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Abstract

Interference is said to be present when the exposure or treatment received by one individual may 

affect the outcomes of other individuals. Such interference can arise in settings in which the 

outcomes of the various individuals come about through social interactions. When interference is 

present, causal inference is rendered considerably more complex, and the literature on causal 

inference in the presence of interference has just recently begun to develop. In this paper we 

summarize some of the concepts and results from the existing literature and extend that literature 

in considering new results for finite sample inference, new inverse probability weighting 

estimators in the presence of interference and new causal estimands of interest.

1 Introduction

Interference is said to be present when the exposure or treatment received by one individual 

may affect the outcomes of other individuals. Such interference can arise in settings in 

which the outcomes of the various individuals come about through social interactions 

(Manski, 2000, 2010). Most of the literature on causal inference proceeds by making an 

assumption of "no-interference." For example, Rubin’s formulation of the potential 

outcomes framework an assumption referred to as the "Stable Unit Treatment Value 

Assumption" or "SUTVA" is made which includes within it a no-interference assumption 

(Rubin, 1980). Such no-interference assumptions are employed routinely though not always 

acknowledged. When interference is present, causal inference is rendered considerably more 

complex, and the literature on causal inference in the presence of interference has just 

recently begun to develop (Sobel, 2006; Hong and Raudenbush, 2006; Rosenbaum, 2007; 

Hudgens and Halloran, 2008; Graham, 2008; Manski, 2010). In this paper we hope to both 

summarize some of the concepts and results from the existing literature and to extend that 

literature in considering new results for finite sample inference, new inverse probability 

weighting estimators in the presence of interference and new causal estimands of interest.

The remainder of this paper is organized as follows. In section 2 we present the notation we 

will be using throughout. In section 3 we review notions of direct, indirect (spillover), total 

and overall causal effects of Hudgens and Halloran (2008) that arise when interference is 

present. In section 4 we discuss inference for these effects in randomized trials and present 

new results on variance estimation and finite sample confidence intervals in the presence of 

interference. In section 5 we consider the context of observational studies and present a 

result on inverse probability weighting estimators of causal effects when interference is 

present. In section 6, we discuss varieties of direct and indirect effects present in the causal 

inference literature and comment on the terminological ambiguity concerning the 
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expressions "direct effect" and "indirect effect"; we also introduce a new causal estimand 

that indicates a non-zero "infectiousness effect" in the context of vaccine trials (Datta et al., 

1999). Finally, in section 7, we offer some concluding remarks and directions for future 

research.

2 Preliminaries

2.1 Counterfactuals

As in Hudgens and Halloran (2008), suppose data is observed on N > 1 groups of 

individuals, or blocks of units. For i = 1, …, N let ni denote the number of individuals in 

group i and let Ai ≡ (Ai1, …, Aini) denote the treatments those ni individuals received. 

Throughout, we assume perfect compliance, that is treatment assigned to an individual is 

equivalent to treatment received by the individual. We assume that Aij is a dichotomous 

random variable with support equal to {0, 1}, so that Ai takes values in the set {0, 1}ni. Let 

Ai, −j ≡ (Ai1, … Aini)\Aij ≡ (Ai1, …, Aij−1, Aij+1, … Aini) denote the ni – 1 subvector of Ai 

with the jth entry deleted. Following Hudgens and Halloran (2008) and Sobel (2006), we 

refer to Ai as an intervention, treatment or allocation program, to distinguish it from the 

individual treatment Aij Furthermore, for n = 1, 2, …, we define (n) as the set of vectors of 

possible treatment allocations of length n; for instance  (2) ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}. 

Therefore, Ai takes one of 2ni possible values in (ni), while Ai,−j takes values in  (ni – 

1) for all j. For positive integers n and k, we further define  (n, k) to be the subset of  (n) 

wherein exactly k individuals receive treatment 1, that is every element a of  (n, k) 

satisfies , where 1n is the vector of length n with entries all equal to one.

