1089 carrying pWKS130 This work
YVM987 JB580v sycB-lacZYA This work
YVM988 YVM981 sycB-lacZYA This work
YVM989 YVM932 sycB-lacZYA This work
YVM1002 YVM997 sycB-lacZYA This work
YVM990 YVM969 sycB-lacZYA This work
YVM1054 YVM988 carrying pKW28 This work
YVM1054 YVM988 carrying pKW27 This work
YVM1019 YVM989 carrying pKW22 This work
YVM1044 YVM989 carrying pWKS130 This work
YVM1093 YVM1002 carrying pKW28 This work
YVM1094 YVM1002 carrying pKW27 This work
YVM1020 YVM1002 carrying pKW22 This work
YVM1045 YVM1002 carrying pWKS130 This work
YVM1062 YVM1002 carrying pKW28 and pKW22 This work
YVM1087 YVM1002 carrying pKW27 and pWKS130 This work
YVM1073 YVM990 carrying pKW31 This work
YVM1056 YVM990 carrying pWKS130 This work
YVM1061 YVM990 carrying pKW28 and pKW22 This work
YVM1060 YVM990 carrying pKW27 and pWKS130 This work
YVM1074 YVM995 carrying pKW31 This work
YVM1057 YVM995 carrying pWKS130 This work
YVM925 JB580v ysaE-lacZYA This work
YVM970 YVM932 ysaE-lacZYA This work
YVM995 YVM969 ysaE-lacZYA This work

Plasmids
pRW50 Tetr; low-copy-number transcriptional reporter vector 30
pSR47S Kanr; MobRP4 oriR6K, cloning vector 36
pWKS130 Kanr; low-copy-number cloning vector 52
pHG329 Ampr; medium-copy-number cloning vector 48
pEP185.2 Cmr; MobRP4 oriR6K, cloning vector 28
pGEX-6P-1 Ampr; cloning vector for generation of GST fusion proteins Amersham
pKN8 Cmr; MobRP4 oriR6K, transcriptional reporter vector 18
pKW27 Cmr Strr Spr; pACYC184 with Str/Sp cassette This work

Continued on following page
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digested with ClaI and BglII and with BglII and XbaI, respectively. They were
sequentially cloned into pEP185.2, generating pKW4. The SalI-NotI fragment
from pKW4, which contained the ysaE inserts, was subcloned into pSR47S to
make pKW6. PCR products generated with ysrS-delA/delB and ysrS-delC/delD
were digested with KpnI and XbaI and with XbaI and SacI, respectively, and
sequentially cloned into pEP185.2 to make pKW3. Primers ysrS-delA and ysrS-
delD were used to amplify the ysrS inserts from pKW3, and the product was
cloned into pCR2.1 TOPO. The SalI-NotI fragment from this plasmid was then
subcloned into pSR47S, generating pKW7. Following ligation, each plasmid was
transformed into E. coli strain S17-1	pir by electroporation. All constructs were
confirmed by restriction digestion and sequenced to ensure that no errors were
generated during amplification.

For generating a disruption in the ysaC gene, an internal region containing
approximately 500 bp of the ysaC gene was amplified with primers ysaC-F1 and
ysaC-R1 (Table 2) and cloned into the pCR2.1-TOPO vector (Invitrogen). The
KpnI-XhoI fragment was cleaved out of that plasmid and cloned into the same
sites of pEP185.2, resulting in pSAH1. This plasmid was transformed into E. coli
strain S17-1	pir by electroporation and confirmed by restriction digestion.

Transcriptional lacZ fusions were constructed by cloning putative promoter
regions into pKN8 (18). For the ysaE and sycB promoters, approximately 300 bp
of promoter sequence and 250 bp of coding sequence were amplified, digested
with XbaI and BglII, and cloned into those sites of pKN8, resulting in plasmids
pKW5 and pKW11, respectively. The plasmids were transformed into S17-1	pir
by electroporation, confirmed by restriction digestion, and sequenced to ensure
that no errors were generated during amplification. Plasmid pKW21 was made by
digesting a PCR-generated fragment of the sycB promoter region with EcoRI
and BamHI and ligating it into the same sites of pRW50. The ligated plasmid was
transformed into E. coli strain DH5�, confirmed by restriction digestion, and
sequenced. The primer sequences and pairs used for these constructs are listed
in Tables 2 and 3, respectively.

Two plasmids carrying the sycB coding region were constructed. In the first,
primers sycB-FP3 and -RP2 were used to amplify the sycB gene and promoter
region. The product was digested with EcoRI and HindIII, cloned into those sites
of pHG329, and transformed into DH5�, giving pKW23. The second PCR
product, generated with primers sycB-FP1 and -RP2, was digested with BglII and
HindIII and cloned into those sites in pKW27, giving pKW28. Plasmid pKW27
is pACYC184 with a streptomycin-spectinomycin resistance cassette from
p34-Sm (16) cloned into the BamHI site; the tetracycline resistance cassette was
disrupted by this insertion. The ysaE-complementing clone was made by digest-
ing a PCR product from primers ysaE-delA and -delD with SalI and NotI and
cloning it into those sites of pWKS130 to give pKW22. The ysrR-complementing
clone was made by digesting a PCR product from primers ysrR-delA and -RP1
with SalI and KpnI and cloning it into those sites of pWKS130 to give pKW24.
For the ysrS-complementing clone, a PCR product generated by primers ysrS-
OEF1 and -RP3 was digested with SalI and NotI and cloned into those sites of
pWKS130 to give pKW31. All plasmids were transformed into DH5� by elec-
troporation, confirmed by restriction digestion, and sequenced to ensure that no
errors occurred during amplification. Primer sequences and pairs used for these
constructs are given in Tables 2 and 3, respectively.

