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Activins and Nodal are members of the transforming growth factor beta

(TGF-b) family of growth factors. Their Smad2/3-dependent signalling path-

way is well known for its implication in the patterning of the embryo after

implantation. Although this pathway is active early on at preimplantation

stages, embryonic phenotypes for loss-of-function mutations of prominent

components of the pathway are not detected before implantation. It is only

fairly recently that an understanding of the role of the Activin/Nodal signal-

ling pathway at these stages has started to emerge, notably from studies

detailing how it controls the expression of target genes in embryonic stem

cells. We review here what is currently known of the TGF-b-related ligands

that determine the activity of Activin/Nodal signalling at preimplantation

stages, and recent advances in the elucidation of the Smad2/3-dependent

mechanisms underlying developmental progression.
1. Introduction
The Smad2/3-dependent Activin/Nodal signalling pathway is known to play

critical roles in the specification of cell identities in embryonic and extra-embryonic

lineages of the postimplantation embryo, notably during processes such as the

establishment of the anterior–posterior and left–right axes [1–5]. It has been

known for a while that Activin/Nodal signalling is active well before implantation,

but the absence of preimplantation defects when components of the pathway are

mutated has delayed our understanding of the actual functions of Activin/Nodal

signalling at these early stages. This dearth of notable phenotypes may reflect (i)

the pathway’s robustness, derived from partial functional redundancies between

some of its components, (ii) the possible rescue of zygotic deficiencies by molecules

of maternal origin, and (iii) the possibility that molecular changes brought about by

the inactivation of the pathway before implantation only become detectable at later

stages. A review of recent and not so recent studies, conducted both in the embryo

and in cultured pluripotent stem cells, allows the relative merits of these alterna-

tives to be assessed, and provides valuable insights into how the Activin/Nodal

signalling pathway is operating at preimplantation stages.
2. The Activin/Nodal signalling pathway
Activins and Nodal are secreted as dimerized precursors, which are then cleaved

to generate an active ligand [6]. Activins are homo or heterodimers of bA or bB

subunits and therefore come in three versions known as Activin A, Activin B and

Activin AB, collectively designated as Activin thereafter. Activin and Nodal have

in common that they signal via receptor complexes containing the same type I

(ALK4 or 7) and type II (ActRIIA or B) serine/threonine kinase receptors, the acti-

vation of which leads to the phosphorylation of the cytoplasmic transducers

Smad2 or Smad3 (figure 1) [7]. Upon phosphorylation, dimers of Smad2/3

form a ternary complex with Smad4 that translocates to the nucleus where it

associates with tissue-specific transcription factors [8,9] to activate the expression

of target genes. How this is achieved has been the focus of intense research

activity in recent years. These studies all emphasize the role in this process of
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Figure 1. The TGF-b signalling pathway in the early mouse embryo. See the text for details. TF, transcription factor.
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chromatin modifiers recruited by Smad complexes and their

cofactors. These advances have been the subject of several

reviews [10–12].

Nodal differs from Activin in that it requires the presence of

an EGF–CFC family co-receptor (Cripto or Cryptic) to be able to

activate the receptor complex. This critical difference results in

Activin and Nodal signals being subjected to distinct regulatory

interactions. Among the targets of Smad2/3 signalling are Nodal
itself, which can therefore amplify its own expression, and the

Lefty1 and Lefty2 genes, which encode Nodal antagonists thus

placing Nodal expression under the control of a powerful nega-

tive feedback mechanism that will limit how long and how far it

can signal [13]. Lefty1,2 are also transforming growth factor beta

(TGF-b) family members. They inhibit Nodal signalling by

interacting with Nodal or with Cripto. Because Activin signals

in a Cripto-independent fashion, it is not sensitive to inhibition

by Lefty [14]. Activin is however antagonized by another

secreted molecule, called Follistatin. There is also evidence

that Cripto can inhibit signalling from Activin, TGF-b and

Myostatin, which have in common to signal via Smad2/3 with-

out requiring an EGF–CFC co-receptor to interact with their

receptor complex [15–18].