For each block i, we shall assume there exist counterfactual (potential outcome) data Yi(·) = 

{Yi(ai) : ai ∈ } where Yi(ai) = {Yi1 (ai), …, Yini (ai)}, and Yij (ai) is individual j’s response 

under treatment allocation ai; and that the observed outcome Yij for individual j in block i is 

equal to his counterfactual outcome Yij (Ai) under the realized treatment allocation Ai. The 

notation Yij(ai) makes explicit the possibility for interference between individuals within a 

block, that is, the potential outcome for individual j may depend on another’s individual 

treatment assignment in block j. Also, note that for counterfactuals to remain well defined, 

this notation implicitly assumes that counterfactuals for an individual in block i do not 

depend on treatment assignments of individuals in a different block i′ ≠ i. This encodes the 

assumption of partial interference considered by Sobel (2006) and Hudgens and Halloran 

(2008), which they point out to be particularly appropriate when the observed blocks are 

well separated by space or time such as in some group randomized studies in the social 

sciences, or in some community-randomized vaccine trials. The ordinary no interference 

assumption (Cox, 1958; Rubin, 1980) generally made in the causal inference literature is 

then that for all i and j if ai and  are such that  then , which in turn 

implies that the counterfactual outcomes for individual j in group i can be written as {Yij 

(a) : a = 0, 1}.

Hereafter, we follow the convention in Sobel (2006) and Hudgens and Halloran (2008), and 

suppose that Yi(·) is fixed as it does not depend on the random treatment allocation program 

Ai. In addition to treatment and outcome data, we suppose that we also observe fixed data Li 
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= (Lil, …, Lini), i = 1, … N, where Lij denotes pretreatment covariates for individual i in 

block j; we allow Lij to contain block level covariate along with block aggregates of 

individual level covariates.

2.2 Treatment Assignment in Group Randomized Experiments

In group randomized experiments, treatment allocation is determined by the experimenter; 

therefore the assignment mechanism πi (Ai) of Ai is known. Let πi(Ai; α0) denote an 

experimenter’s particular choice of parametrization for the distribution of Ai indexed by the 

parameter α0, that is πi (Ai) = πi(Ai; α0). In this paper, we consider two types of 

parametrizations.

Definition—(A) A parametrization of type A with parameter ni and K0,i for block i, entails 

a so-called mixed individual group assignment strategy, whereby the treatment program Ai 

in block i is randomly allocated conditional on  with probability 

mass function

(B) A parametrization of type B entails a Bernoulli individual group assignment strategy, 

whereby treatment is randomly assigned to different individuals within block i according to 

the known probability mass function

where 0 < α0 < 1.

For example, two type A treatment assignment strategies α0 and α1 might entail randomly 

assigning half of ni individuals in group i to treatment 1 and the other half to treatment 0 

under a strategy corresponding to α0 versus assigning all individuals in a group to treatment 

zero under the second strategy corresponding to α1. Similarly, two treatment assignment 

strategies  of the second type might assign each individual in a group to treatment 1 

with probability 1/2 under strategy  versus assigning each individual in a group to 

treatment 0 with probability 1/3 under strategy . Sobel (2006) and Hudgens and Halloran 

(2008) considered Type A treatment allocation programs in group randomized trials; in 

Section 5, we show that allocation programs of type (B) play an important conceptual role in 

the Definition and estimation of causal effects in observational studies.

Suppose our goal is to assess the causal effects of assigning groups to α0, compared to α1, 

where α0 and α1 are two individual group assignment strategies of type A. To achieve this 

goal in an experimental study, Hudgens and Halloran (2008) considered the following two-

stage group randomization framework. In the first stage, each of the N groups is randomly 

assigned to either α0 or α1. In the second stage individuals within a group are randomly 
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assigned to treatment conditional on their group’s assignment in the first stage. For instance, 

in the first stage, half of the N groups might be assigned to an allocation strategy α0 while 

the other half is assigned to α1; in the second stage, two-thirds of the individuals within 

groups assigned α0 are randomly assigned to treatment 1, while one-third of the individuals 

within a group assigned to α1 receive treatment 1. Such a design is commonly known as 

split-plot randomization or pseudo-cluster randomization. As Hudgens and Halloran (2008) 

point out, two-stage randomization designs are key to obtaining answers for important 

public health questions in the face of interference, such as: how many cases due to an 

infectious disease will be averted by vaccinating two-thirds of the population compared to 

only vaccinating one-third of the population?