Primers yspC 1.1 and yspC 2.2 (Table 2) were used to amplify the entire coding

sequence of YspC. The PCR product was digested with SalI and NotI and cloned
into the same sites of pGEX-6P-1 (Amersham). The resulting plasmid, pYW2,
encodes a glutathione S-transferase (GST)-YspC fusion protein.

Strain construction. (i) In-frame deletions. Strains YVM969, YVM932,
YVM981, and YVM1006 containing chromosomal in-frame deletions in ysrS,
ysaE, sycB, and ysrR, respectively, were made by conjugation as follows. Equal
volumes of saturated cultures of E. coli carrying the desired plasmid (pKW6, -7,
-10, or -16) and Y. enterocolitica JB580v were mixed, plated on LB agar, and
allowed to incubate at 26°C overnight. The resulting lawn of cells was scraped
into 1 ml of 1
 PBS, diluted 1:100, and plated on LB agar plates containing

TABLE 1—Continued

Strain or plasmid Relevant genotype Reference or
source

pKW6 ysrS lacking codons for amino acids 196–589 cloned into pSR47S This work
pKW7 ysaE lacking codons for amino acids 91–178 cloned into pSR47S This work
pKW10 sycB lacking codons for amino acids 68–140 cloned into pSR47S This work
pKW16 ysrR lacking codons for amino acids 25–207 cloned into pSR47S This work
pSAH1 ysaC codons 240–447 cloned into pEP185.2 This work
pKW11 sycB promoter region cloned into pKN8 This work
pKW5 ysaE promoter region cloned into pKN8 This work
pKW21 sycB promoter region cloned into pRW50 This work
pKW22 (pYsaE) ysaE coding sequence and promoter cloned into pWKS130 This work
pKW23 sycB coding sequence and promoter cloned into pHG329 This work
pKW24 (pYsrR) ysrR coding sequence and promoter cloned into pWKS130 This work
pKW28 (pSycB) sycB coding sequence and promoter cloned into pKW27 This work
pKW31 (pYsrS) ysrS coding sequence cloned into pWKS130 This work
pYW2 yspC coding sequence cloned into pGEX-6P-1 This work

a The suffix v denotes strains carrying the pYVe8081 virulence plasmid, and the suffix c denotes strains that have been cured of this plasmid as described in the text.

TABLE 2. Primers used in this work

Primer Sequencea (5�33�)

ysaC-F1 GGGTGAACCGACGATCGAA
ysaC-R1 CAAGTTTGCCCGAGTTGTCA
ysaE-delA CCATCGATCGATTCGATGGCTACCCGCTTTGAG
ysaE-delB GAAGATCTTGCAGCATCAATCGTTGCGAGAGTTTCG
ysaE-delC GAAGATCTGGCGTCTCTGCGGCCTACTTCAGGC
ysaE-delD GCTCTAGACGGCTTCTCCAGCCGTTCAGCGACG
ysaE-FP1 GCTCTAGACGATTCGATGGCTACCCGCTTTGAG
ysaE-FP4 CGGGATCCGATTCGATGGCTACCCGCTTTGAG
ysaE-RP2 CCCAAGCTTATGCAGCATCAATCGTTGCGAGAG
sycB-delA ACGCGTCGACGGCTGGTACGCGTTGAGCTGG
sycB-delB CGGGATCCGCGAAAGAACGTTTCGGCTTC
sycB-delC CGGGATCCGGGAGTGATGATTTGGAGTTG
sycB-delD ATAAGAATGCGGCCGCGCCAACGACCCCATCAACG

ATG
sycB-FP1 GCTCTAGACCGGTAGCACGGCAGCTATGGCGG
sycB-RP1 GAAGATCTGCTGATAAACAGCTGCCAACCCC
sycB-FP2 CGGAATTCCCGGTAGCACGGCAGCTATGGCGG
sycB-FP3 CCCAAGCTTCCGGTAGCACGGCAGCTATGGCGG
ysrS-delA GGGGTACCTCACCGCAAGAGCTGG
ysrS-delB GCTCTAGACGCAGCTTCAGCCTGCCG
ysrS-delC GCTCTAGACCTGCTGCGGCTCGTGGG
ysrS-delD GCGAGCTCACGGGCGCGCTGCGCATC
ysrS-OEF1 GCGTCGACGGGCTTACTTCAAACACTGATTTC
ysrS-RP3 ATAAGAATGCGGCCGCTCAGTCATGTTCTTTTTCCTT

AG
ysrR-de1A ACGCGTCGACGCAGGATAATCCGATGAAATCTCG
ysrR-de1B CGGGATCCCATCAGCGCAAGGCGACTGAAAGG
ysrR-de1C CGGGATCCGTATCGAACACGAAAACGCGTGCC
ysrR-de1D ATAAGAATGCGGCCGCGCTTGGTAAACCACTCAATC

