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Abstract

Metacognition, the ability to assess one’s own knowledge, has been targeted as a critical learning 

mechanism in mathematics education. Yet, the early childhood origins of metacognition have 

proven difficult to study. Using a novel nonverbal task and a comprehensive set of metacognitive 

measures, we provide the strongest evidence to date that young children are metacognitive. We 

show that children as young as 5 years make metacognitive “bets” on their numerical 

discriminations in a wagering task. However, contrary to previous reports from adults, children’s 

metacognition proved to be domain-specific: children’s metacognition in the numerical domain 

was unrelated to their metacognition in another domain (emotion discrimination). Moreover, 

children’s metacognitive ability in only the numerical domain predicted their school-based 

mathematics knowledge. The data provide novel evidence that metacognition is a fundamental, 

domain-dependent cognitive ability in children. The findings have implications for theories of 

uncertainty and reveal new avenues for training metacognition in children.

Metacognition has been targeted as an important learning mechanism in the STEM 

disciplines, particularly mathematics (Kuhn, 2000; Schoenfeld, 1992). Education research 

has shown that those with poor metacognitive abilities tend to overestimate their knowledge, 

study less, and consequently learn less (Dunlosky & Rawson, 2011; Metcalfe & Kornell, 

2007). Creating interventions that explicitly teach metacognitive strategies is an active area 

of investigation (de Bruin & van Gog, 2012; Son, 2010). Moreover, models of mathematics 

learning that include assessments of metacognitive monitoring and self-regulation better 
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predict children’s mathematical competence in the classroom (Schoenfeld, 2006). However, 

it is currently unclear how metacognitive skills emerge in development or what factors 

influence their developmental trajectory. The vast majority of developmental research on 

metacognition has been with older children between the ages of 8 and 18 years because 

children younger than 7 or 8 often fail metacognitive tasks (Flavell, 1979; Reyna, 1996). 

Thus it is unclear what types of interventions would be effective for training metacognition 

to improve young children’s learning within the domain of mathematics and beyond.

A long history of metacognition research in adults, especially with memory tasks, has shown 

that humans can access and rate their internal uncertainty (Nelson & Narens, 1990). In a 

typical metacognition paradigm, subjects study a list of words or facts and estimate the 

likelihood that they will recall individual list items at a later time. Adults are typically 

above-chance at predicting their future recall of the list items, and thus are capable of 

assessing the strength of their own knowledge (Dunlosky & Bjork, 2008). An open question 

is to what extent metacognition is available to young children (< 8 years old). The existing 

data from older children and adolescents show that uncertainty monitoring improves with 

age (Koriat & Shitzer-Reichert, 2002; Lyons & Ghetti, 2010; Sussan & Son, 2007). 

However, data on the development of metacognitive skills during early childhood are 

generally sparse and sometimes conflicting (Balcomb & Gerken, 2008; Schneider, 2008). 

Several studies rely on measures used to assess metacognition in adults, such as verbal 

measures of metacognitive strategies, which could be ineffective for measuring 

metacognitive ability in young children (Garner & Alexander, 1989; Reyna, 1996). In this 

study, we begin to fill the void in the study of early childhood metacognition using a novel 

non-verbal metacognition task.

We also investigate whether the relationship between metacognitive skill and learning in 

young children is content-specific. Studies of adult metacognition, wherein subjects rate 

their own knowledge across different domains, support a domain-general model of 

metacognitive processes (Schraw, Dunkle, Bendixen, & Roedel, 1995). A domain-general 

model of metacognition predicts that an individual with poor uncertainty monitoring for one 

domain (e.g., solving subtraction problems) will also have poor uncertainty monitoring for 

another domain (e.g., recognizing faces). Such cross-domain correlations in metacognitive 

sensitivity have been observed in adults. For example, adults who are good at estimating 

their knowledge of major American cities also tend to be good at estimating their knowledge 

of mathematical probabilities (Schraw et al., 1995; but see Kelemen, Frost, & Weaver, 

2000). Additionally, adults do not show a metacognitive benefit for domains in which they 

have a high level of knowledge or expertise such as music or physics, suggesting that 

metacognitive ability does not co-vary with domain knowledge (Glenberg & Epstein, 1987). 

The prior data indicate that adult metacognition is a general skill that is correlated across 

content domains and is not bound to domain knowledge. If metacognition is also domain-

general in young children, this would imply that metacognitive interventions in any domain 

(e.g., math, reading, science) will improve metacognitive ability across all domains. 