3 Causal Estimands

3.1 Direct Causal Effects

Following Halloran and Struchiner (1995), we define the individual direct causal effect of 

treatment 0 compared to treatment 1 for individual j in group i by:

and the individual average direct causal effect for individual j in group i by

(1)

where for a = 0, 1,

Note that in the above display, and until stated otherwise, πi (·; α0) may either be of Type A 

or B. Thus,  is a difference in individual average counterfactual outcomes when aij 

= 0 and when aij = 1 under α0. This is a marginal causal effect as it is a comparison between 

expected values of the marginal distributions of Yij(Ai,−j, aij = 0) and of Yij(Ai,−j, aij = 1) 

with respect to α0. Finally, we define the group average direct causal effect by 

 and the population average direct causal effect by 

.

3.2 Indirect Causal Effects or"Spillover Effects"

Halloran and Struchiner (1995) also define an individual indirect causal effect as the causal 

effect on an individual of the treatment received by others in the group. Specifically, let 
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 be the individual indirect causal effect on subject j in group i of treatment 

allocation ai compared with  so that:

Sobel (2006) refers to the indirect effect defined above as a"spillover effect." Note that if 

interference is absent then . Similar to direct effects, define the 

individual average indirect causal effect by . Finally, 

define the group average indirect causal effect as  and 

the population average indirect causal effect as .

3.3 Total Causal Effects

Total effects reflect both the direct and the indirect effects of a particular treatment 

assignment on an individual. Following Halloran and Struchiner (1995) we define the 

individual total causal effects for individual j in group i as:

the individual average total causal effect by , the 

group average total causal effect by  and the 

population average total causal effect by .

3.4 Overall Causal Effects

Following Hudgens and Halloran (2008), we define the individual overall causal effect of 

treatment ai compared to treatment  for individual j in group i by

Similarly, define the individual average overall causal effect comparing α0 to α1 by 

, the group average overall causal effect by 

 and the population average overall effect by 

The following simple yet instructive properties describe the relationship between the various 

causal effects:

1. It follows immediately from their Definitions, that total effects at the individual, 

group or population levels can be decomposed as the sum of direct and indirect 
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causal effects at the corresponding level. That is, for example 

 (Hudgens and Halloran, 2008).

2. Total causal effects are not commutative, for instance . 

However 

, 

so that while the total causal effects are not necessarily equal, they are constrained 

in sum to equal the sum of direct effects (Hudgens and Halloran, 2008).

3. If , then 

. In the absence of indirect 

effects, the total effects are commutative if and only if the direct effects are equal 

(Hudgens and Halloran, 2008).

We also have the following decomposition for the overall effect:

4. The group average overall effects are equal to a weighted sum of the group average 

indirect, direct and total effects: 

, where

Under the assumption of no interference between individuals of a group, the individual 

indirect causal effect is equal to zero and therefore individual, group and population average 

causal total effects are equal to the average causal direct effects at the corresponding level. 

Recall that in the absence of interference, the counterfactual outcomes for individual j in 

group i can be written as {Yij (a) : a = 0, 1} and the individual and group average causal 

effect ct become Yij (1) – Yij (0) and  respectively. Furthermore, 

the assumption of no interference implies that the various causal effects do not depend on 

the treatment assignment strategies α0 and α1, whereas in the presence of interference within 

groups, these effects do in general depend on the assignment strategies.

4 Inference in group randomized studies

4.1 Estimation

In this section, we consider the estimation of the following four key causal contrasts, the 

population average direct causal effect , the population average indirect causal 

effect , the population average total causal effect  and the population 

average overall effect . Unbiased estimators of these parameters under a two-

stage randomization scheme were proposed by Hudgens and Halloran (2008) under the 

following assumption:
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Assumption 1—Let S ≡ (S1, …, SN) denote the first stage of randomization group 

assignments with Si = 1 if group i is assigned to α0 and zero if group i is assigned to α1. Let 

η denote the parametrization for the distribution of S and let C = ∑iSi denote the number of 

groups assigned α1. Then, {η, α0, α1} are assumed to be Type A parametrizations.

Suppose Si = 1 and let , also define 

, and 

. Hudgens and Halloran (2008) proposed the 

following estimators:

(2)

(3)

(4)

(5)

which they showed to be unbiased under Assumption 1, i.e.

where the expectation is taken with respect to the joint density of (S,A1, …, AN).