AGCG
ysrR-RP1 GGGGTACCTGGCCTCGGCAGCATAAACAGCCG
yspC-1.1 ACGCGTCGACTCATGACCACTATTCAACAAGCCACG

CAC
yspC-2.2 ATATTGAATGCGGCCGCTTAACCCTTAACAATGGCC

TGATTG
KW114 TAGCACGGCAGCTATGGC
KW115 AGCTGATAAACAGCTGCCAAC

a Restriction enzyme sites are underlined.
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nalidixic acid to select against E. coli and kanamycin to select against Y. entero-
colitica lacking the plasmid. Replication of pSR47S requires the pir protein; all Y.
enterocolitica strains used lack pir, and thus survivors would have undergone
site-specific recombination. Several transconjugants were streaked onto LB agar
plates containing nalidixic acid and 5% sucrose for selection of colonies that had
undergone a second recombination step and lost the vector. Cells retaining a
functional sacB gene should not grow in the presence of sucrose. Several of these
colonies were then screened for kanamycin sensitivity, of which 10 to 20 were
picked for confirmation of the in-frame deletion by colony PCR (see below).

To ensure that recombination occurred in the proper location, strains selected
for experiments were analyzed by Southern blotting. Strains used for analysis of
Ysa-dependent secretion were subsequently cured of the virulence plasmid by
inoculation on LB agar containing 20 mM MgCl2 and 20 mM NaC2O4 and grown
at 37°C. Loss of the virulence plasmid was verified by visualization of plasmid
DNA preparations on 0.8% agarose gels. The test strains were always compared
to plasmid preparations from JB580v and JB580c, which served as positive and
negative controls, respectively. The cured strains of YVM969, YVM932,
YVM981, and YVM1006 are designated YVM972, YVM971, YVM996, and
YVM1089, respectively.

(ii) Plasmid integrations. Strain YVM886 was generated by conjugating
pSAH1 into JB580v as described above but with selection on LB agar containing
nalidixic acid and chloramphenicol. Proper insertion of the plasmid was con-
firmed by Southern blotting. YVM886 was then cured of pYVe8081 as described
above to yield YVM917. Strains carrying chromosomal promoter-lacZ fusions
were constructed by conjugating either pKW5 or pKW11 into the desired Y.
enterocolitica strain, followed by selection on LB agar containing nalidixic acid
and chloramphenicol, giving YVM925 and YVM987, respectively. Because of
the region that was cloned, merodiploid strains were generated by the recombi-
nation event. Proper integration of the plasmid was confirmed by Southern
blotting prior to analysis. These strains were not subsequently cured of
pYVe8081.

(iii) Plasmid transformation. For Y. enterocolitica, the strain to be transformed
was inoculated into LB broth containing 1% glucose and grown overnight.
Approximately 500 �l of the saturated culture was washed twice with an equal
volume of ice-cold distilled H2O and resuspended in 40 �l of 10% glycerol; 1 to
2 �l of plasmid DNA was added to the cells and electroporated by standard
procedures. Ten percent of the recovered culture was plated on LB agar with
appropriate antibiotics. When two plasmids were needed, both were transformed
simultaneously. For E. coli strains VM1265, VM1266, VM1267, and VM1272,
electrocompetent CC118 	pir cells were simultaneously transformed with all
three desired plasmids. Ten percent of the recovered culture was plated on LB
agar with appropriate antibiotics.

PCR and DNA sequencing. Standard methods for PCR were conducted under
the conditions specified by the supplier with either Pfu polymerase (Stratagene,
La Jolla, Calif.) or Taq polymerase (Qiagen, Valencia, Calif.). Colony PCR was
performed in a standard reaction in 50 �l. A single colony was resuspended in 50
�l of distilled H2O and vortexed, and 5 �l was used as the template. A 5-min
incubation at 95°C preceded the cycling reactions to ensure cell lysis. DNA
sequencing was performed with the Big Dye termination cycle sequencing ready
reaction system under the conditions specified by the supplier (PE Applied
Biosystems, Foster City, Calif.). Reactions were analyzed at the Protein and
Nucleic Acid Chemistry Laboratory at the Washington University School of
Medicine.

�-Galactosidase assays. Saturated cultures grown overnight in LB-0 were
diluted into fresh LB-290 to an initial optical density at 600 nm (OD600) of 0.2

and grown for 4 h at 26°C on a roller drum. Antibiotics were added as necessary
to retain plasmids. Assays were performed as described before (38).

Total RNA extraction and RT-PCR. A saturated culture of JB580v grown
overnight in LB-0 was diluted into fresh LB-290 to an initial OD600 of 0.2 and
grown for 4 h at 26°C on a roller drum. RNAprotect bacterial reagent (Qiagen)
was added to the cell sample as described by the manufacturer. The cells were
collected by centrifugation, and total RNA was extracted with the MasterPure
RNA extraction kit from Epicenter. DNA was removed from 20 �g of sample
with DNA-free (Ambion) following the manufacturer’s protocol. For cDNA
synthesis, 2 �g of RNA was used as a template with 200 U of Superscript III as
described by the supplier (Invitrogen). PCR was performed with the cDNA
synthesis products as the template with primers KW114 and KW115 (Table 2)
and Taq polymerase (Qiagen) in a 50-�l reaction volume. For controls, PCR was
performed without cDNA template as well as with genomic DNA to show the
expected size of the product generated with these primers. One fifth of the
reaction was separated on a 1.2% agarose gel and stained with ethidium bro-
mide.

