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Epigenetic mechanisms such as DNA methylation (DNAm) are essential for regulation of gene expression. DNAm is dy-
namic, influenced by both environmental and genetic factors. Epigenetic drift is the divergence of the epigenome as
a function of age due to stochastic changes in methylation. Here we show that epigenetic drift may be constrained at many
CpGs across the human genome by DNA sequence variation and by lifetime environmental exposures. We estimate re-
peatability of DNAm at 234,811 autosomal CpGs in whole blood using longitudinal data (2–3 repeated measurements) on
478 older people from two Scottish birth cohorts—the Lothian Birth Cohorts of 1921 and 1936. Median age was 79 yr and
70 yr, and the follow-up period was ~10 yr and ~6 yr, respectively. We compare this to methylation heritability estimated in
the Brisbane Systems Genomics Study, a cross-sectional study of 117 families (offspring median age 13 yr; parent median age
46 yr). CpG repeatability in older people was highly correlated (0.68) with heritability estimated in younger people. Highly
heritable sites had strong underlying cis-genetic effects. Thirty-seven and 1687 autosomal CpGs were associated with smoking
and sex, respectively. Both sets were strongly enriched for high repeatability. Sex-associated CpGs were also strongly
enriched for high heritability. Our results show that a large number of CpGs across the genome, as a result of environmental
and/or genetic constraints, have stable DNAm variation over the human lifetime. Moreover, at a number of CpGs, most
variation in the population is due to genetic factors, despite some sites being highly modifiable by the environment.

[Supplemental material is available for this article.]

Epigenetics refers to the chemical modifications of DNA that reg-

ulate gene expression without altering the underlying DNA se-

quence. DNA methylation (DNAm), the covalent addition of a

methyl group to a cytosine nucleotide primarily in the context of

a CpG dinucleotide, is among the best-studied epigenetic mecha-

nisms and plays a crucial role inmammalian development (Li et al.

1992; Tate et al. 1996), X-chromosome inactivation (Panning and

Jaenisch 1998), imprinting (Li et al. 1993), cell-lineage specifica-

tion (Br€oske et al. 2009; Trowbridge et al. 2009; Challen et al.

2012), and maintaining genome stability (Lengauer et al. 1997;

Bellacosa et al. 1999). In mammalian development, shortly after

fertilization, DNAm marks are largely erased. Genome-wide and

tissue-specific de novo methylation takes place following blasto-

cyst formation. Primordial germ cells also undergo demethylation,

followed by de novo methylation during gametogenesis and es-

tablishment of sex-dependent imprints. In contrast with sequence

variants, DNAm is dynamic and is influenced by many factors,

including lifestyle, environment, and genetics (Jirtle and Skinner

2007; Mathers et al. 2010; Alegr�ıa-Torres et al. 2011).
Two forms of inheritance of epigenetic marks have been

demonstrated: genetic inheritance and epigenetic inheritance. The

latter is independent of DNA sequence and may occur through

incomplete erasure of epigenetic marks during epigenetic repro-

gramming at the gamete and zygote stages. The genetic inheritance

of an epigenetic state occurs when an individual’s DNA sequence

affects the epigenetic state. A large number of common single

nucleotide polymorphisms (SNPs) have been shown to affect

methylation at CpG sites that are typically in close proximity to

the SNP, i.e., located in cis (Kerkel et al. 2008; Gibbs et al. 2010; Bell

et al. 2011; Grundberg et al. 2012), with some SNPs explaining up

to 90% of the variation in methylation at the associated CpG site

(Gibbs et al. 2010). These genetic variants are referred to as DNA
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methylation quantitative trait loci (mQTL), and methylation at the

associated CpG sites is highly heritable (McRae et al. 2014). Recent

estimates of mean genome-wide DNAm heritability (proportion of

variance explained by additive genetic factors) are 12%–18% in

blood (Bell et al. 2012;Grundberg et al. 2013;McRae et al. 2014), but

locus-specific levels have shown to be variable. Mean heritability

across tissues vary, with estimates of 5% in placenta and 7% in hu-

manumbilical vein endothelial cells (HUVECs) (Gordon et al. 2012).

Age-related changes in DNAm are well documented, and

a large number of age-associated methylation sites have been

identified across the genome (Bocklandt et al. 2011; Hannum et al.

2013; Horvath 2013). The epigenome diverges with age, even

within monozygotic twins, with older twins having less similar

epigenetic profiles than younger twins (Fraga et al. 2005). The

differences in the epigenome of genetically identical individuals

have been attributed to differences in external factors, such as

changes in lifestyle and environment, but also to internal sto-

chastic factors, such as small defects in transmitting epigenetic

information through successive cell divisions or maintaining it in

differentiated cells, a process termed ‘‘epigenetic drift’’ (Fraga et al.