Alternatively, some researchers have suggested that metacognitive abilities could be 

domain-specific early in development and only generalize across domains as children 

mature (Lyons & Ghetti, 2010; Pressley, Borkowski, & Schneider, 1987; Schraw et al., 

1995; Veenman & Spaans, 2005). We test these hypotheses by comparing the metacognitive 
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abilities of 5 to 8-year-olds from two distinct cognitive judgment types: numerical 

judgments and emotional valence judgments. We then investigate the relationship between 

children’s metacognitive abilities and standardized measures of mathematical learning and 

general intelligence.

Beyond revealing the origins of metacognition, tests of metacognition in children have 

implications for theories of the representation of uncertainty. Recent theories of cognitive 

and neural representations propose that internal uncertainty is inherently encoded in 

perceptual representations (Knill & Pouget, 2004; Pouget, Beck, Ma, & Latham, 2013). 

These theories argue that by encoding information probabilistically, the brain automatically 

represents both the intensity of a stimulus along a perceptual dimension and the uncertainty 

associated with that internal estimate of stimulus intensity (Ma, Beck, Latham, & Pouget, 

2006). There is evidence that the cognitive and neural computations underlying confidence 

judgments, such as those tested in the current study, are derived from probabilistic 

representations of perceptual variables (Beck et al., 2008; Kiani & Shadlen, 2009). It is 

unknown whether young children represent their uncertainty during perceptual 

discriminations and use uncertainty to guide their postdecisional confidence judgments. 

Evidence that young children are capable of accurately judging both the perceptual intensity 

of a stimulus and their uncertainty about that judgment would be consistent with a central 

claim from theories of probabilistic representation—that representations of uncertainty are 

fundamental.

Method

We asked 5- to 8-year-olds to make a basic numerosity discrimination (“Which set is 

larger?”), immediately followed by a retrospective wager on the accuracy of that judgment 

(“How sure are you?”). Children earned or lost virtual tokens depending on both their 

accuracy and the value of their bet. In the same session, children also made confidence 

judgments after perceptually comparing the valence of a facial expression. This allowed us 

to directly compare children’s metacognitive abilities in the ‘number’ and ‘emotion’ 

domains while keeping task demands constant. Separately, we administered a risk 

assessment to control for individual biases that might influence the children’s confidence 

wagers. Finally, we administered standardized IQ tests to examine the relationship between 

metacognition and mathematics development (c.f. Kelemen, Winningham, & Weaver, 

2007).

Participants

We aimed to recruit 45 to 50 subjects (ages 5 to 8), distributed approximately evenly across 

three age groups. We did not include three participants who exclusively chose one bet option 

during the entire task because we could not calculate their metacognitive scores. The general 

assessment is that these subjects were not motivated to participate or follow task 

instructions. Data for the remaining 45 children (M = 6y7m) are reported here (5 to 6 year-

olds: n = 18, M = 5y6m, range = 5y – 6y1m; 6 to 7 year-olds: n = 13, M = 6y6m, range = 

6y1m–7y1m; 7 to 8 year-olds: n = 14, M =7y11m, range = 7y1m–8y11m).
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Six children exclusively chose the high bet for either the number task or the emotion task. 

Some metacognitive measures are invalid for that behavior. Those six subjects could not be 

included in a subset of the statistics that required a full dataset for each subject (e.g., paired 

t-tests, PCA).

Behavioral Measures

Children completed a baseline risk preference assessment, the metacognitive wagering task 

for both stimulus types, and lastly, standardized intelligence tests. Children were rewarded 

with tokens in all tasks, and exchanged them for prizes. Although they were told their prizes 

would be commensurate with the amount they earned in the wagering tasks, all children 

received similarly valued prizes.

Baseline risk assessment—Children completed a version of the “Cups Task” which we 

used to calculate their baseline risk preferences (Levin, Weller, Pederson, & Harshman, 

2007; see Supplemental Material).

Metacognition task—Children were familiarized with the metacognitive wagering 

paradigm prior to testing (see Supplemental Material). The task presented children with a 

binary discrimination task (“Which picture has more dots?” or “Which person is happier?”) 

on a touchscreen computer. Immediately following their decision, children made a 

confidence judgment by placing a wager on their accuracy (Figure 1). Children completed at 

least 30 trials in each of the number and emotion conditions.

Number condition: Two sets of dots, randomly placed and heterogeneous in size, were 

presented on each trial in quantities from 3 to 31. Each pair of dot arrays was classified as an 

easy, medium, or hard judgment based on the numerical ratio of the pair (1:2 ratio, 4:5 ratio, 

and a 9:10 or greater ratio, respectively). If children performed greater than 80% on the 

numerical judgments within the first ten trials, perceptual discrimination difficulty was 

increased to include more medium or hard judgments so that children were motivated to use 

both high and low bets throughout the session.