4.2 Variance Estimation

4.2.1 Variance Estimation under Stratified interference—Unbiased estimation of 

the variances of the various estimators of the previous section appears not to be generally 

available without additional assumptions regarding the underlying structure of interference. 

Hudgens and Halloran (2008) illustrate this difficulty by considering the estimation of Var 

(Ŷ (1; α0)|Si=1) under assumption 1 only. They note that the estimator Ŷ (1; α0) is based on 

a single systematic random sample of fixed size Ki from the set of potential outcomes {Yij 
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(ai) : ai ∈  (ni;Ki), zij = 1}. By the non-existence of an unbiased estimator of the variance 

of the sample mean from a single systematic sample, this implies the non-existence of an 

unbiased estimator of Var (Ŷ (1; α0)|Si=1). However, as we show in the next lemma, the 

non-existence of an unbiased estimator of Var (Ŷ (1; α0)|Si=1) does not preclude the 

possibility for simple yet conservative estimation of the latter quantity, as an unbiased 

estimator of an upper bound for the variance is often a useful measure of uncertainty. The 

following lemma gives the result for a nonnegative outcome.

Lemma 1: Suppose that Yij (ai) ≥ 0 for all ai ∈ A(ni;K0,i) and for j = 1, …, ni, and define 

then the following holds under Assumption 1:

The proof of this lemma is given in the appendix.

In contrast with Lemma 1 Hudgens and Halloran (2008) consider variance estimators that 

rely on the following assumption of Stratified interference.

Assumption 2: Stratified interference: For 

Assumption 2 states that ai ↦ Yij (ai) is a function of ai only through (aij, ∑j′≠j aij′), that is 

an individual’s counterfactual outcome only depends on his exposure level aij, and on the 

total number of people exposed in his group. Let Yij (aij; α0) ≡ Yij (aij, ai,−j; α0) for any ai,−j 

∈ A(ni – 1, Ki – aij), aij = 0, 1; and let

where  is the within-group sample variance and  the between group sample 

variance for individuals with Aij = a ∈ {0, 1}. Also, let
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and

and define

(6)

(7)

(8)

(9)

Hudgens and Halloran (2008) proved that under assumptions 1 and 2:

(10)

(11)

(12)

(13)

That is the variance estimators (6)-(9) are generally conservative. However, as they show in 

equation (10), equality holds if and only if
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(14)

for fixed constant, for j = 1, …, ni and i = 1, …, N, which is equivalent to an additive 

individual direct causal effect across all groups. Note that when Yij (Ai) is binary, and 0 < |

DE (α0)| < 1, then the hypothesis of additive direct treatment effects cannot hold as the only 

values of DE (α0) consistent with additivity are 0, 1 and −1. Hudgens and Halloran (2008) 

also establish analogous conditions under which equality holds for each of the other 

equations (11)–(13).

Despite the availability under assumptions 1 and 2, of reasonable variance estimators given 

by equations (6) – (9) for the various estimators of causal effects proposed by Hudgens and 

Halloran (2008), a formal framework for statistical inference on population average causal 

effects is currently lacking. As a remedy, in the following section, we develop a finite 

sample framework for making causal inferences in the context of interference.

4.3 Finite sample inference for a binary outcome

We construct novel finite sample confidence intervals for the four population average causal 

effects of interest. To simplify the exposition, we mainly focus on the case of a binary 

outcome. To the best of our knowledge there currently exists no method, whether finite or 

large sample-based, to construct a confidence interval for any of the causal parameters of 

current interest. In a technical report, we show that  admits an alternative 

representation as a martingale, an observation which enables us to use a Hoeffding-type 

exponential inequality to obtain the desired finite sample confidence interval. We prove the 

following results.