2005). Epigenetic differences in genetically identical twins may be

key to understanding disease discordance in monozygotic twins.

Understanding what factors contribute to DNAm variation is

important not only for understanding the role of DNAm in com-

plex disease traits, but also for informing future epigenetic studies

that take a cross-sectional approach. There have been relatively few

longitudinal studies on DNAm, and these have focused either on

a handful of selected loci (Talens et al. 2010; Wong et al. 2010) or

only on loci whose DNAm changes with age (Madrigano et al.

2012; Florath et al. 2013), and others have used only global mea-

sures ofmethylation (Bjornsson et al. 2008). Therefore, it is still not

fully known how stable DNAm levels across the genome are over

time and to what extent these are influenced by heritable versus

environmental factors.

When longitudinal data are available, one measure of stability

over time is the repeatability (Rm) of methylation levels. Rm is the

correlation between repeated measures of the same individual

(Falconer and Mackay 1996) and is calculated as the ratio of the

between-individual variance over the total variance. Variance be-

tween individuals can be partitioned into variance due to genetic

factors and variance due to permanent differences in the environ-

ment between individuals. The genetic variance can be further

partitioned into additive and nonadditive (dominant and epistatic

effects) genetic variance, and the proportion of phenotypic variance

due to additive genetic factors is the (narrow sense) heritability (h2).

Since heritability is one of the determining factors of repeatability,

h2 estimates should not exceed Rm estimates in the same sample,

and Rm therefore sets an upper bound for h2 (see Methods). By

comparing the Rm and h2, we can assess the extent to which varia-

tion between individuals is due to additive genetic factors.

To assess the stability of DNAm across the genome over time,

we estimatedmethylation Rm at 234,811 autosomal CpG probes in

whole blood using longitudinal data on 478 older, initially

healthy, Scottish individuals from two birth cohorts—the Lothian

Birth Cohorts of 1921 (LBC1921) and 1936 (LBC1936) (Deary et al.

2004, 2007, 2012). Participants had two or three repeatedmeasures

of DNAm over a period of ;10 yr in LBC1921 and ;6 yr in

LBC1936.Median ages at baseline (wave 1) were 79 yr and 70 yr, in

LBC1921 and LBC1936, respectively. To assess the extent to which

additive genetic factors contribute to DNAm variation, we com-

pared the Rm for each CpG site to their h2 estimated in the Brisbane

Systems Genomics Study (BSGS). The BSGS is a cross-sectional

study of 117 families comprising adolescent monozygotic (MZ)

and dizygotic (DZ) twins, their siblings and their parents, with an

age range of 9–75 yr (offspring median age 13 yr; parent median

age 46 yr) (Powell et al. 2012).

Results

Data

In LBC, DNAm was measured in 2460 whole blood samples (from

1520 individuals) at 485,512 CpG sites across the genome using

the Infinium HumanMethylation450 array. After quality control

(QC) analysis and probe filtering (see Methods), 2195 samples

(from 1366 individuals) and 249,741 methylation probes

remained. Only 478 of the 1366 individuals in the QC’ed data had

repeated measures of DNAm (186 individuals with two measures

and 292 individuals with three measures), and these were used for

estimating repeatability. At the three waves of sample collection,

LBC1921 participants had median age 79 (n = 446), 87 (n = 175),

and 90 (n = 82) yr, and LBC1936 participants had median age 70

(n = 920), 72 (n = 299), and 76 (n = 273) yr (Table 1). In BSGS,DNAm

was measured in 614 blood lymphocyte samples using the

Infinium HumanMethylation450 array. All 614 samples passed

QC with DNAm data available on 261,450 autosomal CpG sites.

Beta value heteroscedasticity

Methylation levels are summarized as beta values ranging between

0 and 1, where a value close to zero indicates that all copies of the

CpG site in the sample were completely unmethylated (no meth-

ylated molecules were measured), and a value close to one in-

dicates that every copy of the site was methylated. Six percent of

CpG sites (14,930 of 249,741) were either unmethylated (beta #

0.1) across all samples or completely methylated (beta values $

0.9) across all samples. The beta value has significant hetero-

scedasticity, and the standard deviation of the beta value in these

very low and very high beta ranges is greatly compressed (Sup-

plemental Fig. S1; Du et al. 2010). Any variation in methylation

signal at these high and low ranges is likely to be measurement

noise. Since Rm is a function of both within-individual and be-

tween-individual variance, individual consistency will only be

evident in the repeatability if there is between-individual variation

in the sample (Supplemental Fig. S2). Therefore, despite these

CpGs having extremely stable methylation in the entire sample,

their estimates of repeatability were very low (Supplemental Fig.

