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Because of the dearth of biomarkers of aging, it has been difficult
to test the hypothesis that obesity increases tissue age. Here we
use a novel epigenetic biomarker of aging (referred to as an “epi-
genetic clock”) to study the relationship between high body mass
index (BMI) and the DNA methylation ages of human blood, liver,
muscle, and adipose tissue. A significant correlation between BMI
and epigenetic age acceleration could only be observed for liver
(r = 0.42, P = 6.8 × 10−4 in dataset 1 and r = 0.42, P = 1.2 × 10−4 in
dataset 2). On average, epigenetic age increased by 3.3 y for each
10 BMI units. The detected age acceleration in liver is not associated
with the Nonalcoholic Fatty Liver Disease Activity Score or any of
its component traits after adjustment for BMI. The 279 genes that
are underexpressed in older liver samples are highly enriched (1.2 ×
10−9) with nuclear mitochondrial genes that play a role in oxidative
phosphorylation and electron transport. The epigenetic age accel-
eration, which is not reversible in the short term after rapid weight
loss induced by bariatric surgery, may play a role in liver-related
comorbidities of obesity, such as insulin resistance and liver cancer.
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Dietary restriction in humans causes changes that protect
against many age-related pathologies (1). In contrast, obesity

increases the risk of chronic age-related diseases, such as type 2
diabetes, heart disease, osteoarthritis, and certain types of cancer,
and thus constitutes a major and rising global health problem (2).
It is a plausible hypothesis that obesity increases the risk of at
least some of these diseases through accelerated tissue aging.
Leukocyte telomere length, which is a widely used biomarker

of aging, has been found to be negatively correlated with body
mass index (BMI) (3–7). Although the observed correlation be-
tween BMI and telomere length is relatively weak (r = 0.12) (4),
it is remarkable that these studies demonstrated that BMI is as-
sociated with an age acceleration effect in blood.
Assessing tissue age poses a significant methodological chal-

lenge because it is not clear which biomarkers of aging are ap-
propriate. There is a considerable debate in the literature as to
what extent markers/causes of cellular senescence, such as telo-
mere length, capture all aspects of tissue aging (8–10). Bio-
markers of tissue age should ideally be validated in a wide range
of tissues and cell types, provide a quantitative estimate of tissue
age, and should be uniformly applicable to tissue samples from
different tissue banks. S.H. recently developed a biomarker of
aging (“epigenetic clock”) based on DNA methylation (DNAm)
levels (11). This epigenetic clock is defined as a prediction
method of chronological age based on the DNAm levels of 353
CpGs. The predicted (estimated) age resulting from the epige-
netic clock is referred to as “DNAm age.” Here we use DNAm
age as a proxy of epigenetic tissue age. DNAm age is highly (r =
0.96) correlated to chronological age across sorted cell types
(CD4 T cells, monocytes, B cells, glial cells, neurons), complex
tissues (e.g., blood), and organs (brain, breast, kidney, liver, lung)
(11). The epigenetic clock is robust with respect to batch effects

and can be applied to two commercially standardized platforms:
the Illumina 450K array and the 27K array.

Results
DNAm age was calculated as described in ref. 11 from a total of
1,215 human samples profiled with the Illumina Infinium 450K and
27K arrays (n = 141 liver, n = 274 blood, n = 726 adipose tissue,
n = 74 muscle). Methylation datasets were either obtained from
public data repositories or—in the case of the replication dataset
from liver, muscle, and adipose tissue—generated for the purposes
of this study. To study the relationship between epigenetic age
acceleration and transcriptional changes, we also generated a novel
gene-expression dataset on the Human Gene 1.1 ST Array plat-
form from Affymetrix. An overview of the datasets used is provided
in Table 1 and in Methods.

Cross-Sectional Analysis of BMI and DNAm Age. At the discovery
stage, all publicly available Illumina DNAm datasets with phe-
notypic information on chronological age, BMI, and sex were
analyzed. In these analyses of liver (12), adipose tissue (13),
muscle (14), and blood (15, 16), a strong positive (and expected)
correlation between chronological age and DNAm age was ob-
served with correlation coefficients ranging from 0.78 to 0.90
(Fig. 1 A–D).