Emotional valence control condition: Two pictures of a single individual with different 

intensities in their emotional expression were presented on each trial. In order to 

systematically vary the intensity of the expression, a photograph of a neutral expression was 

morphed with a happy expression from the same individual in 120 steps using Morph Age 

Express 4.1.1 (c.f. Kelly & Metcalfe, 2011). The photographs of three females were taken 

from the Yale Face Database (Belhumeur, Hespanha, & Kriegman, 1997). Easy, medium, 

and hard trials were classified based on the distance between the two morphs (average 

distance of 48, 16, and 8 morphs, respectively). Discrimination difficulty was calibrated for 

each subject in the same manner as for the numerical condition.

Measures of metacognition—We calculated three measures for each child: phi, gamma, 

and A’ROC (described in Results). The data were inspected for outliers (> 2 SD of the 

mean). One data point (A’ROC, number task) for one subject was the sole outlier, and was 

excluded.
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Intelligence and ability tests—Children also completed the Test of Early Mathematical 

Ability 3 (TEMA-3) and the Kaufman Brief Intelligence Test 2 (KBIT-2) to measure their 

mathematical, verbal, and nonverbal IQ (Ginsburg & Baroody, 2003; Kaufman & Kaufman, 

2004).

Results

First, we test children’s overall metacognitive sensitivity. Then, we test the domain-

specificity of children’s metacognition using multiple measures of metacognitive sensitivity 

(phi, gamma, and A’ROC). Finally, we examine the correlation between children’s 

metacognitive sensitivity and education in the domain of mathematics.

Metacognitive sensitivity

Children placed appropriate bets on the accuracy of their discrimination judgments. 

Discrimination accuracy was significantly above chance on both tasks (number: M = 0.80, 

t(44) = 21.50, p < .001; emotion: M = 0.77, t(44) = 24.63, p < .001). We found that children 

generally bet appropriately: they placed high-risk bets more often on correct trials than 

incorrect trials (Figure 2).

In addition, the proportion of high-risk bets decreased as difficulty increased (Figure 3).

Phi correlation—To measure metacognitive sensitivity, we calculated the phi correlation 

between task accuracy (correct or incorrect responses) and confidence judgments (high or 

low bets) for each child (c.f. Kornell, Son, & Terrace, 2007). Phi is also reducible to 

Pearson’s r. Phi correlations that are significantly greater than zero reflect a pattern of 

successful predictions about the accuracy of their judgments1. Phi coefficients were 

significantly greater than zero in both the number and emotion conditions for all age groups 

(Table 1).

Effects of age: Prior research with older children has reported that metacognitive sensitivity 

increases with age. We conducted a repeated measures two-way ANOVA of age group by 

experimental condition on phi. We found a main effect of age group, F(2, 36) = 9.73, p < .

001, but no effect of condition, F(1, 36) = 0.02, p = .90, and no interaction, F(2, 36) = 0.32, 

p = .73. Metacognitive sensitivity on both the number and emotion conditions generally 

increases with age among 5- to 8-year-olds.

Control analyses—Children’s metacognitive sensitivity was unaffected by their baseline 

risk preferences and response time cues.

Risk preferences: Children’s baseline risk preferences were not correlated with phi for 

either condition (Table 2). This indicates that children’s metacognitive judgments were not 

dominated by generic risk-seeking or risk aversive behaviors.

Response time: According to some models of decision-making, the elapsed time to make a 

perceptual judgment is a critical internal parameter for estimating uncertainty (Kiani & 

Shadlen, 2009). However, others have argued that confidence judgments can be confounded 
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by response time in wagering tasks where the appropriate bet can be predicted by the “public 

cue” of one’s own response time (Hampton, 2009; Koriat & Ackerman, 2010). That is, 

subjects could base their confidence judgments on the external observation of their own 

response time, rather than by an internal monitoring mechanism.2

To test whether response time was a critical predictor of children’s confidence judgments, 

we calculated phi as a partial correlation of accuracy and risk that controlled for 

discrimination response time. The phi correlation remained significant for both conditions 

(number: M = 0.21, t(40) = 6.26, p < .001; emotion: M = 0.17, t(42) = 4.80, p < .001), 

suggesting that children’s confidence judgments depended on an internal representation of 

uncertainty that is independent of response time (as predicted by uncertainty models 

developed in Beck et al., 2008).

Domain-specificity of metacognition

To test whether metacognitive knowledge follows a domain-general or domain-specific 

trajectory during early childhood, we compared several measures of metacognitive 

sensitivity across the number and emotion domains: confidence bias, phi, gamma, and 

A’ROC. Prior studies of metacognition have used only one or two of these measures, though 

each one may have its own flaws (Fleming & Dolan, 2012; Masson & Rotello, 2009; 

Nelson, 1984).