S3A). This was also the case for heritability estimates (Supple-

mental Fig. S3B). Based on assessments of the relationship between

meanbeta values, beta variance, andRm,we excluded these 14,930

probes. Rm estimates for 234,811 probes were therefore considered

in further analysis.

Table 1. Participant characteristics

LBC1921 LBC1936

Total sample size 703 1492
Wave 1: median age 79 yr 70 yr
Wave 2: median age 87 yr 72 yr
Wave 3: median age 90 yr 76 yr
Wave 1: percentage males 39% 51%
Wave 1: number of current smokers 31 103
Wave 1: number of ex-smokers 213 385
Wave 1: number of never smokers 201 432
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Genome-wide repeatability

The distribution of Rm for the 234,811 autosomal CpG sites is shown

in Figure 1. We found that 13% (31,273 probes) had Rm $ 0.5. To

show that the CpG sites with higherRmwere not observed simply by

chance, we used permutation to derive the null distribution. The

empirical distribution of Rm values was not consistent with the null

hypothesis of chance associations (Supplemental Fig. S4). For com-

parison,we also looked at the distribution of Rm for the 234,811CpG

sites in seven pairs of technical replicates available in the BSGS data

(no replicate data was available in the LBCs). The Rm distributionwas

shifted to the right, with the majority of probes having high Rm
values (60%with Rm$ 0.5) (Supplemental Fig. S5). However, around

25,000 probes had repeatability of zero even in technical replicates.

Thesemay represent poor-performingprobes. Amuch larger number

of replicate samples would be needed to accurately estimate the true

proportion of repeatable probes and identify those that warrant re-

moval from further analyses. With a larger number of replicates, the

standard error in the Rm estimation will decrease, and it is likely the

Rm distribution would shift further to the right, with most probes

either having repeatability close to one or close to zero, providing

greater power to distinguish the poor-performing probes.

Correlation between repeatability and heritability

We then correlated probe Rm to probe h2, which had been estimated

in the younger BSGS family cohort (McRae et al. 2014). All 234,811

probes were present in the QC’ed BSGS data set. We observed a high

correlation of 0.68 (P-value < 1.03 10�16) betweenRm and h2 (Fig. 2).

Given the relationship of both Rm and h2 with mean beta values

(Supplemental Fig. S3) in the two separate data sets, one might ex-

pect the correlation between probe Rm and h2 to be confounded by

themeanbeta values of theCpGprobes.However, we found a strong

positive correlation betweenRm and h2 in different bins ofmean beta

values (Supplemental Fig. S7), suggesting that the observed correla-

tion between Rm and h2 is not confounded by mean beta values.

Both genetic and/or environmental factorsmay be responsible

for high DNAm repeatability. Probes with high h2 generally had

high Rm, consistent with a genetic constraint. To demonstrate this,

we used the sum of ranks to select 10 CpG sites with the highest Rm
and h2 and looked for associations with SNPs in the BSGS data. For

all 10 CpG sites, we identified significant associations between

methylation levels and SNPs (association P-value < 8.3 3 10�9,

representing significance at the 5% level after Bonferroni correction

for 6,005,138 SNP association tests performed on the BSGS genotype

data). For nine of 10 CpG sites, the associated SNP was located <150

kb from the CpG site; and for seven of these, the SNP was located

within 1 kb. The effect sizes of these single cis-acting SNPs were very

large, explaining 50%–85% of the variation in methylation at the

CpG site (Supplemental Table S1). For one of these associations, the

SNP was located on a different chromosome to the CpG site but still

explained 30% of the variation inmethylation at this site. Using the

sum of ranks, we also selected 10 probes that had highest Rm and

lowest h2 (ranking probes by decreasing Rm and increasing h2), and

none had significant associations with any SNPs, suggesting that the

high repeatability may be due to environmental effects.

Repeatability and heritability of smoking-associated
methylation sites

We hypothesized that CpG sites with high Rm but low h2 may be

under strong influence of environmental factors. To test this, we

assessed the distribution of Rm and h2 of CpG sites whose meth-

ylation levels were associated with an environmental factor—

smoking. Using LBC1936 as a discovery sample (731 never

smokers versus 139 current smokers), we identified 305 signifi-

cantly associated autosomal CpG sites (at P-value < 2.13 3 10�7,

representing significance at the 5% level after Bonferroni correc-

tion for 234,811 tests). Using LBC1921 as a replication sample (333

never-smokers versus 39 current smokers), 37 sites in or near 27

genes were validated (P-value < 0.00016; Bonferroni correction for

305 tests). Of the identified genes, 16 had previously been identi-

fied to contain CpGs that were differentially methylated in re-

sponse to smoking status (Supplemental Table S2; Joubert et al.