Other TGF-b-related ligands are known to modulate

Activin/Nodal signalling. Bone morphogenetic protein (BMP)

signals are transduced via the Smad1/5/8 branch of TGF-b sig-

nalling. There are now two well-characterized instances where

BMP/Smad1,5,8 signalling ensures the proper developmental

outcome by countering Activin/Nodal/Smad2/3 signalling

via competition for a limited pool of Smad4 or for a shared
receptor, ActRIIB [19,20]. Gdf1 and Gdf3, two other TGF-b

family members, were found to bind the same receptor complex

as Nodal, with the same requirement for an EGF–CFC co-recep-

tor [21]. They are, however, unable to activate the Smad2/3

pathway on their own at physiological concentrations [22–25].

Instead, they seem to act as heterodimers, either to increase

the range or strength of Nodal signalling when combined

with Nodal, or to inhibit BMP signalling when combined

with Bmp4 [22,24–26]. Further interactions between the two

signalling pathways involve the inhibitory Smads, Smad6 and

Smad7, which are themselves targets of Smad signalling

and act either as general inhibitors of Smad-mediated signalling

(Smad7), or inhibit more specifically the BMP pathway (Smad6)

[27]. Smads can also integrate the input of FGF/RTK signalling,

via MAPK-mediated phosphorylation, which can, for example,

promote Smad1 degradation, and reduce BMP signal trans-

duction [12,28]. Further information on how Smads integrate

input from other signalling pathways can be found in other

reviews [7,10,29].
3. Phenotypes of Activin/Nodal signalling
pathway mutants

At first glance, genetics seems to offer little support to the

notion that Activin/Nodal signalling plays an important

role at preimplantation stages. Loss-of-function mutations

for components of the Activin/Nodal signalling pathway

(reviewed in [4,13] and summarized in table 1) result in a



Table 1. Mutant phenotypes of genes encoding components of the Activin/Nodal signalling pathway. AVE, anterior visceral endoderm; DVE, distal visceral
endoderm; Epi, epiblast; ExE, extraembryonic ectoderm; LR, left – right axis; ME, mesendoderm; PS, primitive streak; VE, visceral endoderm.

gene mutant phenotype references

Nodal small size; premature Epi differentiation (neuralization);

no DVE; defective ExE; no PS; no ME

Conlon et al. [30], with Iannaccone et al. [31], Camus et al. [32],

Mesnard et al. [33], Brennan et al. [34] and Lowe et al. [35]

Activin A get born, die within 24 h; craniofacial defects Matzuk et al. [36]

Activin B get born; maternal Activin B not essential; defective eyelid and

female reproduction

Vassalli et al. [37]

Activin A, B additive phenotype; no new defect; no functional redundancy Matzuk et al. [36]

Alk4 resembles Nodal2/2 small; defective from E5.5; reduced ME Gu et al. [38]

Alk7 no phenotype even when combined with Alk4 or Nodal mutation Jornvall et al. [39]

ActRIIA get born; craniofacial and reproductive defects; PS defects Matzuk et al. [36] and Song et al. [40]

ActRIIB get born; LR defects (right isomerism) Oh et al. [41]

ActRIIA, B resembles Nodal2/2; small; no PS and ME; demonstrates

partial redundancy

Song et al. [40]

Cripto form DVE but no AVE; reduced ME Ding et al. [42] and Xu et al. [43]

Cryptic LR defects (right isomerism and heterotaxia) Gaio et al. [44] and Yan et al. [45]

Cripto, Cryptic resembles Nodal2/2; defects in Epi, ExE and AVE Chu et al. [46]

Gdf1 LR defects (resembles Cryptic2/2) Rankin et al. [47] and Andersson et al. [48]

Gdf3 AVE defects; ME defects Chen et al. [49]

FoxH1 no anterior PS and its derivatives Hoodless et al. [50]

Smad2 Epi converted into ExE; no AVE; early patterning defects Waldrip et al. [51], Heyer et al. [52] and Brennan et al. [34]

Smad3 get born; subtle developmental anomalies Zhu et al. [53], Datto et al. [54] and Yang et al. [55]