Preparation of secreted proteins, SDS-PAGE, and Western blot analysis.
Extracellular proteins were collected as described before (55). Briefly, saturated
cultures grown in LB-0 were diluted into fresh LB-290 to an initial OD600 of 0.2
and grown for 6 h at 26°C on a roller drum. The longer culture time for protein
preparations than for expression studies was chosen because the preparations
were cleaner, making detection of individual bands easier. Antibiotics were
added as necessary to retain plasmids. The cells were removed from 4.5 ml of
culture by centrifugation in microcentrifuge tubes for 1 min at 13,000 rpm. The
supernatant was centrifuged a second time, followed by passage through a
0.22-�m syringe filter. Ice-cold trichloroacetic acid was added to a final concen-
tration of 10% (vol/vol) and incubated on ice for 10 to 20 min. The samples were
centrifuged at 4°C for 10 min at 13,000 rpm, washed once with ice-cold acetone,
and resuspended in 1 M Tris-HCl, pH 9.0. The proteins were boiled for 5 min in
1
 sample buffer (46), and OD600 equivalents were loaded onto sodium dodecyl
sulfate (SDS)-polyacrylamide gels. Proteins were visualized by staining with
silver nitrate (Bio-Rad) or transferred to nitrocellulose for Western analysis with
a Bio-Rad Trans-Blot SD semidry transfer apparatus as specified by the supplier.
Blots were blocked in 1
 phosphate-buffered saline (PBS) with 0.1% Tween 20
and 5% skim milk (PBST-milk) for 1 h at room temperature. Primary antibody
directed against YspC was diluted 1:1,000 in PBST-milk and allowed to react
overnight at 4°C. The membranes were washed several times with PBST-milk
and then incubated with goat anti-rabbit immunoglobulin G-horseradish perox-
idase at 1:25,000 in PBST-milk for 1 h at room temperature. The membranes
were washed again in PBST-milk, and proteins were detected by chemilumines-
cence (ECL; Amersham).

To generate the anti-YspC antibody, a GST-YspC fusion protein was purified
from E. coli carrying pYW2 with the bulk GST purification module as specified
by the supplier (Amersham). Approximately 1 mg of GST-YspC was sent to
Covance Research Products for immunization of a New Zealand White rabbit.

RESULTS

Regulation of the sycB-yspBCDA operon. The organization
of the ysa-syc-ysp genes in Yersinia spp. is quite similar to that
in Salmonella. SPI-1 and to a lesser degree to the S. flexneri
mxi-spa-ipa genes. Given that both the Salmonella and Shigella
systems employ an AraC-like regulator (InvF and MxiE, re-
spectively) and a TTSS chaperone (SicA and IpgC, respec-
tively) to regulate the expression of genes encoding secreted
proteins, it was of interest to investigate if the analogous pro-
teins, YsaE and SycB, functioned similarly in the Ysa system.
To test this hypothesis, in-frame deletions of ysaE and sycB
were constructed, and the strains were examined for their
ability to secrete proteins after growth in L-broth with 290 mM
NaCl (LB-290). Both strains showed a loss of most protein
bands (Fig. 2A). This indicates that YsaE and SycB are re-
quired for wild-type levels of secretion.

Western blots probed with anti-YspC antibody, which rec-
ognizes the secreted protein YspC, showed that secretion was
restored when the wild-type gene was provided in trans, dem-
onstrating that the reduced secretion was due to the loss of the

TABLE 3. Primer pairs used for transcriptional fusions and
complementing clones

Gene Plasmid 5� primer 3� primer Region
amplified (bp)a

ysaE pKW5 ysaE-FP1 ysaE-de1B �291 to �249
sycB pKW11 sycB-FP1 sycB-RP1 �311 to �264
sycB pKW21 sycB-FP2 sycB-de1B �311 to �200
sycB pKW23 sycB-FP3 sycB-RP2 �311 to �574
sycB pKW28 sycB-FP1 sycB-RP2 �311 to �574
ysaE pKW22 ysaE-de1A ysaE-de1D �291 to �963
ysrS pKW31 ysrS-OEF1 ysrS-RP3 �31 to �2376
ysrR pKW24 ysrR-de1A ysrR-RP1 �476 to �772

a Base pairs amplified relative to the putative start codon (�1).

4060 WALKER AND MILLER J. BACTERIOL.



deleted gene (Fig. 2B). Curiously, the complemented �ysaE
strain consistently appeared to secrete less YspC than the
wild-type strain. The presence of kanamycin in the medium did
not significantly impair the growth of the cultures (not shown).
However, the antibiotic (or plasmid carriage) may somehow
interfere with secretion or precipitation of Ysps, since the
wild-type strain carrying pWKS130 or pKW22 secreted less
YspC than the strain without either plasmid (Fig. 2B). A sim-
ilar phenomenon was observed with the sycB-complementing
clone (not shown).