2012; Shenker et al. 2013; Zeilinger et al. 2013). Looking at the

distribution of Rm and h2, we observed a strong enrichment for

probes with high Rm (Fig. 3). Although some of these CpG sites also

had high h2, the enrichment for high heritability probes was not as

substantial (Fig. 3). The discordance in the distribution of Rm and

h2 for smoking-associated CpG sites was more obvious when
Figure 1. Distribution of Rm for 234,811 autosomal CpG sites in the
Lothian Birth Cohorts (LBC).

Figure 2. Correlation between Rm and h2. The distribution of Rm esti-
mated in the LBC cohorts by bins of h2 estimated in the BSGS cohort.
Correlation between the two measures was 0.68.
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looking at the larger subset of the 305 CpG sites that were identi-

fied in the LBC1936 discovery sample. For this set of 305 probes,

a much larger proportion had high Rm compared to those with

high h2 (Supplemental Fig. S8). The correlation between Rm and h2

for the 37 smoking-associated probes was 0.68 (P-value = 3.0 3

10�6), suggesting that even for sites where methylation is influ-

enced by environment, additive genetic factors have a strong in-

fluence. We found significant SNP associations for 12 of the 37

smoking probes (32%), 10 of which were with cis-acting SNPs

(located within 500 kb of CpG site), one was with a SNP on the

same chromosome but >500 kb away, and one with a SNP on

a different chromosome. A lookup of two independent smoking-

associated probes with the highest Rm and h2 identified strong

underlying cis-SNP effects, each explaining ;10% of the methyl-

ation variation at these CpG sites, similar to that explained by

smoking status itself (Table 2). The most significant association

with smoking status in our data was with a previously reported

CpG probe (cg05575921) in the AHRR gene. This probe had high

Rm of 0.74 but relatively low h2 of 0.24, with no significant SNP

associations found in the BSGS data.

Repeatability and heritability of sex-associated
methylation sites

We also identified and assessed the distribution of Rm and h2 of

CpG sites that were differentially methylated between males and

Figure 3. Distribution of Rm and h2 for smoking- and sex-associated CpG sites. (A) 37 smoking-associated autosomal probes. (B) 1687 sex-associated
autosomal probes.

Table 2. cis-SNP associations with sex- and smoking-associated probes with high Rm and h2

Probe Exposure
CpG

location

Closest
gene
to CpG Rm h2 cis-SNP

SNP
location

mQTL
association
P-value in

BSGS

Proportion of
methylation
variance

explained by
SNP in BSGS

data

Proportion
of variance
explained in

methylation by
exposure

LBC1936 LBC1921

cg21117965 Sex 2:220325369 SPEG 0.79 0.89 rs7202333 2:220315970 2.7 3 10�71 0.61 0.03 0.05
cg07187855 Sex 6:30854161 DDR1 0.80 0.84 rs3130779 6:30872203 2.6 3 10�34 0.29 0.04 0.07
cg12803068 Smoking 7:45002919 MYO1G 0.78 0.85 rs6976664 7:45014304 2.76 3 10�12 0.10 0.08 0.05
cg18316974 Smoking 1:92947035 GFI1 0.70 0.83 rs2774947 1:93348423 1.92 3 10�13 0.12 0.07 0.06

(BSGS) Brisbane Systems Genomics Study; (mQTL) methylation quantitative trait loci; (cis-SNP) located #500 kb from CpG site.
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females. Sex can be considered as a genetic factor, but also as an

unmodifiable lifelong ‘‘exposure,’’ and differences between males

and females would be confounded by any gender-related differ-

ences in environment or lifestyle. Using LBC1936 as a discovery

sample (732 females and 760males) andmodeling an individual as

a random effect, 3810 autosomal CpGs were significantly associ-

ated with sex (P-value < 2.13 3 10�7; Bonferroni correction for

234,811 tests). Of these, 1687 were replicated (P-value < 1.30 3

10�5; Bonferroni correction for 3810 tests) in the LBC1921 data

(409 females and 294 males). These were located in or near 1157

genes (Supplemental Table S3). Sex-associated CpG probes were

significantly enriched for probes with high Rm and h2 (Fig. 3;

Supplemental Fig. S8). It is important to note that Rm and h2 were

calculated after adjusting for sex; therefore, the high Rm and h2 are

not being driven simply by mean differences between the two

groups. The correlation between Rm and h2 for these CpG sites was

0.76 (P-value < 1.0 3 10�16). This suggests that methylation at

these sites is strongly influenced by genetic factors. Of the 1687

probes, 561 (33%) had significant underlying SNP associations, of

which 519 (93%) were located within 500 kb from the CpG site. A

lookup of two sex-associated probes with high Rm and h2 identified

strong underlying cis-SNP effects explaining 29% and 61% of the

variation in methylation (Table 2), which was much higher than

the proportion of variance explained by sex (3%–7%). One of these

CpG sites (cg07187855) is located within a regulatory region up-

stream of the discoidin domain receptor tyrosine kinase 1 (DDR1)

gene, which based on mice studies, plays an essential role in

mammary gland development (Vogel et al. 2001).