Theorem 1—For any level γ ∈ (0, 1), the interval

is a finite sample (1 – γ) CI of DE (α0) under assumption 1, where

(15)

 and for i = 1, …, N
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According to the theorem, for each value of (q, N, γ), the coverage probability Pr{DE(α0) ∈ 

CDE (γ, q, N)} is guaranteed under assumption 1 to be no smaller than 95%, with the length 

of CDE (γ, q, N) proportional to , so that for a fixed value of (γ q), CDE (γ q, N) 

becomes increasingly precise as the number of groups in the study grows. However, we note 

that CDE (γ q, N) may not be particularly useful when N is small, for those values of (γ q) 

such that . This is because in such a case, the corresponding confidence 

interval is noninformative, as it contains the entire range of possible values of , 

since [−1, 1] ⊆ CDE (γ, q, N) and . To further illustrate this point, suppose that 

 and q = 1/2, then . This implies that CDE (γ q, N) is 

guaranteed to be noninformative for values of N ≤ 9. As made evident in the proof of the 

theorem, the term 4  in equation (15) is an upper bound for the squared absolute 

deviation of the conditional average direct effect 

 from the population average direct effect 

Ȳ(0; α0) – Ȳ(1; α0). This bound increases as q decreases towards zero, a situation which can 

arise in a study where the proportion of groups randomized to the treatment allocation α0 is 

very small, and can happen even when C and N are both relatively large. This will invariably 

result in an increase in uncertainty in our inferences on . However, we note that 

more accurate inferences may still be possible for the population conditional average causal 

direct effect which we define as

and which corresponds to the average causal direct effect for the population of groups 

actually randomized to α0. The next theorem provides a finite sample confidence interval for 

.

Theorem 2—For any level γ ∈ (0,1), the interval

is a finite sample (1 – γ) CI of  under assumption 1, where
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Note that both CDE (γ, q, N) and CIDEc (γ, q, N) are centered around the same estimator 

, which is unbiased for  and is conditionally unbiased for . 

However, the length of the second confidence interval no longer includes the term 4 

 and thus will often be substantially shorter.

The following theorem provides a finite sample confidence interval for the population 

average indirect causal effect.

Theorem 3—For any level γ ∈ (0, 1), the interval

is a finite sample  under assumption 1, where

and

The next two theorems give finite sample confidence intervals for the population average 

total causal effect and for the population average overall causal effect respectively.

Theorem 4—For any level γ ∈ (0, 1), the interval

is a finite sample  under assumption 1, where

and
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Theorem 5—For any level γ ∈ (0, 1), the interval

is a finite sample  under assumption 1, where

and

Note that , with the corresponding confidence 

intervals having identical length. Future work could improve about the length of these 

confidence intervals by a sharpening of the exponential inequalities used in their derivation 

(van der Vaart and Wellner, 1996) and by leveraging additional assumptions such as that of 

Stratified interference or by deriving potentially sharper alternative exponential inequalities. 

In future work, we also plan to consider inference for continuous and possibly unbounded 

outcomes. The technical developments necessary to achieve these results are beyond the 

scope of the current paper and will be addressed elsewhere.

5 Towards Inference in observational studies

In this section, we briefly consider an approach for drawing causal inferences from 

observational data in the presence of interference. We begin by noting that in the absence of 

(two-stage) randomization, the estimators of Section 5 are no longer valid in an 

observational study. This is because Assumption 1 is in general no longer tenable in the non-

experimental setting of an observational study, therefore, a different approach is needed. To 

make progress, we consider the following assumption:

Assumption 3

For i = 1, …, N, we assume that conditional on Li, the treatment allocation Ai is 

independent of the counterfactual variables Yi(·), that is:
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(16)

where fA|Li (ai|Li) ≡ Pr {Ai = ai|Li}

This assumption is a group-level generalization of the standard conditional randomization 

assumption routinely made at the individual-level in the analysis of observational studies. It 

states that the treatment allocation program Ai is randomly assigned to individuals in group i 

conditional on the vector of covariates Li observed on these individuals. Whereas in the 

previous section, the outcome was assumed to be binary, hereafter, no such assumption is 

needed. In addition to Assumption 3, we suppose that the following positivity assumption 

holds:

Assumption 4

For i = 1, …, N we assume that conditional on Li, we have that for all ai ∈  (ni)

(17)

Assumption 4 is a group-level version of the positivity assumption routinely made at the 

individual level in the analysis of observation studies. In the appendix, we show that the 

following theorem holds:

Theorem 6

Suppose that fA|Li (·|Li) satisfies assumptions 3 and 4, and that α0 is the parametrization of 

a Bernoulli individual group assignment strategy (i.e. a type B parametrization) which 

satisfies assumption 4. Let 

and 

Then

and
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According to this theorem, if the allocation probability mechanism fA|L(·|Li) is known, the 

population counterfactual averages Ȳi (a; α0) and Ȳi (α0) are identified from the observed 

data, and  are unbiased estimators of Ȳi (a; α0) and Ȳi (α0) 

respectively. The theorem also immediately gives the following result. Let

Unfortunately,  are not 

feasible in practice since, as is usually the case in observational studies, fA|L(·|Li) is 

unknown to the analyst. To proceed, we must estimate this unknown treatment allocation 

mechanism from the observed data. Because Li will typically include a large vector of 
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covariates, nonparametric estimation of fA|L(Ai|Li) is not a viable option, and parametric or 

semi-parametric models must be adopted in practice. Next, we provide a brief and informal 

description to illustrate what a parametric approach entails in practice, in the particularly 

favorable setting where the number of groups N is reasonably large. In such a setting, we 

propose to estimate a parsimonious model fA|Li (Ai|Li;ψ) = fA|L(Ai|Li;ψ) i = 1, …, N, with 

unknown parameter ψ = (ψa, ψb), where fA|L(Ai|Li; ψ) is assumed to be a mixed model of 

the form

with hA|L (1|Lij bi; ψa) say the logistic regression model logit 

 and bi a random effect known to follow a parametric 

density fb (bi|Vi;ψb) indexed by an unknown parameter ψb. The standard logistic-normal 

mixed model corresponds to the choice of fb (bi|Vi;ψb) univariate normal with mean ψa,1 and 

variance ψa,2. Estimation of ψa = (ψa,1, ψa,2) and ψb is obtained by maximizing

(18)

with respect to ψ to give ψ̂. The mixed model paradigm is particularly appealing in the 

current setting, as it provides a flexible framework to account for a possible non-null 

conditional association between Aij and Aij′ given Li, for j ≠ j′. Furthermore, under the 

assumption that Ai and Ai′, are independent given Li and Li′ for i ≠ i′, ψ̂ is a maximum 

likelihood estimator, and thus, under standard regularity conditions it is . 

However, note that the mixed model is agnostic to a possible non-null conditional 

association between Aij and Ai′j′ for i ≠ i′. Such a non-null association between the exposure 

levels of individuals belonging to different groups may arise say due to the spatial proximity 

of the two groups, even in the absence of between-group interference. In such a case, ψ ̂is no 

longer the mle, but will remain consistent as the number of groups grows to infinity, 

provided that the non-null association of exposure levels between groups is not too 

pervasive. Specifically, this will hold provided that the dependence between the treatment 

allocation program of a given group is non-null only with that of a fixed number of groups, 

as determined say by spatial proximity. Feasible estimators of the various causal effects are 

then obtained by substituting 

Alternately, one may use the more stable estimators
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A large sample estimator of the variances of the estimates of the various causal effects can 

be obtained under standard regularity assumptions using well known Taylor series 

arguments that we do not reproduce here. The finite sample behavior of these various 

estimators will be examined in a simulation study we plan to report elsewhere.

Thus far we have assumed thatYi(·) is fixed; we will now briefly consider a setting in 

whichYi(·) is considered random. Hong and Raudenbush (2006) assume Stratified 

interference (Assumption 2) and assume that Yij (ai) depends on ai,−j only through some 

known scalar function v(ai, −j) so that Yij (ai) can be written as Yij (aij, v(ai,−j)). Suppose now 

that for all i, j, Aij is determined by simple randomization then assumption 3 will hold and it 

will also be the case that

(19)

Hong and Raudenbush (2006) consider a variation on this assumption in the context of 

observational data. Specifically, they assume that

(20)

and from this it follows that

and from this one could obtain conditional direct, indirect and total effects, namely,

Hong and Raudenbush (2006) also allow Lij to contain cluster level covariate along with 

cluster aggregates of individual level covariates. A similar approach is taken in 

VanderWeele (2010) in the context of mediation in the presence of interference. Note, 

however, that (20) requires that Yij (aij, v) be mean independent of both Aij and V (ai,−j) 

conditional on Lij. If, for each individual Aij is randomized conditional on Lij, although this 

Tchetgen and VanderWeele Page 17

Stat Methods Med Res. Author manuscript; available in PMC 2014 November 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



will imply that Yij (aij, v) is mean independent of Aij conditional on Lij, it does not 

necessarily guarantee that Yij (aij, v) is mean independent of V (ai,−j conditional on Lij. More 

generally, instead of (21) we might consider

(21)

where h(Li) is a known function of Li. However once again, with (21), even if for each 

individual Aij were randomized conditional on Lij, h(Li), this does not guarantee that Yij (aij, 

v) is mean independent of V (ai,−j) conditional on Lij, h(Li) unless h(Li) = Li.