Significance

Because obese people are at an increased risk of many age-
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Because DNAm age has a strong linear relationship with
chronological age throughout tissues (11), we were able to
define age acceleration as the residual resulting from a linear
model that regressed DNAm age on chronological age. Thus,
a liver that exhibits positive (negative) age acceleration appears
to be older (younger) than expected. Interestingly, a significant
age acceleration for BMI was only observed for liver (r = 0.42,
P = 0.00068) (Fig. 1E), yielding ∼2.2 y of additional DNAm age
for each 10 BMI units (kg/m2) in the linear model (Table 2).
The correlation between BMI and epigenetic age acceleration
in blood is negative and insignificant in two of three datasets
[r = −0.066, P = 0.58 (Fig. 1H); r = 0.26, P = 0.012 (Fig. S1C),
and r = −0.18, P = 0.12 (Fig. S1D)]. These negative results in
blood echo those by Hannum et al. (17), who applied an al-
ternative epigenetic biomarker of aging to a large (n = 656)
blood methylation dataset. Our study demonstrates that it is

critical to look at the appropriate tissue when it comes to
detecting an increase of epigenetic age as a result of high BMI.
Given the lack of significant correlations in the nonliver tis-

sues, it is important to analyze the effect sizes (correlations)
that could have been detected in these datasets. A sample size of
n = 648 (adipose dataset 2) provides 87% power to reject the
null hypothesis (correlation = 0) at a significance level of 0.05 if
the absolute value of the true correlation coefficient jrj is larger
than 0.12. A sample size of 71 (blood dataset 4) provides 81%
power to detect a significant correlation if jrj is larger than 0.33.
We briefly mention that BMI correlates with individual CpGs in
blood and adipose tissue (18).

Replication and Validation of BMI-Related Epigenetic Age Acceleration
in Liver. To replicate the BMI-related epigenetic age acceleration
in liver, we analyzed a second dataset (n = 79) of samples. The

Table 1. Overview of the DNA methylation datasets

Tissue source Platform n Data ID Source Figure cor with BMI

Discovery dataset
1. Liver Illum450K 62 GSE48325 (12) 1, 3, 4 r = 0.42, P = 6.8×10−4

2. Adipose Illum450K 648 E-MTAB1866 (13) 1 r = −0.02, P = 0.68
3. Muscle Illum450K 48 GSE50498 (14) 1 r = −0.087, P = 0.56
4. Blood Illum27K 71 GSE49909 (15) 1 r = −0.066, P = 0.58
5. Blood Illum27K 92 GSE37008 (16) S1 r = 0.26, P = 0.012
6. Blood Illum450K 111 GSE53840 This study S1 r = −0.18, P = 0.12
7. Adipose Illum450K 46 Reader comment (20) 4 r = NA, P = NA

Replication dataset
8. Liver Illum450K 79 GSE61258 This study 2, 3 r = 0.42, P = 1.2E-4
9. Adipose Illum450K 32 GSE61257 This study 2 r = 0.18, P = 0.32
10. Muscle Illum450K 26 GSE61259 This study 2 r = 0.085, P = 0.68

Transcriptional data (messenger RNA)
11. Liver HuGen1.1ST 134 GSE61260 This study Table 3 NA