Discussion
Although observations of changes in global (or average) methyla-

tion over time have been previously reported (Fraga et al. 2005;

Bjornsson et al. 2008) using population-based, longitudinal

methylation analyses, we have identified a large number of auto-

somal CpG sites across the genome whose methylation levels are

stable over time. It has been suggested by studies on global

methylation that epigenetic drift with age is a genome-wide phe-

nomenon thatmay occur due to the accumulation of small defects

in the transmission of epigenetic marks through successive cell

divisions (Fraga et al. 2005). We identify genetic and environ-

mental factors that appear to be responsible for DNAm stability

over time at a number of CpG sites. Such factors may therefore be

constraining drift at these CpG sites.

The strong correlation between repeatability estimated in

older individuals to heritability estimated in younger individuals

suggests, first, that additive genetic factors are the main contrib-

utors to methylation variation at a large proportion of the mea-

sured CpG sites; and second, that CpG sites under strong genetic

influence appear to be stable almost over the human life course.

Heritability estimates for any given CpG site can change, and can

be age-, tissue-, and population-specific. Methylation at the same

CpG site measured over an individual’s lifetime can have different

genetic and environmental effects influencing it so that the vari-

ances become a function of age. However, despite the differences

between the LBC and BSGS participant characteristics, especially

the age of the participants, we find that CpG sites under strong

genetic influence have stable methylation even later on in life.

Heritability can be thought of as the repeatability within related

individuals. For example, if stability is solely due to genetic factors,

then the repeatability within a person over time is the same as the

correlation betweenmonozygotic twins (and this correlation is the

heritability). Since h2 is partly derived from the correlation be-

tween parents and offspring, high h2 in BSGS data indicates that

methylation levels are stable within the age range of the BSGS

samples (9–75 yr). If the same probes have high Rm in LBC, this

indicates that methylation is also stable from 70–90 yr. Therefore,

for probes with both high h2 and Rm, methylation repeatability is

high throughout the age ranges in BSGS and LBC (9–90 yr).

The stability of DNA methylation over time is an important

factor to consider when drawing conclusions about causality in

epidemiological studies, especially in prospective cohorts, where

only a single biological sample has been collected but phenotypic

information on participants is collected at subsequent phases. For

CpG sites where environment/lifestyle plays the major role, the

length or continuity of exposure may be key. For example, for

cg05575921, the most strongly associated probe with smoking

status, we observed that the mean methylation level at baseline in

ex-smokers (unadjusted beta mean = 0.83; SD = 0.087) was sig-

nificantly lower than those who had never smoked (unadjusted

beta mean = 0.88; SD = 0.05) (P < 13 10�16), but also significantly

higher than current smokers (unadjusted beta mean = 0.61; SD =

0.11) (P < 1 3 10�16). Information on when ex-smokers gave up

smokingwould allowus to determine the longevity of the effects of

smoking on methylation, which would be important in de-

termining the long-term exposure risk in diseaseswhere smoking is

a known risk factor. CpG sites influenced by smoking were rela-

tively stable over time. However, although some CpGs had high

heritability, overall the genetic contribution was not as strong as

that observed for the sex-associated CpG sites. This was evident in

the higher correlation between Rm and h2 for the sex-associated

CpGs compared to that for the smoking-associated CpGs. CpG

sites with differential methylation betweenmales and females will

be of interest in the context of diseases that are more prevalent in

one sex compared to the other. It remains to be seen whether the

stability and heritability of DNAm translates to gene expression

levels. A comparison between methylation QTLs and expression

QTLs would be needed to determine if common genetic variation

affects gene expression via changes in DNAm.

There are a number of factors to consider when interpreting

the results from these analyses: First, repeatability is a well-estab-

lished measure for assessing reproducibility (Sokal and Rohlf

1995), but it is only evident if there is between-individual variation

in the population. It is therefore not a suitable method for esti-

mating reproducibility in extremely stable measures where there is

little between-individual variation, and is likely to underestimate

the true number of repeatable CpGs. Our analyses on replicate

samples did identify a number of probes with repeatability of zero.