Smad2/3 resembles Smad42/2; very small; fail to gastrulate

and lack ME

Dunn et al. [56]

Smad4 very small; fail to gastrulate Sirard et al. [57]
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range of phenotypes that broadly fall in three groups: in the

first, homozygotes get born, and display either craniofacial

defects that lead them to an early death, or milder defects

or an absence of defects that let them reach adulthood (Acti-

vin A, Activin B, Alk7, Smad3); in the second, homozygotes

have primitive streak and/or left–right axis defects, which

are sometimes mild enough to allow them to develop to

term (Gdf1, ActRIIA, ActRIIB, Cryptic); in the third, homozy-

gotes have early patterning defects and fail to gastrulate

normally (Nodal, Gdf3, Alk4, Cripto, Smad2, Smad4). The

Nodal2/2 phenotype is the one that has been most extensively

characterized and therefore provides a convenient standard

for comparison with the other mutant phenotypes in that

last group. In Nodal2/2 embryos, the earliest defects appear

shortly after implantation. They are smaller than littermates

[30,31], and their epiblast, the pluripotent tissue that gives

rise to the embryo proper, differentiates prematurely towards

an anterior neural identity [32,33]. In addition, their visceral

endoderm (VE), the extraembryonic layer that surrounds

both the epiblast and the extraembryonic ectoderm (ExE), is

improperly regionalized and fails notably to differentiate

distal visceral endoderm (DVE) cells [34], which are essential

for the establishment of anterior–posterior polarity. These

embryos do not gastrulate [1,31]. Cripto, Cryptic double

mutant embryos have a phenotype similar to that of Nodal2/2

[46]. Consequently, although there have been suggestions that

Cripto and Cryptic may have Nodal-independent functions,
their compound mutant phenotype is consistent with the

notion that Nodal absolutely requires them to signal. By

contrast, the fact that Smad2,3 double mutant embryos [56], as

well as Smad42/2 embryos [57], are even smaller than

Nodal2/2 embryos suggests that zygotic Nodal may not be the

only ligand capable of activating the Smad2/3 pathway early

on. Consistent with this view, the expression of a reporter

transgene for the autoregulatory Smad2/3-dependent Nodal
enhancer ASE, called ASE–YFP, was found to be maintained

up to embryonic day (E)4.5 in Nodal2/2 embryos [23]. In other

animal models, there is broad evidence of another TGF-b

family member acting upstream of early Nodal expression

[58–62]. Vg1 in Xenopus is the prototype of a maternally depos-

ited TGF-b-related ligand that is required to form the organizer

and the mesoderm [58], and Vg1-related molecules of maternal

origin identified in zebrafish and in sea-urchin appear to have

similar properties [59–61]. Gdf1 and Gdf3 in the mouse are

the two factors identified as Vg-1-related, however, as we saw,

indications are that it is as Nodal partner and BMP antagonist

that they are playing a role in the regulation of Activin/Nodal

signalling and Nodal expression, not as inducers. Better

candidate ligands for the early activation of the Activin/Nodal

signalling pathway may thus be activins, which are present in

the oviduct, uterine epithelia and blastocysts prior to implan-

tation [63–65]. In any case, what the analysis of the earliest

mutant phenotypes indicates is that the Activin/Nodal signal-

ling pathway is not required for the formation of the epiblast
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Figure 2. Expression of TGF-b ligands in the early mouse embryo. Expression
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4. Expression dynamics of transforming growth
factor beta-related ligands and associated
developmental events

After fertilization, the first three rounds of divisions lead the

mouse embryo to the 8-cell stage. Symmetric and asymmetric

divisions then generate inner and outer cells within the

16- and 32-cell stage embryos [66]. At E3.5, during blastocyst

formation, outer cells differentiate into trophoblasts to form

the trophectoderm (TE), an extraembryonic tissue that

encloses inner cell mass (ICM) cells and the blastocoele

cavity. At E4.0, shortly before implantation, the ICM gives

rise to the epiblast and to the primitive endoderm (PrE),

another extraembryonic layer from which the VE will later

derive. Around E4.5, the TE mediates the implantation of

the blastocyst in the uterine wall.