6 Varieties of direct and indirect effects

We have considered several types of effects that arise when there is interference between 

units. We have considered the effect on some outcome of an individual’s treatment when the 

treatment of other units in a cluster are held fixed at a certain value; following, Hudgens and 

Halloran (2008), this was referred to as a"direct effect." We have also considered the effect 

on an individual’s outcome of holding the individual’s own treatment fixed but modifying 

the treatments received by other individuals in the same cluster; again following Hudgens 

and Halloran (2008), this was referred to as an "indirect effect." Of course, the terms "direct 

effects" and "indirect effects" are also used in the context of questions of mediation analysis, 

i.e. in assessing the extent to which the effect of some treatment on an outcome is mediated 

through some intermediate (the indirect effect) and the extent to which it occurs through 

other pathways (the direct effect). In some contexts, both interference and mediation may be 

present and of interest and the terms "direct effect" and "indirect effect" become ambiguous 

as they may make reference to the concepts from interference or from mediation.

In the infectious disease literature, the terminology of "direct and indirect effects" when 

interference is present dates at least as far back as Halloran and Struchiner (1991) although 

Hudgens and Halloran (2008) arguably provide the first formal counterfactual definitions. 

The terminology of "direct and indirect effects" in the context of mediation analysis extends 

at least as far back as the literature on structural equation modeling (e.g. Duncan, 1966) 

motivated by the method of path coefficients of Wright (1921); counterfactual notions of 

direct and indirect effects were described in detail by Holland (1988) and Robins and 

Greenland (1992). Because of the potential ambiguity in terms "direct effect" and "indirect 

effect," Sobel (2006) chose to use the term "spillover effect" for the effect on an individual’s 

outcome of holding the individual’s own treatment fixed but modifying the treatments 

received by other individuals. An early paper (Strain et al., 1976) in experimental 

educational psychology appears to have interchangeably used "indirect effect" and "spillover 

effect" to denote the effect on a child’s outcome of holding the child’s own treatment fixed 

but modifying the treatments received by other children. Complicating terminological issues 

yet further, the causal inference on mediation itself has produced alternative Definitions of 

direct and indirect effects based on potential interventions on the mediator (Robins and 

Greenland, 1992; Pearl, 2001) or alternatively on the notion of principal strata (Frangakis 

and Rubin, 2002; Rubin, 2004).
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Variants of the notions of direct and indirect effects based on principal strata may in fact 

further be reformulated in the context of interference. Consider a vaccine trial (type A 

randomization) in which each cluster has two individuals so that for all i, ni = 2 (e.g. a study 

of married households with no children) such that half of the households were randomized 

to no vaccine (α0 = 0) and half of the households were randomized to having one individual 

(e.g. the wife) vaccinated (α1= 0.5). For each i, let j = 1 denote the subject that is potentially 

vaccinated (e.g. the wife) and j = 2 the subject that is never vaccinated (e.g. the husband). In 

the infectious disease context, a vaccination for individual 1 may prevent individual 2 from 

being infected either because the vaccine prevents individual 1 from being in infected or 

possibly because, even if individual 1 becomes infected, the vaccine itself renders the 

infection less contagious. A distinction between these two possibilities is sometimes drawn 

by using "susceptibility effect" to describe the former and "infectiousness effect" to describe 

the latter (Datta et al., 1999). Consider the following causal quantity, Ei(Yi2 (1, 0) – Yi2 (0, 

0)|Yi1 (1, 0) = Yi1 (0, 0) = 1); this is the effect on individual 2 of vaccinating individual 1 

(with individual 2 unvaccinated) amongst the subset of households for whom individual 1 

becomes infected irrespective of whether individual 1 receives the vaccination; this would 

be a principal strata direct effect (Rubin, 2004). If this quantity were non-zero we might 

interpret this as evidence of an "infectiousness effect" of the vaccine since the vaccination of 

individual 1 affects the outcome of individual 2 even though it has no effect on the outcome 

of individual 1. Future work could potentially adapt estimation methods for principal strata 

direct effects (Gallop et al, 2009; Sjölander et al., 2009) to attempt to estimate and 

potentially test for the presence of an "infectiousness effect", Ei(Yi2 (1, 0) – Yi2 (0, 0)|Yi1 (1, 

0) = Yi1 (0, 0) = 1).