These may be probes that are truly stable over time or probes that

due to technical reasons do not perform well. Under the null dis-

tribution of the test statistic for repeatability, the expected pro-

portion of probes with zero repeatability is 50%. Using this, we can

estimate a lower limit of the true proportion of probes that have

a nonzero repeatability as 2*(0.5 – P), where P is the proportion of

observed probes with Rm = 0. In the LBC data, P = 0.16, thus we

conclude that at least 68% of probes have nonzero repeatability

over the time course studied. Similarly, from our analysis of seven

replicates (P = 0.1), the upper-bound of the proportion of probes

that have zero repeatability through either showingno variation in

DNA methylation levels or through technical issues is 20%. This

indicates that although our estimated proportion of repeatable

results in LBC is downwardly biased by the presence of probes with

technical issues or having no variation in DNA methylation, it is

not markedly biased.

Genetics and environment constrain epigenetic drift
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Second, CpGs with mean beta values from 0.4–0.6 showed

the highest Rm and h2 values (Supplemental Fig. S3). This may

partly reflect the heteroscedasticity of the beta value and the re-

liance of Rm estimation on the presence of between-individual

variation. However, CpGs with strong underlying SNP effects, es-

pecially if these are common SNPs, have high between-individual

variation with mean methylation around 0.5 (individuals in the

three genotype groups tend to have beta values around 0, 0.5, and

1). Therefore, high Rm and h2 for probes with mean beta values in

the medium methylation range (0.4–0.6) is likely to reflect un-

derlying mQTLs.

Third, although the InfiniumHumanMethylation450 array

comprehensively evaluates promoter regions and CpG islands

as well as other potentially relevant intergenic regions, such

as regulatory regions (Slieker et al. 2013), it only interrogates

a small subset of the ;28 million CpG sites in the human ge-

nome. Therefore, our results may not be representative of all

CpG sites across the entire human genome. Finally, whole

blood, from which the DNA samples were extracted, consists of

a heterogenous cell population, and it has been shown that

these functionally distinct populations have unique DNA

methylation profiles (Reinius et al. 2012) which could confound

analyses. However, we found a very high correlation (0.98) be-

tween Rm estimated from data adjusted and unadjusted for cell

count.

In summary, we show that genetic and environmental fac-

tors may constrain epigenetic drift. We also show that meth-

ylation at CpG sites measured in blood has a number of the

same characteristics as other ‘‘complex traits.’’ First, variation in

methylation at any given CpG site can be influenced by both

genetic and environmental factors; second, heritable variation

can be mapped by associations with SNPs; and third, robust and

replicable associations with environmental factors can be found.

Therefore,methylation levels at a single CpG site can be treated as

a complex trait.

Methods

Subjects
The Lothian Birth Cohort 1921 (LBC1921): This cohort is the
basis of a longitudinal study of aging (Deary et al. 2004, 2012). All
participants were born in 1921, and most completed a cognitive
ability test (Moray House Test No. 12) at about age 11 yr in the
Scottish Mental Survey 1932 (SMS1932) (Scottish Council for
Research in Education 1933). The LBC1921 study attempted to
follow up individuals who might have completed the SMS1932
and resided at about age 79 yr in the Lothian region (Edinburgh
and its surrounding areas) of Scotland; 550 people (n = 234; 43%
men) were successfully traced and participated in the study from
age 79 yr. To date, there have been four additional follow-up
waves at average ages of 83, 87, 90, and 92 yr. The cohort has been
deeply phenotyped during the later-life waves, including blood
biomarkers, white blood cell counts, cognitive testing, and psy-
chosocial, lifestyle, and health measures. DNA methylation was
measured in subjects at an average age of 79 yr (n = 515), 87 yr (n =

181), and 90 yr (n = 87), and data from these waves were used for
analyses.

Lothian Birth Cohort 1936 (LBC1936): All participants were
born in 1936 (Deary et al. 2007, 2012). Most had taken part in the
Scottish Mental Survey 1947 at mean age 11 yr as part of national
testing of almost all children born in 1936 who attended Scottish
schools on June 4, 1947 (Scottish Council for Research in Educa-

tion 1949). The cognitive test administered was the same Moray
House Test No. 12 used in the SMS1932. A total of 1091 partici-
pants (n = 548; 50% men) who were mostly living in the Lothian
area of Scotland were recontacted in later life. Extensive pheno-
typing, includingwhite blood cell counts, has also been carried out
in this study, with data collection waves at three time points. DNA
methylation was measured at mean age 70 yr (n = 1005), 73 yr (n =

336), and 76 yr (n = 332), and data from these waves were used for
analyses.