In related TTSSs, InvF/SicA and MxiE/IpgC act by stimu-
lating the transcription of genes encoding secreted proteins
(13–15, 27, 34). To test the hypothesis that YsaE and SycB
were acting as transcriptional regulators, a sycB-lacZ fusion
was introduced into the �sycB and �ysaE strains, and �-galac-
tosidase activities were determined. The activity of the sycB
promoter decreased about twofold in the �ysaE and �sycB
strains, suggesting that both proteins play a role in the tran-
scription of the sycByspBCDA operon (Table 4). The ysaE and
sycB mutants could be fully complemented for sycB expression

when the respective wild-type gene was provided on a plasmid;
strains carrying the vector alone showed no change in activity
from the mutants. A similar twofold reduction in transcription
was observed in the ysaE sycB double mutant, and activity of
sycB-lacZ was only restored when both ysaE and sycB were
provided in trans. Promoter activity in each of the comple-
mented strains was much higher than in the wild type, indicat-
ing that YsaE or SycB may be limiting in the wild type under
the conditions examined. Expression in the wild-type strain
carrying plasmid pSycB, pYsaE, or both was also increased, but
no difference was observed with the vectors (not shown). The
observed effects of SycB and YsaE were independent of genes
encoded by the virulence plasmid. Loss of the virulence plas-
mid had no effect on sycB-lacZ transcription in a wild-type
strain (not shown).

The possibility existed that transcription initiating at the
ysaE promoter may also transcribe the sycByspBCDA genes, as
is thought to be the case in SPI-1 (13). If this is so, then the
decrease in transcription of the sycB promoter observed in the
�ysaE and �sycB strains may not be an accurate measure of the
contribution of these two proteins on transcription initiating at
the sycB promoter. To determine if a transcript existed that
initiated upstream of ysaU, RT-PCR was used to amplify a
region that encompassed the ysaU-sycB intergenic region. A
product was detected only when genomic DNA or cDNA was
added to the reaction, but not from reactions containing no
template or template from a cDNA synthesis reaction lacking
reverse transcriptase (Fig. 3). These data demonstrate that
transcription of sycByspBCDA genes can indeed initiate at a
promoter upstream of ysaU and contributes to the transcrip-
tion of this operon.

In order to analyze the effects of SycB and YsaE on sycB-
lacZ expression without the contributions from the upstream
promoter, a plasmid-based system was reconstituted in E. coli.
Transcription from sycB-lacZ was at background levels if only

FIG. 2. Strains lacking sycB or ysaE do not secrete Ysps. Proteins
were precipitated from culture supernatants and separated by SDS–
10% polyacrylamide gel electrophoresis as described in the text.
(A) Silver-stained gel showing loss of Ysps from the culture superna-
tants of �sycB and �ysaE strains. �ysaC carries a disruption in the ysaC
gene and is thought to have a defective apparatus. The culture equiv-
alent of 2 OD units was loaded in each lane. (B) Complementation of
the mutant strains as determined by Western blotting with anti-YspC
antibody. YspC is indicated by the arrow. The culture equivalent of 1
OD unit was loaded in each lane.

TABLE 4. Regulation of sycB promoter by SycB and YsaE

Relevant
phenotype Strain Plasmida

Mean �-
galactosidase

activity (Miller
units)b � SD

SycB�, YsaE� YVM987 None 512 � 58

SycB�, YsaE� YVM988 None 282 � 33
YVM1054 pSycB 2,851 � 426
YVM1055 pKW27 295 � 4

SycB�, YsaE� YVM989 None 297 � 13
YVM1019 pYsaE 1,784 � 286
YVM1044 pWKS130 263 � 9

SycB�, YsaE� YVM1002 None 331 � 26
YVM1093 pSycB 267 � 20
YVM1094 pKW27 232 � 12
YVM1020 pYsaE 279 � 3
YVM1045 pWKS130 292 � 23
YVM1062 pSycB, pYsaE 3,867 � 132
YVM1087 pKW27, pWKS130 297 � 52

a Plasmid pSycB is pKW28, and pYsaE is pKW22; pKW27 is the vector for
pSycB, and pWSK130 is the vector for pYsaE.

b Miller units represent the mean of at least three independent assays with
standard deviations.
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SycB or YsaE was present (Table 5). However, when both
YsaE and SycB were present, the sycB promoter was activated
about sixfold. This suggests that both proteins are necessary
and probably sufficient to stimulate transcription from the sycB
promoter, although we cannot exclude the existence of addi-
tional regulators.

Furthermore, these data, combined with the RT-PCR data,
indicate that at least two promoters are transcribing the
sycByspBCDA genes.