Phosphorylated forms of Smad2/3 are detected in cell

nuclei of mouse embryos from the 4-cell stage onward [67].

Studies of Activin expression in the mouse embryo showed

that there is a stock of maternal Activin present in the egg

that gets depleted during early cleavage stages. Zygotic

expression is detected in the compacted morula (figure 2).

By E3.5, this expression is confined to the ICM of the blasto-

cyst, but at E4.5 it is not detected in the ICM-derived epiblast

and PrE and is instead present in the TE [63,68]. Activin is

also produced by the oviduct and the uterus at these stages

[65], which may explain the lack of an early phenotype in

embryos mutant for the bA and bB subunits [36,37]. An indi-

cation that this Activin of maternal origin does contribute to

embryo development comes from studies showing that clea-

vage stage embryos developed better in vitro when cultured

in the presence of Activin [69,70].

In contrast to this presence of Activin in the embryo from a

very early stage, other TGF-b family members of interest all

see their embryonic expression begin in the ICM of the E3.5

blastocyst, but from there they follow different dynamics.

Nodal expression persists in the epiblast and the PrE when

these tissues segregate [23,71]. It is also detected in the endo-

metrium of pregnant females at E3.5 [72], a potential source

of Nodal of maternal origin to the blastocyst. Lefty1 expression

is detected in a cluster of cells of the PrE when this layer forms

[71,73]. The expression of Bmp4 persists in the epiblast but not

in the PrE when they appear, and is induced in the polar tro-

phectoderm [74]. Gdf3 expression strengthens in the epiblast,

but is not detected in the PrE [23,24,49,71].

The onset of the expression of these genes and their sub-

sequent diverging dynamics mark key transitions in the

development of the epiblast and the PrE, events in which Acti-

vin/Nodal signalling appears to be implicated. Analysis of

Nodal2/2 embryos had revealed their failure to properly differen-

tiate the part of the VE overlying the epiblast just after

implantation and their subsequent failure to form DVE cells

[33,34], thus establishing a requirement for Nodal in the pattern-

ing of this extra-embryonic endodermal layer. Use of a

conditional gene inactivation strategy showed that it is Nodal
expressed in the epiblast that drives the regionalization of this

layer [75]. However, the realization that two Nodal-dependent

DVE markers, Lefty1 and Cerl, had an earlier phase of expression
in a small cluster of PrE cells [71,76], and that Nodal was

expressed in the ICM and in the preimplantation epiblast

[23,71], suggested that the regionalization of the VE had its

origin in earlier events. Lineage-tracing studies indeed showed

that descendants from Lefty1 and Cerl-expressing PrE cells give

rise to the DVE at E5.5, thus possibly placing the specification

of this particular cell identity shortly before implantation

[5,76,77]. For Lefty1, the enhancer driving this early PrE

expression was shown to be dependent on FoxH1, a well-

known effector of Activin/Nodal signalling. Likewise, ASE–

YFP, the Smad2/3-dependent reporter transgene, was found to

be transiently expressed in a subpopulation of PrE cells before

implantation [23]. However, as previously mentioned, this

expression is maintained in Nodal2/2 embryos. So, although evi-

dence shows that the Activin/Nodal signalling pathway is
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implicated in the regionalization of the extraembryonic endoder-

mal layer as soon as the PrE is established, these data indicate

that, at this early stage, it involves a ligand other than zygotic

Nodal, possibly Activin.

There are indications that something similar is taking

place in the epiblast. The epiblast that first emerges from

the ICM, the preimplantation epiblast, is quite different

from that of the egg cylinder, the postimplantation epiblast.