Confidence bias

We calculated a measure of confidence judgment bias by taking each child’s average 

confidence judgment (high or low) minus the child’s average task accuracy (confidence 

bias: number M = +0.05 ± .046, emotion M = −0.08 ± .076). Biases differed significantly 

between the number and emotion domains (t(38) = −3.45, p = .001), with children exhibiting 

marginal overconfidence in their numerical judgments and underconfidence in their emotion 

judgments (one-sample t-tests: t(38) = 1.92, p = .059; t(38) = −2.10, p = .04; see 

Supplemental Material for further tests). However, bias effects are known to be influenced 

by differences in task accuracy, so the true degree of children’s overestimation or 

underestimation is unclear (Schraw & Roedel, 1994).

Phi coefficient—The phi coefficient, as described above, represents each subject’s 

correlation between their discrimination accuracy and their risk choices. We tested whether 

children’s phi coefficients were correlated between the number and emotion conditions. 

Children’s phi values were not correlated between the two domains, suggesting that 

children’s metacognitive sensitivity is not uniform across different judgment types (Table 

3).

Gamma coefficient—The gamma coefficient is a non-parametric measure of correlation 

that is calculated by taking the difference between concordances (e.g., high bets on correct 

items) and discordances (e.g., high bets on incorrect items) and dividing by the total number 

of trials, bounding the score between 1 and -1 (Nelson, 1984). Gamma was significantly 

above zero for both conditions and most age groups, although the youngest children showed 

large variance in their scores (Table 1). However, the lack of a gamma effect in young 

Vo et al. Page 6

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



children should be viewed cautiously due to systematic biases in the gamma measure 

(Masson & Rotello, 2009).

As with phi, gamma was not statistically predicted by the child’s baseline risk preference 

(Table 2). Gamma also was not correlated between the number and emotion domains (Table 

3).

A′ROC—We calculated a non-parametric measure of metacognitive sensitivity from signal 

detection theory: the estimated area under the receiver operation characteristic (ROC) curve, 

or A′ROC (Galvin, Podd, Drga, & Whitmore, 2003; Kornbrot, 2006). The ROC function 

plots the hit rate (high bets on correct trials or low bets on incorrect trials, or 

‘concordances’) against the false alarm rate (low bets on correct trials and high bets on 

incorrect trials, or ‘discordances’), such that equivalence between the two represents no 

metacognitive sensitivity (A′ROC = 0.5, see Figure 4).

The area under the ROC curve, A′ROC, was significantly greater than chance for both 

conditions and all age groups, indicating that even the youngest children showed significant 

metacognitive sensitivity (Table 1). A′ROC was not significantly influenced by baseline risk 

preferences (Table 2). And as with phi and gamma, A′ROC was not correlated between the 

number and emotion domains (Table 3).

Summary analyses across measures of metacognition—The results from phi, 

gamma, and A′ROC broadly indicate that individual differences in metacognitive ability are 

not correlated across content domains during early childhood. To test whether this was the 

broad pattern across all measures, we performed a canonical correlation analysis (CCA) 

(Hair, Anderson, Tatham, & Black, 1998).

CCA finds the maximal correlation between a linear combination of one set of variables (in 

this case, number-related metacognition measures) and a linear combination of another set 

(emotion-related measures). The full CCA model indicated that there is no significant linear 

relationship between the two domains (Wilks Λ = .759, R2 c = .431, F(9, 63.43) = 0.846, p 
= .58). This supports the conclusion that metacognitive ability is domain-specific in 

children.

We next used principal components analysis (PCA) to obtain a summary score of 

metacognitive sensitivity for each subject. PCA plots the data in an n-dimensional space (n = 

number of input variables) and determines which of the n dimensions, or components, 

account for most of the variance in the data (Hair et al., 1998).

We performed a PCA across the measures of metacognitive sensitivity (phi, gamma, and 

A’ROC) for both domains, resulting in six input variables. Both the Kaiser criterion and the 

scree plot indicated that two components accounted for most of the variance in the data 

(Table 4). The loads, which quantify the strength of the relationship between the component 

and each input variable, were varimax rotated to improve the interpretability of the solution. 

The metacognitive measures clustered together by domain. All number measures loaded 

highly on component 1, whereas all emotion measures loaded highly on component 2 (Table 

4). These results are consistent with the conclusion that children’s performance segregates 
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by content domain, rather than by measurement type. We then used the individual PCA 

scores for each component as a summary measure of number-related or emotion-related 

metacognition to test the relationship between metacognitive sensitivity and children’s 

cognitive development.

Metacognition and education

To investigate the possible link between domain-specific metacognition and cognitive 

development, we correlated children’s metacognitive scores from the PCA with their 

standardized test scores. Metacognitive sensitivity on numerical judgments, but not emotion 

judgments, correlated with children’s mathematics test scores on the TEMA (Figure 5). 