Regulation of the ysa operon. Since Y. enterocolitica does not
appear to have a homologue to known key regulators of the
SPI-1 and Mxi-Spa TTSSs, there is no obvious regulator for the
expression of the ysa genes. However, proximal to the ysa locus
are two genes that encode a putative two-component regula-
tory system, ysrR and ysrS (23) (Fig. 1). These genes are closely
related to the rcsB and rcsC genes, respectively, which encode
a two-component regulatory system that regulates gene tran-
scription in a number of enteric organisms, often in response to

osmotic shock (2, 47). YsrS is the putative hybrid sensor com-
ponent and has regions similar to the conserved His- and
Asp-containing domains of sensor proteins but, like RcsC,
lacks the conserved His residue in the phosphotransfer (HPt)
domain. YsrR has regions similar to the Asp-containing re-
ceiver domain and a putative helix-turn-helix DNA binding
domain. To see if YsrRS is involved in regulating the ysa genes,
in-frame deletions were constructed in the ysrS and ysrR genes.
Examination of proteins in culture supernatants after growth
in LB-290 indicated that both the �ysrS and �ysrR strains were
defective in the secretion of all of the Ysps (Fig. 4A). These
mutant phenotypes could be complemented by providing the
wild-type gene in trans, indicating that the loss of secretion was
due to the absence of functional YsrR or YsrS (Fig. 4B).

To determine if the defect in Ysp secretion observed in the
�ysrS and �ysrR strains was due to decreased transcription, the
activity of the ysaE-lacZ and sycB-lacZ fusions was examined in
the �ysrS strain. The �-galactosidase activities of the sycB and
ysaE promoters were down 6.5- and 25-fold, respectively, com-

FIG. 3. Transcription of sycB originates at a promoter upstream of
ysaU. (A) Schematic of the ysa locus encompassing the sycB promoter
region. The approximate locations of primers KW114 and KW115 are
indicated. (B) RT-PCR was performed with primers KW114 and
KW115 and cDNA generated from 2 �g of total RNA that was isolated
from JB580v as described in the text; 20% of the reaction was loaded
on a 1.2% agarose gel and stained with ethidium bromide. Templates
for the PCR are listed above each lane and were as follows: gDNA,
genomic DNA; �RT, products from cDNA synthesis reaction with
Superscript III added; no RT, products from cDNA synthesis reaction
with no Superscript III; nt, no DNA or cDNA added.

TABLE 5. YsaE and SycB are sufficient to activate the sycB
promoter in E. coli CC118 	pir

Strain
Plasmida Mean �-

galactosidase
activity (Miller
units)b � SDsycB-lacZ YsaE SycB

VM1265 � � � 57.8 � 2
VM1266 � � � 9.9 � 0
VM1267 � � � 9.1 � 1
VM1272 � � � 10.0 � 1

a Plasmid constructs are as follows: sycB-lacZ, pKW21; YsaE, pKW22; SycB,
pKW23; �, presence of construct; �, vector only.

b Miller units represent the mean of at least three independent assays with
standard deviations.

FIG. 4. Strains lacking ysrS or ysrR do not secrete Ysps. Proteins
were precipitated from culture supernatants and separated by SDS–
10% polyacrylamide gel electrophoresis as described in the text.
(A) Silver-stained gel showing the loss of all Ysps from the culture
supernatants of the �ysrS and �ysrR strains. The culture equivalent of
2 OD units was loaded in each lane. (B) Complementation of the
mutant strains as determined by Western blotting with anti-YspC an-
tibody. YspC is indicated by the arrow. The culture equivalent of 1 OD
unit was loaded in each lane.
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pared to the wild-type strain, indicating that YsrS is required
for full activity of both promoters (Table 6). Addition of ysrS in
trans restored promoter activity, demonstrating that the ob-
served decrease was indeed due to loss of ysrS; no change in
activity was observed in strains carrying the vector. However,
the YsrS regulatory pathway could be acting indirectly at the
sycB promoter by activating expression of the upstream ysaE
promoter and thus production of YsaE and SycB. To deter-
mine if the reduced sycB-lacZ activity resulted from a direct
loss of activation at the sycB promoter, the �ysrS strain was
transformed with pSycB and pYsaE. If the ysrS defect can be
overcome by expressing ysaE and sycB in trans, this would
suggest that the YsrRS system acts indirectly at the sycB pro-
moter. Indeed, the activity of the sycB-lacZ fusion was restored
in the �ysrS strain carrying pYsaE and pSycB, indicating that
the observed decrease in activity at this promoter in the �ysrS
strain is probably a downstream effect from the loss of activa-
tion at the ysaE promoter.

Regulation by YsrS requires NaCl. Because the function of
sensor proteins is generally to detect environmental cues and
secretion of Ysps is only observed when cells are cultured in
high NaCl, we hypothesized that YsrS responds to the NaCl in
the growth medium. To test the idea that YsrS senses NaCl,
wild-type and �ysrS strains containing the ysaE-lacZ fusion
were grown in LB-0 and LB-290 and assayed for �-galactosi-
dase activity (Table 7). In LB-0, �-galactosidase activity in the
wild-type strain was the same as in the �ysrS strain. In addition,
no induction by NaCl was observed in the �ysrS strain, yet the
wild-type strain showed 25-fold induction. Furthermore, induc-
tion of ysaE by NaCl could be restored in the �ysrS strain by
providing ysrS in trans. This revealed that, in the absence of
YsrS or in the absence of NaCl, there is no activation of the
ysaE promoter.

To confirm that YsrS was required for the NaCl-dependent
activation, the ysaE-lacZ fusion was similarly tested in the
�ysaE strain. Consistent with previous studies on InvF (22),
loss of YsaE did not lead to a significant reduction in activity
of its own promoter when cultured in LB-290. Loss of SycB
also did not affect the expression of ysaE-lacZ (not shown).
However, just as in the wild-type strain, activity from the ysaE
promoter was reduced when it was cultured in LB-0. This
indicates that the NaCl-dependent activation of the ysa operon
requires YsrS but not YsaE. This effect could be a response to
changes in osmolarity rather than a specific NaCl-dependent
effect, but this has not been fully explored.