Brisbane Systems Genetics Study (BSGS): Participants were
originally recruited into an ongoing study of the genetic and en-
vironmental factors influencing cognition and pigmented nevi.
DNA methylation was measured on 614 individuals from 117
families of European descent. Families consist of adolescent
monozygotic (MZ; n = 67 pairs) and dizygotic (DZ; n = 111 pairs)
twins, their siblings (n = 119), and their parents (n = 139). Children
have a mean age of 14 yr (range 9–23) and parents 47 yr (range 33–
75) (Powell et al. 2012).

Ethics

Following informed consent, venesected whole blood was col-
lected for DNA extraction in both LBC1921 and LBC1936. Ethics
permission for the LBC1921 was obtained from the Lothian
Research Ethics Committee (Wave 1: LREC/1998/4/183). Ethics
permission for the LBC1936 was obtained from the Multi-Center
Research Ethics Committee for Scotland (Wave 1: MREC/01/0/56),
the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/
29). Written informed consent was obtained from all subjects. The
BSGS study was approved by the Queensland Institute for Medical
Research Human Research Ethics Committee. All participants gave
informed written consent.

DNA methylation

LBC1921 and LBC1936

DNA was extracted from whole blood samples in LBC1921 at
MRC Technology, Western General Hospital, Edinburgh
(LBC1921), and the Wellcome Trust Clinical Research Facility
(WTCRF), Western General Hospital, Edinburgh (LBC1936),
using standard methods. Methylation typing of 485,512 probes
was performed at the WTCRF. Bisulphite converted DNA sam-
ples were hybridized to the Infinium HumanMethylation450
array using the Infinium HD Methylation protocol and Tecan
robotics (Illumina). Raw intensity data were background-cor-
rected and normalized using internal controls, and methylation
beta values were generated using the R minfi package (Aryee
et al. 2014). Quality control (QC) analysis was performed to
remove probes with a low (<95%) detection rate at P < 0.01.
Manual inspection of the array control probe signals was used to
identify and remove low quality samples (e.g., samples with
inadequate hybridization, bisulfite conversion, nucleotide
extension, or staining signal). The Illumina recommended
threshold was used to eliminate samples with a low call rate
(samples with <450,000 probes detected at P < 0.01). Samples
whose predicted sex, based on XY probes, did not match reported
sex were excluded. Probes on the X and Y chromosomes were
also removed. After these QC steps, 450,726 autosomal probes
remained. Beta values were corrected for effects of sample plate,
BeadChip, position on BeadChip, hybridization date, white blood
cell counts (basophils, eosinophils, monocytes, lymphocytes,
neutrophils), and sex using a generalized linear model with
a logistic link function. Residuals from this model were used in
further analyses.
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BSGS

DNAwas extracted from peripheral blood lymphocytes by the salt
precipitation method (Miller et al. 1988) from samples that were
time matched to a sample collection of PAXgene tubes for gene ex-
pression studies in the Brisbane Systems Genetics Study. Bisulphite
converted DNA samples were hybridized to the 12 sample Infinium
HumanMethylation450 array using the Infinium HD Methyl-
ation protocol and Tecan robotics (Illumina). The proportion of
probes with detection P-value < 0.01 was examined to confirm
strong binding of the sample to the array. The probability of a
probe within a sample either being called as missing or with a de-
tection P-value < 0.001 was estimated from the average rate across
all probes and samples. A threshold for probes showing significant
deviation from random missingness (or excess poor binding) was
determined by testing against a binomial distribution for the
number of samples at the 0.05 significance level with a Bonferroni
correction for the number of probes. Any probe withmore than 11
individuals with missing data or more than five individuals with
detection P-values > 0.001 were removed. Probes on the X and Y
chromosomes were also removed. After QC, 614 samples and
458,836 autosomal probes remained. Raw intensity values were
background corrected andnormalized to internal controls using the
Genome Studio software and beta values generated. Percentage of
monocytes, B cells, NK cells, CD4+ T cells, CD8+ T cells, and gran-
ulocytes were predicted using a published prediction algorithm
(Houseman et al. 2012). Beta values were corrected for array, sex,
age, age2, sex 3 age, sex 3 age2, and predicted white blood cell
counts using a generalized linearmodel with a logistic link function,
and residuals used in subsequent analyses. BSGS methylation data
are available from theNCBIGene ExpressionOmnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE56105.

Genotyping and methylation quantitative trait loci (mQTL)
analysis

All BSGS individuals were genotyped on the Illumina Human610-
Quad BeadChip. Full details of genotyping procedures is given
elsewhere (Medland et al. 2009). Standard QC filters were applied,
leaving 528,509 SNPs. The remaining genotyped SNPswere phased
using HAPI-UR (Williams et al. 2012) and imputed using 1000 Ge-
nomes Phase I Version 3 (The 1000 Genomes Project Consortium
2010) with IMPUTE2 (Howie et al. 2011, 2012). Raw imputed SNPs
were filtered to remove any SNPs with low imputation quality as
defined by an R2 < 0.8. Subsequent quality control removed SNPs
with minor allele frequency (MAF) < 0.05, those with Hardy–
Weinberg equilibrium (HWE) P < 13 10�6, and amissing rate>10%.
After filtering, 6,005,138 SNPs remained for further analysis. Asso-
ciation of methylation data (residuals after adjusting for covariates)
with imputed genotype probabilities was performed using Merlin
(Abecasis et al. 2002).