Note that although the infectiousness effect quantity defined above is a "principal strata 

direct effect," within the context of interference it is a form of an "indirect effect" since 

individual 2’s vaccination status is fixed to be unvaccinated in the causal comparison. 

Within the context of interference, both the "susceptibility effect" and the "infectiousness 

effect" are in fact forms of "indirect effects" (in the interference sense) because both the 

"susceptibility effect" and the "infectiousness effect" concern the effect on individual 2 of 

holding individual 2’s vaccine status fixed but changing the vaccine status of individual 1; if 

interference were absent, neither of the effects would be present. If interference were absent 

then the principal strata "infectiousness effect" quantity defined above would reduce to 

Ei(Yi2 (0) – Yi2 (0)|Yi1 (1) = Yi1 (0) = 1)=0. Again terminology concerning "direct and 

indirect effects" is ambiguous and is easily confused: what is a "direct effect" in the context 

of principal strata is an "indirect effect" in the context of interference.

Because of the multiple varieties of direct and indirect effects, the use of more specific 

terminology may be desirable. In the context of interference, "indirect effect" and "direct 

effect" could be replaced by "spillover effect" and "unit-treatment effect"; in the context of 

mediation, "indirect effect" and "direct effect" could be replaced by "mediated effect" and 

"unmediated effect." In the context of infectious diseases and the principal strata effect 

defined above, "susceptibility effect" and "infectiousness effect" could be used rather than 

making reference to "direct and indirect effects." Yet further caution with regard to 
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terminology on direct and indirect effects will be needed when both interference and 

mediation are present and of interest (VanderWeele, 2010).

7 Concluding remarks

In this paper we have reviewed some of the literature on causal inference in the presence of 

interference, we have provided new results on inference without the assumption of Stratified 

interference and we have described an inverse probability weighting approach to causal 

inference under interference in the context of observational studies. Interference arises in 

settings in which social interactions are present including settings of infectious disease, the 

study of neighborhoods and classrooms and in a variety of economic contexts. Although 

most work in causal inference has proceeded under a no-interference assumption, there are 

clearly many contexts in which such an assumption is not plausible. The issues raised by 

interference can be circumvented to a certain extent by implementing treatment programs at 

the cluster level rather than the individual level. However, interference gives rise to spillover 

effects which are themselves of intrinsic interest and the analysis of such spillover effects is 

inaccessible without explicitly taking interference into account. Theory and methods to 

address questions of interference and spillover effects will thus likely be important for a 

number of applied research settings.

The present work could be extended in a number of directions. Finite sample confidence 

intervals of shorter length than those in section 4 could be obtained by employing additional 

assumptions such as Stratified interference; continuous and unbounded outcomes could also 

be considered. The finite sample behavior of the inverse probability weighting estimation 

approach we proposed in this paper could be explored. Identification or partial Identification 

results for the "infectiousness effect," formalized in terms of principal strata, could be 

developed. Finally, further research could also potentially develop a more general 

framework for interference and spillover effects so as to consider a range of settings in 

which both interference and mediation were present and also so as to potentially allow for 

both within-cluster and between-cluster forms of interference. Causal inference under 

interference is a relatively new subfield and considerable work remains to be carried out.
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APPENDIX

Proof of Lemma 1

Note that 

Let . Each term of the first sum equals
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and

Tchetgen and VanderWeele Page 22

Stat Methods Med Res. Author manuscript; available in PMC 2014 November 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



so that

Therefore, as Yij (ai) ≥ 0 for all ai ∈ A(ni;K0,i;) and all j in group i, 

, since
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Proof of Theorems 1-5

See technical report available from the authors.

Proof of Theorem 6

Under Assumptions 3 and 4, we have that for 

similarly, 
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