Since children’s mathematics ability is not related to metacognitive sensitivity for both 

conditions, the effect is not likely explained by a generic age or competence effect.

No measure of metacognition was significantly correlated with general intelligence scores as 

measured by the KBIT-2 (emotion r(30) = .11, p = .55, number r(30) = .13, p = .46). This is 

further evidence of the domain-specificity of metacognition in that children’s numerical 

metacognition is uniquely related to their numerical and mathematical skills.

Discussion

Our data provide novel evidence that 1) young children are capable of reporting their 

uncertainty in a nonverbal metacognitive task; 2) uncertainty monitoring in early childhood 

is not a global ability that matures uniformly across content domains, but instead develops 

along domain-specific trajectories; 3) children’s domain-specific metacognition for 

numerical discrimination predicts their formal education achievement in mathematics.

Young children monitor their internal uncertainty

Several prior studies have reported that young children fail metacognitive tasks (Flavell, 

Green, & Eleanor, 2000; Flavell, 1979; Miller & Bigi, 1989; Myers & Paris, 1978; for 

review, Garner & Alexander, 1989; Reyna, 1996). However, we show with a nonverbal 

wagering task that young children are capable of uncertainty monitoring for a basic 

perceptual discrimination task. That is, young children were metacognitively sensitive 

across age groups, stimulus types, and multiple metacognitive measures (phi, gamma, A
′ROC). This robust relationship between discrimination accuracy and confidence judgments 

on a trial-by-trial basis provides strong evidence that young children can access and track an 

internal estimate of their uncertainty.

Uncertainty monitoring is domain-specific in early childhood

We found no correlation between children’s metacognitive abilities in the number and 

emotion domains across multiple measures of metacognitive sensitivity. This was confirmed 

by canonical correlation analysis and principal components analysis (PCA). This suggests 

that metacognitive skill does not globally mature across content domains.

Furthermore, we found that generic metacognitive skill cannot predict formal mathematical 

ability—only numerical metacognition, not emotion-related metacognition, correlated with 
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scores on a standardized math test. Whether numerical metacognition drives the 

development of mathematical ability, or whether mathematical ability drives the 

development of numerical metacognition remains to be determined. Nonetheless, these 

results imply that metacognition develops along domain-specific trajectories, such that 

children’s metacognitive abilities depend on information content and domain knowledge.

Our results support the hypothesis that metacognition transitions from a domain-specific 

process to a domain-general mechanism over development. A previous study with older 

children suggests that metacognitive abilities begin to show correlations among different 

content domains during adolescence (Veenman & Spaans, 2005). By adulthood, 

metacognition seems to be largely domain-general and independent of domain knowledge 

(Glenberg & Epstein, 1987; Schraw et al., 1995). These data are broadly consistent with the 

theory that content-specific learning strategies (and therefore, metacognitive abilities) 

develop as knowledge increases in a domain (Pressley et al., 1987; Reyna, 1996). Global 

abilities emerge when children can generalize knowledge structures and learning procedures 

across domains (Lyons & Ghetti, 2010; Schneider, 2008).

Implications for education

Our study shows that children can report their uncertainty nonverbally by at least age 5. This 

suggests that nonverbal paradigms, such as wagering, could be used in metacognitive 

interventions with preschool children. Yet, although children were generally metacognitive 

in our task, their metacognitive judgments were still imperfect. Children made several errors 

in their metacognitive “bets”, and on average these errors were biased toward higher wagers 

(‘overconfidence’) for numerical judgments and lower wagers for emotion judgments 

(‘underconfidence’; see Supplemental Material for discussion). Moreover, as described 

above, children’s metacognitive skill was domain-specific and related to their formal 

domain knowledge. Overall our data suggest that young children can show different 

metacognitive skills and biases for different stimulus types. In this case, generic 

interventions to improve children’s metacognitive accuracy might be less effective than 

training specific metacognitive strategies that depend on the content of the learning 

materials.

We predict that early in development the types of metacognitive errors that children make in 

one domain would not transfer to another domain. Characterizing these errors could be 

informative for educators to develop specific intervention techniques (Borkowski, 1992; 

Carr & Biddlecomb, 1998; Kuhn, 2000).