Intriguingly, the growth rate of the �ysrS and �ysrR strains
was slightly but reproducibly faster than that of the wild-type
strain when grown in LB-290. Doubling times for the �ysrS and
�ysrR strains was typically about 10 min faster than for the wild
type (�83 min for the �ysrS and �ysrR strains and �93 min for
the wild type). This increased doubling time was not observed
for these strains grown in LB-0, nor was it observed for the
�ysaE or �ysaC strains grown in LB-290, indicating that it is
specific to the �ysrS and �ysrR strains when cultured in the
presence of NaCl. This also suggests that it is not related to the
secretion of Ysps.

DISCUSSION

In this work, we showed that the AraC-like regulator YsaE
and the chaperone SycB are involved in the regulation of a
subset of the Ysps. Further examination of this phenomenon
showed that the sycByspBCDA operon is transcriptionally reg-
ulated by YsaE and SycB. Loss of either activator resulted in a
reduction in sycB-lacZ activity in Y. enterocolitica. Similarly, a
reconstituted system in E. coli showed a sixfold activation of
sycB-lacZ only in the presence of both regulators. These data
indicate that YsaE and SycB are necessary and likely sufficient
to activate transcription from this promoter, although the ex-
istence of additional regulators cannot be excluded. The in-
creased activation observed in the isolated E. coli system com-
pared to that observed in Y. enterocolitica is probably a
consequence of transcription of sycByspBCDA initiating at the
upstream promoter (ysaE) that is not subject to regulation by
YsaE and SycB. This is also probably the case in Salmonella
SPI-1, where transcription of the sicAsipBCDA genes can occur
through initiation at an upstream promoter (possibly the invF
promoter), as well as at the sicA promoter (13).

A similar mechanism of type III effector gene regulation by
MxiE and IpgC exists in S. flexneri. Here, it is not the translo-

TABLE 6. Regulation by YsrS in Y. enterocolitica

Relevant phenotype Plasmida Strain �-Galactosidase activity
with sycB-lacZb Strain �-Galactosidase activity

with ysaE-lacZb

YsrS� None YVM987 512 � 58 YVM925 398 � 6
YsrS� None YVM990 78 � 3 YVM995 16 � 1

pYsrS YVM1073 3,770 � 369 YVM1074 1,688 � 70
pWKS130 YVM1056 75 � 5 YVM1057 16 � 1
pSycB, pYsaE YVM1061 1,622 � 251 ND
pKW27, pWKS130 YVM1060 41 � 2 ND

a Plasmid pYsrS is pKW31, pSycB is pKW28, and pYsaE is pKW22. pKW27 is the vector for pSycB, and pWSK130 is the vector for pYsaE and pYsrS.
b Values are expressed as Miller units and represent the mean of at least three independent assays with standard deviations. ND, not determined.

TABLE 7. Regulation of the ysaE promoter by YsrS requires NaCl

Relevant
phenotype Strain Plasmida

�-Galactosidase activityb (% of
wild-type level) with:

290 mM
NaCl

0 mM
NaCl

YsrS� YVM925 None 398 � 6 (100) 16 � 1 (4)
YsrS� YVM995 None 16 � 1 (4) 20 � 2 (5)

YVM1074 pYsrS 1,688 � 70 (425) 30 � 7 (7)
YsaE� YVM970 None 309 � 13 (78) 16 � 1 (4)

a pYsrS is pKW31.
b Values are expressed as Miller units and represent the mean of at least three

independent assays with standard deviations. Percent activity for each promoter
relative to the wild-type strain grown in 290 mM NaCl is shown in parentheses.
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cator operon that is affected but a set of proteins whose secre-
tion is only observed under conditions of active secretion (27,
34). By incrementally overexpressing IpgC, Mavris et al.
showed that the expression of these proteins increased as the
concentration of IpgC increased (34). The authors concluded
that the level of free IpgC, which would be found when its
cognate proteins had been secreted, is the signal that leads to
increased transcription of the secreted proteins. This report
marks the third example of an AraC-like regulator acting with
a type III chaperone to stimulate transcription of secreted
proteins. Thus, it is likely that this is a conserved mechanism by
which the cell monitors its secretion state and links it to tran-
scriptional regulation.

The mechanism(s) behind this activation is not well under-
stood. It has been shown that InvF can bind DNA in the
absence of SicA, but SicA by itself does not bind DNA (15).
The DNA binding sites for InvF and MxiE have been identified
and are strikingly similar; in the center of each site, there is a
T-rich region (15, 35), which may facilitate bending of the
DNA by the protein. These promoters also lack an obvious
�35 consensus sequence. In the region thought to contain the
sycB promoter, a T-rich region is in roughly the same location
as in the InvF- and MxiE-regulated genes, and there is no
definable �35 region. However, much work remains to deter-
mine if this is indeed a YsaE binding site.