Repeatability

The repeatability measure (Rm) for each methylation probe was
calculated as the ratio of the between-individual variance over the
total variance (Vtotal). These quantities can be extracted from
a random effects linear regression with individual as random effect

Rm =
s2
a

s2
a +s

2
e

;

where s2
a and s2

e are the between-subject and residual (within-
subject) variances, respectively; and Vtotal = s2

a +s2
e . The lmer()

function in the lme4 R CRAN package (Bates et al. 2014) was used
to perform the random effects linear regression.

Since the variance between individuals can be partitioned
into variance due to genetic factors (VG) and variance due to per-
manent differences in environment between individuals (VEp), we
can define Rm as

Rm =
VG +VEp

Vtotal
:

The genetic variance can be further partitioned into additive
and nonadditive (dominant and epistatic effects) genetic variance,
so that Rm can be defined as

Rm =
VGadditive

Vtotal
+
VGnon additive

Vtotal
+

VEp

Vtotal
:

The proportion of phenotypic variance due to additive ge-
netic factors (VGadditive

=Vtotal) is the (narrow sense) heritability (h2).
Based on this equation, we can see that h2 estimates should not
exceed Rm estimates in the same sample, and Rm therefore sets an
upper bound for h2. By comparing the Rm and h2, we can assess the
extent to which variation between individuals is due to additive
genetic factors.

Probes that contained SNPs or had been identified pre-
viously as potentially cross-hybridizing (Price et al. 2013) showed
some inflation in Rm and h2 (Supplemental Fig. S9). Therefore, to
avoid potential biases due to effects of SNPs on array binding, we
removed all probes that encompass SNPs annotated in the 1000
Genomes Project data (The 1000 Genomes Project Consortium
2010) and high-quality SNPs in dbSNP (Price et al. 2013). Probes
where all samples had beta # 0.1 or all samples had beta $ 0.9
were excluded from analysis, as the lack of between-individual
variance means Rm or h2 cannot be accurately estimated for
these probes. The null distribution for Rm was derived using data
permutation.

Heritability

The heritability for each probe was estimated in BSGS by parti-
tioning its variance into additive genetic (VGadditive

) and environ-
mental (VEp) components by fitting a linear mixed model of the
form

y =m+Za+ e;

where y is the vector of the covariate-adjusted methylation
level; m is the mean value; a is the additive genetic effects; and e
is the unique environmental effects (residuals). The model was
fitted using QTDT (Abecasis et al. 2000), which uses maximum
likelihood to estimate the variance components. Probes that
contained SNPs or had been identified previously as poten-
tially cross-hybridizing (Price et al. 2013) were excluded from
analysis.

Association analysis

To identify probes associated with smoking status and sex, data
from all waves was analyzed using a linear mixed model, where
individual wasmodeled as a random effect. LBC1936 samples were
used for discovery and LBC1921 as a replication sample. Associa-
tion with smoking (never smokers versus current smokers) was
performed on residuals corrected for sample plate, BeadChip, po-
sition on BeadChip, hybridization date, sex, cell count, and wave.
For sex-association analysis, residuals uncorrected for sex were
used, and smoking status (current/ex/never) was added as a covar-
iate in the model. Smoking information was available at all waves
for 693 of the 1366 (51%) individuals; and for the vast majority of
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these individuals, smoking status did not change across the dif-
ferent waves. Therefore, baseline smoking status was used for all
samples in the association analysis. In a mixedmodel analysis, the
proportion of variance explained by fixed effects (marginal R2

value) for each probe can be extracted using the r.squaredGLMM()
command in the MuMIn R package (Barton 2014). For the sex-
association analysis, since both sex and smoking were fitted as
fixed effects, to get the proportion of variance explained by sex
alone, the marginal R2 had to be extracted from a linear mixed
model that included only sex but not smoking. Probes significant
at the 5% level after Bonferroni correction in the LBC1936 dis-
covery sample (P < 2.133 10�7 for 234,811 tests) were validated in
the LBC1921 replication sample.

Data access
LBC data have been submitted to the EuropeanGenome-phenome
Archive (EGA; https://www.ebi.ac.uk/ega/home) under accession
number EGAS00001000910.
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