Children’s internal uncertainty may be represented probabilistically

Questions remain as to the precise nature of the representations that allow children to 

monitor their uncertainty. There are currently few formal models of metacognitive processes 

for children or adults (Koriat & Ackerman, 2010; Nelson & Narens, 1990). One possibility, 

suggested by probabilistic models of representation, is that humans inherently encode 

uncertainty in their perceptual representations (Knill & Pouget, 2004; Pouget et al., 2013). If 

this is true, then even young children should show evidence of representing the uncertainty 

associated with their perceptual judgments. Our data show that they do.
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The probabilistic theory of representation proposes that the representation of uncertainty is a 

fundamental component of the cognitive architecture (Beck et al., 2008; Kiani & Shadlen, 

2009; Ma et al., 2006; Pouget et al., 2013). Our finding that young children accurately report 

their uncertainty is consistent with the proposal that the representation of uncertainty is a 

fundamental ability. Developmental changes between childhood and adulthood have not yet 

been studied with this framework. Yet, probabilistic theories could provide new insights into 

the nature of fundamental mechanisms by which uncertainty is represented and those by 

which uncertainty is consciously accessed and reported.

Conclusion

We conclude that young children ‘know what they know’ in making basic perceptual 

judgments. Young children can accurately report their uncertainty nonverbally, by at least 

age 5. Yet, children’s metacognitive abilities continue to develop into childhood and 

adolescence, and even adults are far from perfect (Dunlosky & Bjork, 2008). Our data 

suggest that metacognitive abilities develop in tandem with domain-specific changes in 

children’s knowledge. The links we observed between children’s metacognitive sensitivity 

and formal mathematical abilities indicate that early interventions on children’s 

metacognitive strategies could have far-reaching effects on their education.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to Brad Mahon, Jeff Beck, the Aslin Lab, and the CAOs Lab, especially Gina Gerhardt, Laura 
Ackerman, and Sydney Robinson. This work was funded by NSF REESE 1109366 to A.P. & J.F.C. and NIH R01 
HD064636 to J.F.C.

References

Balcomb FK, Gerken L. Three-year-old children can access their own memory to guide responses on a 
visual matching task. Developmental Science. 2008; 11(5):750–760. [PubMed: 18801131] 

Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J, Pouget A. Probabilistic population 
codes for Bayesian decision making. Neuron. 2008; 60(6):1142–1152. [PubMed: 19109917] 

Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. Fisherfaces: Recognition using class 
specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997; 
19(7):711–720.

Borkowski JG. Metacognitive theory: A framework for teaching literacy, writing, and math skills. 
Journal of Learning Disabilities. 1992; 25(4):253–257. [PubMed: 1573335] 

Carr, M.; Biddlecomb, B. Metacognition in mathematics from a constructivist perspective. In: Hacker, 
DJ.; Dunlosky, J.; Graesser, AC., editors. Metacognition in Educational Theory and Practice. 
Mahwah, NJ: Lawrence Erlbaum Associates Publishers; 1998. p. 69-91.

De Bruin ABH, van Gog T. Improving self-monitoring and self-regulation: From cognitive psychology 
to the classroom. Learning and Instruction. 2012; 22(4):245–252.

Dunlosky, J.; Bjork, RA. The Integrated Nature of Metamemory and Memory. In: Dunlosky, J.; Bjork, 
RA., editors. Handbook of Metamemory and Memory. Hillsdale, NJ: Psychology Press; 2008. p. 
11-28.

Dunlosky J, Rawson KA. Overconfidence produces underachievement: Inaccurate self evaluations 
undermine students’ learning and retention. Learning and Instruction. 2011; 22(4):271–280.

Vo et al. Page 10

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Flavell JH. Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. 
American Psychologist. 1979; 34(10)

Flavell JH, Green FL, Eleanor R. Development of children ’ s awareness of their own thoughts. 
Journal of Cognition and Development. 2000; 1:97–112.

Fleming SM, Dolan RJ. The neural basis of metacognitive ability. Philosophical Transactions of the 
Royal Society B: Biological Sciences. 2012; 367(1594):1338–1349.

Galvin SJ, Podd JV, Drga V, Whitmore J. Type 2 tasks in the theory of signal detectability: 
Discrimination between correct and incorrect decisions. Psychonomic Bulletin & Review. 2003; 
10(4):843–876. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15000533. [PubMed: 
15000533] 

Garner R, Alexander PA. Metacognition: Answered and unanswered questions. Educational 
Psychologist. 1989; 24(2):143–158.

Ginsburg, HP.; Baroody, AJ. Test of Early Mathematical Ability. 3rd ed.. Austin, TX: PRO_ED, Inc.; 
2003. 

Glenberg AM, Epstein W. Inexpert calibration of comprehension. Memory & Cognition. 1987; 15(1):
84–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3821493. [PubMed: 3821493] 

Hair, JF.; Anderson, RE.; Tatham, RL.; Black, WC. Multivariate Data Analysis. 5th ed.. Pearson 
Education, Inc.; 1998. 