Preimplantation epiblast is composed of apolar cells, post-

implantation epiblast becomes organized in an epithelium

when the proamniotic cavity forms at E5.0. This correlates

with marked changes in the properties of the tissue. Single

preimplantation epiblast cells injected in a host blastocyst

can contribute to all fetal lineages of the resulting chimaera

[78,79], whereas epiblast cells isolated at postimplantation

stages cannot [80]. These differences extend to the distinct

pluripotent stem cell lines derived from the epiblast at these

stages: blastocyst-derived embryonic stem cells (ESCs) can

contribute to all fetal lineages [81], whereas E5.5 to E6.5

embryo-derived epiblast stem cells (EpiSCs) can differentiate

in multiple lineages in vitro but are unable to participate in

the formation of a chimaera when injected in a blastocyst

[82]. Unsurprisingly, the physiology of these cells is also

different. Although ESCs express Nodal and have an active

Activin/Nodal signalling pathway, this is not essential to

their maintenance [67,83]. In contrast, EpiSCs’ capacity to

self-renew depends critically on Activin/Nodal signalling

[82,84]. Inhibition of the pathway in EpiSCs triggers a drastic

downregulation of the pluripotency factor Nanog, which

results in the cells differentiating towards a neural identity

[82,85]. ESCs can be converted into EpiSCs in vitro when cul-

tured in the presence of Activin and FGF, suggesting that the

maturation of the epiblast is dependent on the same signals in
vivo [86]. This differentiation has been described as a tran-

sition from a ground state of pluripotency to a primed state

of pluripotency [81]. The dynamics of certain molecular mar-

kers allow us to visualize the beginning of this process in the

embryo. Nascent epiblast cells maintain Nanog expression as

they emerge from the ICM, but they start to downregulate it,

in a salt and paper fashion, as they approach implantation. At

the same time, the expression of the ASE–YFP transgene gets

activated in epiblast cells with low or no Nanog, so that the

two markers briefly display a somewhat complementary pat-

tern in the epiblast of the implanting blastocyst [23]. Nanog

then disappears while ASE–YFP is found in all epiblast

cells. The observation that the expression of the Smad2/3-

dependent ASE–YFP transgene is still present in the epiblast

of implanting Nodal2/2 embryos suggests that the transition

to a primed state of pluripotency is correctly initiated in

these mutants, and that it involves a TGF-b-related ligand

other than zygotic Nodal. This interpretation is supported

by the fact that Nodal2/2 epiblast cells prematurely differen-

tiate along the neural pathway, just as EpiSCs do when

deprived of Activin/Nodal signalling [32,82,85].
5. Embryonic stem cells as a model to study
early function and regulation of Activin/Nodal
signalling

Studying what happens when ESCs differentiate into EpiSCs

has recently led to important advances in our understanding
of epiblast maturation and of the part Activin/Nodal

signalling is playing in it. Transcriptomic and epigenomic com-

parisons between the two cell types has revealed that a global

rearrangement of enhancer chromatin landscape is taking

place, that leads to a shift in enhancer usage not just for the

few genes found to be differentially expressed, but also for

those that do not see a change in their expression levels

[87,88]. For the latter, enhancers specifically active in ESCs,

which tend to be enriched for DNA binding motifs of

Smad2/3 and Smad4, are decommissioned once their EpiSC-

specific enhancers are activated in differentiating ESCs [88].

A genome-wide characterization of Smad3 binding in different

cell types led to the surprising finding that a small set of cell-

type-specific master transcription factors direct Smad3 to cell-

type-specific binding sites and determines cell-type-specific

responses to TGF-b signalling [8]. Thus, in ESCs, it is with

the pluripotency factor Oct4 that Smad3 co-occupies the

genome. Oct4 is known to act as a pioneer factor at enhancers,

opening up the chromatin to allow other factors to access their

binding sites. Recent studies have shown that the capacity of

ESCs to differentiate is critically dependent on the level of

Oct4 not being too low [89,90], indicating the function of

Oct4 involves more than allowing the establishment of pluripo-

tency, an assessment supported by its extensive relocalization

on the genome during the ESC to EpiSC transition [87].

Other evidence for the implication of Activin/Nodal sig-

nalling during this transition has emerged from particular

examples of the two sets of genes described above, the ones

that are differentially expressed and the ones that are simi-

larly expressed. Gsc, which encodes the transcription factor

and mesendoderm regulator Goosecoid, is a poised gene

whose expression is induced once differentiation is underway

[91]. Work in the Massagué laboratory showed that the stimu-

lation of ESCs with Activin leads to the formation of

companion Smad4–Smad2/3 and TRIM33–Smad2/3 com-

plexes, which are both required to activate Gsc expression.