Many bacteria, both gram-negative and gram-positive, use

two-component regulatory systems to regulate virulence genes.
For example, RcsBC is required for the expression of capsule
genes in E. coli (49), Erwinia amylovora (5), and Klebsiella
pneumoniae (1) as well as Vi antigen expression in Salmonella
enterica serovar Typhi (2). In S. enterica serovar Typhimurium,
the type III secretion systems encoded on both SPI-1 and SPI-2
are regulated by multiple two-component systems (29, 32, 33,
41). In this work, we present data suggesting that expression of
the ysaE promoter requires YsrS and most likely YsrR. YsrS
and YsrR are encoded by genes adjacent to the ysa locus and
comprise a putative two-component regulatory system (19, 23).
Analysis of secreted proteins as well as the lacZ fusion to ysaE
in the ysrS mutant revealed that YsrS is a key component in the
expression of the ysa locus. Loss of YsrS also resulted in lower
sycB promoter activity. However, providing ysaE and sycB in
trans in the �ysrS strain complemented sycB activity. Together,
these results indicate that the ysaE promoter is regulated by
YsrS and also suggests that initiation at ysaE can lead to
transcription of sycByspBCDA. YsrR is also a critical compo-
nent, as an in-frame deletion of ysrR similarly resulted in com-
plete loss of all secreted proteins in culture supernatants. Se-
cretion of Ysps has not been observed in the absence of NaCl
in the culture medium, and stimulation of ysaE transcription by
YsrS requires NaCl. Thus, YsrS may be functioning as an
environmental sensor of NaCl or osmolarity. Furthermore,
since YsrS is probably a membrane-bound protein, it is more

FIG. 5. Model for activation of the ysaE and sycB promoters. YsrS senses NaCl in the culture medium by an unknown mechanism and initiates
a phosphorelay that leads to phosphorylation of YsrR. The activated YsrR then stimulates transcription of the ysaE promoter, either directly or
indirectly. Once sufficient levels of YsaE and SycB have accumulated, they stimulate transcription of the sycB promoter.

4064 WALKER AND MILLER J. BACTERIOL.



likely that the actual transcriptional regulator is YsrR; how-
ever, this has yet to be experimentally tested.

BLAST searches with YsrS revealed homology to RcsC in E.
coli and other enteric bacteria. While much of the similarity
was limited to the conserved domains, YsrS is also similar to
RcsC in that they both lack a histidine phosphotransferase
(HPt) domain. This domain contains the second His site that
transfers the phosphate to the Asp residue on the response
regulator (53). In E. coli, the HPt-containing protein YojN has
been identified as the intermediate between RcsC and RcsB
(50). Interestingly, YojN lacks the other necessary His and Asp
residues typically found in sensors, suggesting that the only
functional domain is the HPt (50). Another example of a third
partner in phosphorelay is with the LuxN-LuxU-LuxO system
in Vibrio harveyi. LuxN lacks an HPt domain, while LuxU
contains the appropriate His residue (21). There are several
open reading frames that contain HPt domains within the Y.
enterocolitica genome, suggesting that such an intermediate
protein providing this domain for the YsrS-YsrR phosphorelay
does indeed exist. YsrR has homology to a number of response
regulators, including RcsB. However, most of the conserved
residues are in the LuxR-type helix-turn-helix DNA-binding
motif.

Although the activity of YsrR and YsrS appears to require
NaCl, they probably do not have a role in osmoprotection, as
is suggested for the RcsC-YojN-RcsB system (56). This is ev-
idenced by the increased growth rate observed in the �ysrS and
�ysrR strains in the presence of high NaCl concentrations. In
fact, the Y. enterocolitica genome contains genes that are prob-
ably the true RcsBC orthologues, based on amino acid simi-
larity and genetic organization (http://www.sanger.ac.uk
/Projects/Y_enterocolitica/). Thus, YsrRS represent a new and
uncharacterized two-component system. In virulence plasmid-
containing Yersinia strains, growth of the bacterium slows when
Yop secretion is induced (11 and references therein). The
�ysaC strain, which is defective in secretion but not transcrip-
tion, does not display altered growth. Therefore, the faster
growth of the �ysrS and �ysrR strains might be a consequence
of not using metabolic resources for expressing the ysa and ysp
genes.

Based on the results presented here, a schematic model for
Ysa TTSS regulation is proposed in Fig. 5. We hypothesize
that YsrS senses an environmental cue (NaCl), transfers phos-
phate to an HPt-containing intermediate (HPt), which then
transfers the phosphate to YsrR. The activated phospho-YsrR
then stimulates transcription of the ysaE promoter, either di-
rectly or indirectly. Once levels of YsaE and free SycB are
sufficient, they stimulate transcription of the sycB promoter
and possibly others. From the experiments conducted with
InvF and MxiE (15, 35), we can infer that YsaE probably binds
DNA in the absence of SycB. It will be of interest to investigate
if SycB enhances the DNA binding affinity of YsaE, if SycB
makes any contact with the DNA, and if either protein contacts
RNA polymerase. Similar questions arise surrounding the reg-
ulation by YsrRS. It remains to be demonstrated that YsrR
directly regulates promoter activity and if it is indeed involved
in a phosphorylation cascade with YsrS. It also remains to be
demonstrated whether or not YsrS directly senses NaCl and
other environmental cues for activating this system.
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