Hampton RR. Multiple demonstrations of metacognition in nonhumans: Converging evidence or 
multiple mechanisms? Comparative Cognition & Behavior Reviews. 2009; 4:17–28. [PubMed: 
20046911] 

Kaufman, AS.; Kaufman, NL. Kaufman Brief Intelligence Test. 2nd ed.. NCS Pearson; 2004. 

Kelemen WL, Frost PJ, Weaver CA. Individual differences in metacognition: Evidence against a 
general metacognitive ability. Memory & Cognition. 2000; 28(1):92–107. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/10714142. [PubMed: 10714142] 

Kelemen WL, Winningham RG, Weaver CA. Repeated testing sessions and scholastic aptitude in 
college students’ metacognitive accuracy. European Journal of Cognitive Psychology. 2007; 
19(4/5):689–717.

Kelly KJ, Metcalfe J. Metacognition of emotional face recognition. Emotion. 2011; 11(4):896–906. 
[PubMed: 21859205] 

Kiani R, Shadlen MN. Representation of confidence associated with a decision by neurons in the 
parietal cortex. Science (New York, N.Y.). 2009; 324(5928):759–764.

Knill DC, Pouget A. The Bayesian brain: The role of uncertainty in neural coding and computation. 
Trends in Neurosciences. 2004; 27(12):712–719. [PubMed: 15541511] 

Koriat A, Ackerman R. Choice latency as a cue for children’s subjective confidence in the correctness 
of their answers. Developmental Science. 2010; 13(3):441–453. [PubMed: 20443965] 

Koriat, A.; Shitzer-Reichert, R. Metacognitive judgments and their accuracy: Insights from the 
processes underlying judgments of learning in children. In: Chambres, P.; Izaute, M.; Marescaux, 
P-J., editors. Metacognition: Processes, Function, and Use. Kluwer Academic Publishers; 2002. p. 
1-17.

Kornbrot DE. Signal detection theory, the approach of choice: Model-based and distribution-free 
measures and evaluation. Perception & Psychophysics. 2006; 68(3):393–414. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/16900832. [PubMed: 16900832] 

Kornell N, Son LK, Terrace HS. Transfer of metacognitive skills and hint seeking in monkeys. 
Psychological Science. 2007; 18(1):64–71. [PubMed: 17362380] 

Kuhn D. Metacognitive development. Current Directions in Psychological Science. 2000; 9(5):178–
181.

Levin IP, Weller JA, Pederson AA, Harshman LA. Age-related differences in adaptive decision 
making: sensitivity to expected value in risky choice. Judgment and Decision Making. 2007; 2(4):
225–233.

Lyons, KE.; Ghetti, S. Metacognitive development in early childhood: New questions about old 
assumptions. In: Efklides, A.; Misailidi, P., editors. Trends and Prospects in Metacognition 
Research. Boston, MA: Springer US; 2010. p. 259-278.

Vo et al. Page 11

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ncbi.nlm.nih.gov/pubmed/15000533
http://www.ncbi.nlm.nih.gov/pubmed/3821493
http://www.ncbi.nlm.nih.gov/pubmed/10714142
http://www.ncbi.nlm.nih.gov/pubmed/10714142
http://www.ncbi.nlm.nih.gov/pubmed/16900832


Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic population codes. 
Nature Neuroscience. 2006; 9(11):1432–1438.

Masson MEJ, Rotello CM. Sources of bias in the Goodman-Kruskal gamma coefficient measure of 
association: implications for studies of metacognitive processes. Journal of Experimental 
Psychology: Learning, Memory, and Cognition. 2009; 35(2):509–527.

Metcalfe J, Kornell N. Principles of cognitive science in education: The effects of generation, errors, 
and feedback. Psychonomic Bulletin & Review. 2007; 14(2):225–229. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/17694905. [PubMed: 17694905] 

Miller PH, Bigi L. The development of children’s understanding of attention. Merrill-Palmer Quarterly 
of Behavior and Development. 1989; 25(4):235–250.

Myers MI, Paris SG. Children’s metacognitive knowledge about reading. Journal of Educational 
Psychology. 1978; 70(5):680–690.

Nelson TO. A comparison of current measures of the accuracy of feeling-of-knowing predictions. 
Psychological Bulletin. 1984; 95(1):109–133. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/6544431. [PubMed: 6544431] 

Nelson TO, Narens L. Metamemory: A theoretical framework and new findings. The Psychology of 
Learning and Motivation. 1990; 26:125–173.

Pouget A, Beck JM, Ma WJ, Latham PE. Probabilistic brains: knowns and unknowns. Nature 
Neuroscience. 2013; 16(9):1170–1178.

Pressley M, Borkowski JG, Schneider W. Cognitive strategies: Good strategy users coordinate 
metacognition and knowledge. Annals of Child Development, Vol. 4. 1987; 4:89–129.