The repressive histone mark H3K9me3 at the poised promo-

ter of the gene is bound by TRIM33–Smad2/3, which in turn

displaces the chromatin-compacting factor HP1g to make

neighbouring Smad binding elements (SBEs) accessible to

the Smad4–Smad2/3 complex, presumably associated with

FoxH1, and allows PolII recruitment [91]. Smad4 then

promotes further binding of the TRIM33 complex via

chromatin modification, ensuring robust gene expression.

Nodal is expressed in both ESCs and EpiSCs. As both a

target and an inducer of Activin/Nodal signalling, it has

been extensively studied and much is known about its regu-

lation. Recent work led to the identification of a novel Nodal
enhancer called HBE that is a hotspot for the binding of plur-

ipotency factors, and to the characterization of its implication

in the regulatory shift taking place at the Nodal locus. HBE is

the only active Nodal enhancer in ESCs, while it is ASE that is

the most active one in EpiSCs [23,92]. Both enhancers are

dependent on Activin/Nodal signalling, but their activation

relies on pSmad2/3 interacting with distinct transcription fac-

tors: the pluripotency factor Oct4 in the case of HBE (figure 3)

[8,93], and FoxH1 in that of ASE [94]. Deletion of HBE in

ESCs eliminates Nodal expression, confirming that HBE is

essential to the expression of the gene in these cells. Deletion

of HBE in EpiSCs does not affect Nodal expression, which is

consistent with Nodal expression being dependent on ASE

in these cells. However, ESCs carrying an HBE-deleted

allele of Nodal fail to express this allele when induced to
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differentiate into EpiSCs, revealing that the activation of ASE

is dependent on HBE being present when the cells differen-

tiate. Furthermore, HBE deletion results in the repressive

histone mark H3K27me3 accumulating in the vicinity of the

ASE [92]. This suggests that multi-transcription factors

binding loci (MTLs, as the hotspots for the binding of

pluripotency factors are called) may mediate the influence

of the pluripotency gene regulatory network by determining

the status of adjacent regulatory elements and the timing of

their activation. The transition from ESC to EpiSC, from an

HBE-driven phase to an ASE-driven phase, correlates with

a decrease in the expression of master pluripotency factors

known to bind HBE (such as Nanog and Klf4), and an upre-

gulation of Nodal downstream targets [23,82,84]. The

exposure of ESCs to FGF and Activin, and the resulting

surge in Activin/Nodal signalling, triggers a cascade of

events leading them to reach a new equilibrium, which

defines their new identity. The molecular mechanisms under-

lying this transition, notably the role played by physical

interactions between components of the Activin/Nodal sig-

nalling pathway, Smad2/3-associated transcription factors
and chromatin modifiers and specific regulatory sequences,

remain to be elucidated.
6. Conclusions
Current data therefore suggest that Activin/Nodal signalling,

although not required for the formation of the epiblast and

the PrE, plays an essential role in their development and

regionalization as soon as these lineages emerge. Modu-

lations in the activity of Activin/Nodal signalling trigger

changes in gene expression via the recruitment of cell-type

specific Smad2/3 complexes at cognate regulatory sequences,

and the remodelling of adjacent chromatin. Studying the

dynamics and the molecular bases of these events in pluripo-

tent stem cells is bound to further our understanding of the

role of Activin/Nodal signalling in the early mouse embryo.
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2006 Synergistic interaction between Gdf1 and
Nodal during anterior axis development. Dev. Biol.
293, 370 – 381. (doi:10.1016/j.ydbio.2006.02.002)

49. Chen C et al. 2006 The Vg1-related protein Gdf3
acts in a Nodal signaling pathway in the pre-
gastrulation mouse embryo. Development 133,
319 – 329. (doi:10.1242/dev.02210)

50. Hoodless PA, Pye M, Chazaud C, Labbé E, Attisano
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