Reyna VF. Conceptions of memory development with implications for reasoning and decision making. 
Annals of Child Development. 1996; 12:87–118.

Schneider W. The development of metacognitive knowledge in children and adolescents: Major trends 
and implications for education. Mind, Brain, and Education. 2008; 2(3):114–121.

Schoenfeld, AH. Learning to think mathematically: Problem solving, metacognition, and sense-making 
in mathematics. In: Grouws, DA., editor. Handbook for Research on Mathematics Teaching and 
Learning. Macmillan Publishing Co, Inc.; 1992. p. 334-370.

Schoenfeld AH. Alexander PA, Winne PH. Mathematics teaching and learning. Handbook of 
Educational Psychology. 2006:479–510.

Schraw G, Dunkle ME, Bendixen LD, Roedel TD. Does a general monitoring skill exist? Journal of 
Educational Psychology. 1995; 87(3):433–444.

Schraw G, Roedel TD. Test difficulty and judgment bias. Memory & Cognition. 1994; 22(1):63–69. 
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8035686. [PubMed: 8035686] 

Son LK. Metacognitive control and the spacing effect. Journal of Experimental Psychology: Learning, 
Memory, and Cognition. 2010; 36(1):255–262.

Sussan D, Son LK. The training of metacognitive monitoring in children. Columbia Undergraduate 
Science Journal. 2007; 2(1):98–109.

Veenman MVJ, Spaans MA. Relation between intellectual and metacognitive skills: Age and task 
differences. Learning and Individual Differences. 2005; 15(2):159–176.

Vo et al. Page 12

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ncbi.nlm.nih.gov/pubmed/17694905
http://www.ncbi.nlm.nih.gov/pubmed/17694905
http://www.ncbi.nlm.nih.gov/pubmed/6544431
http://www.ncbi.nlm.nih.gov/pubmed/6544431
http://www.ncbi.nlm.nih.gov/pubmed/8035686


Figure 1. 
(a) Children first made a judgment on either number or emotion stimuli. A black box 

appeared around their selection, and the bet icons appeared below while the stimuli 

remained on the screen. Children then made a confidence judgment by wagering on their 

discrimination accuracy. A smiley icon indicated a high bet (high confidence) and a squiggle 

icon indicated a low bet (low confidence). Children then gained or lost tokens in the bank 

based on their accuracy and bet selection. (b) Examples of number and emotion stimuli at 

each difficulty level.

Vo et al. Page 13

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Children made significantly more high bets following correct trials than incorrect trials 

(number: t(88) = −4.08, p < .001; emotion: t(88) = −3.76, p < .001).
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Figure 3. 
Accuracy and the proportion of high bets decreased with increasing difficulty for both 

conditions (main effect of difficulty across conditions: accuracy, F(2, 42) = 274.51, p < .

001;risk, F(2, 42) = 30.30, p < .001).
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Figure 4. 
Example receiver operating characteristic (ROC) functions using data from the emotion 

condition. The dashed diagonal line represents cases where the hit rate is equal to the false 

alarm rate, or when the subject exhibited no metacognitive sensitivity. Any deviations 

towards the upper left indicate sensitivity above chance. Here subject 5 has a smaller area 

under their curve, and is therefore less metacognitively sensitive than subject 6.
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Figure 5. 
Metacognitive sensitivity on the number task was significantly related to math ability (r(30) 

= .54, p = .001). A correlation was not observed for the emotion condition (emotion: r(30) 

= .26, p = .17). The abscissa represents scores from a PCA performed on three different 

measures of metacognition (phi, gamma, and A′ROC) from the numerical condition.
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Table 2

Correlations Between Metacognitive Sensitivity (phi, gamma, A’ROC) and Risk Preference for Each Task.

Risk preference score

r p df

Phi

  number .03 .86 39

  emotion .13 .42 41

Gamma

  number .01 .93 39

  emotion .05 .74 41

A’ROC

  number .19 .27 36

  emotion .22 .19 36
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Table 3

Correlations of the Three Measures of Metacognitive Sensitivity (phi, gamma, A’ROC) Across Domains.

Number vs. emotion

r df p

Phi −.12 37 .91

Gamma .08 37 .64

A’ROC .04 30 .84
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Table 4

Loadings of Each Metacognition Measure on the PCA Components.

Component 1 Component 2

N = 32 N = 32

Number phi .968*** .026

Number gamma .984*** .019

Number A′ROC .987*** −.026

Emotion phi −.153 .923***

Emotion gamma .109 .951***

Emotion A′ROC .062 .991***

Eigenvalue 2.93 2.73

Variance explained 49% 46%

Note. Loadings are reported for the varimax rotated solution.

***
p < .005.

PCA was performed on the correlation matrix to make the scales equivalent across variables.
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