The rows correspond to the datasets used in this article. Columns report the tissue source, DNAm platform,
number of subjects (n), access information and citation, and a reference to the use in this report. The last column
reports the Pearson correlation coefficient between BMI and age acceleration, denoted as “cor,” and the
corresponding P value. NA, not applicable.
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Fig. 1. Discovery analysis. Analysis of the correlation of DNAm age to chronological age across the publicly available datasets: (A–D) This row shows the correlation
of chronological age to the DNAm age in liver, adipose tissue, muscle, and blood. The red dashed line in these panels indicates the regression line. In all panels (A–H),
each point corresponds to a human subject. Red circles indicate women and blue squares are used to denote male individuals. The age acceleration effect for each
subject (point) corresponds to the vertical distance to the red regression line. (E–H) This row plots the relation of BMI and age acceleration in those tissues. The black
horizontal line (y = 0) corresponds to an age acceleration of zero. It is evident that only liver tissue shows a significant correlation (r = 0.42, P = 6.8 × 10−4) to BMI.
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correlation of BMI with age acceleration was confirmed,
yielding a similar effect size of r = 0.42 (P = 1.2 × 10−4) (Fig. 2
E and F) compared with the discovery dataset. The correlation
between age acceleration and BMI (r = 0.42 in the discovery
and r = 0.42 in the replication datasets) is unexpectedly high in
comparison with the previously reported correlations (r = 0.12)
between BMI and telomere length in blood (4). We think it
unlikely that changes in telomere length could explain our
results in liver because telomere length only has a weak nega-
tive correlation with DNAm age after correcting for chrono-
logical age (e.g., r = −0.28, P = 0.22 in adipose dataset 2). For
a subset of the individuals from the liver datasets (discovery and
replication combined), corresponding muscle (n = 26) and
adipose tissue (n = 32) samples were available for analysis. In
both nonliver tissues, no significant evidence of BMI-related
DNAm age acceleration was observed (P = 0.32 and 0.68 for
adipose and muscle tissue, respectively), thereby further sup-
porting the liver-specificity of the age acceleration finding (Fig.
2 G and H).
Post hoc analyses were performed in the combined liver

datasets: First, the relation between BMI and age acceleration in
the combined dataset was estimated as an increase of 2.7 y for
each 10 BMI units in the linear model (Table 2). Second, BMI-
related age acceleration was consistently observed both in
women and in men and when restricting the analysis to one liver
dataset at a time (Fig. S2 G, H, O, and P).

Increased BMI is the primary risk factor for nonalcoholic fatty
liver disease (NAFLD), which ranges from simple liver steatosis
to nonalcoholic steatohepatitis (NASH). Thus, further post hoc
analyses using the combined liver datasets investigated whether
the observed epigenetic age acceleration appears to be genuinely
related to BMI or is primarily a marker of NAFLD. These
analyses were enabled by the availability of a standardized his-
tological scoring of all liver samples by a single pathologist. The
following lines of evidence demonstrate that the observed age
acceleration in liver is not mediated by NAFLD or NASH: First,
when patients with histological evidence of NAFLD were ex-
cluded from the analysis (i.e., when the analysis was restricted to
n = 32 controls and healthy obese subjects), BMI had a similar
correlation with age acceleration (r = 0.49, P = 0.0044) (Fig. 2H)
as in the analysis that included NAFLD subjects (r = 0.42, P =
1.2 × 10−4) (Fig. 2G). Second, we find that the detected age
acceleration in liver is not associated with the NAFLD Activity
Score (NAS) (19) or any of its component traits (steatosis, he-
patocyte ballooning, inflammation) or fibrosis (Fig. 3 and Figs. S3
and S4). Third, a multivariate linear regression model of DNAm
age on various covariates reveals that BMI remains a highly sig-
nificant covariate even after adjusting for chronological, NAS
component traits (steatosis, ballooning, inflammation), fat per-
centage, and fibrosis (Table S1).
Other well-known risk factors of liver disease are unlikely to

confound the relationship between BMI and age acceleration

Table 2. Estimation of the influence of BMI on liver DNAm age

Variable

Discovery set Replication set Combined dataset

Estimate (SE) P Estimate (SE) P Estimate (SE) P

Chronological age 0.77503 (0.04593) <2 ×10−16 0.53518 (0.06043) 2.5 ×10−13 0.62987 (0.04472) <2 ×10−16

BMI 0.17352 (0.04616) 3.9 ×10−4 0.23578 (0.06827) 9.1 ×10−4 0.16789 (0.04603) 3.8 ×10−4

R2 0.83 0.51 0.61
Age acceleration for 10-point increase in BMI 2.2 y 4.4 y 2.7 y

In multivariate regression models of DNAm age, chronological age, and BMI remain the only significant predictors (see Table S1 for full models). BMI is
a significant covariate of DNAm age in both the discovery and replication dataset. The table reports estimates of the regression coefficients and correspond-
ing SEs, Wald test P values. The last row reports the age acceleration associated with a 10-point increase in BMI. For example, a 10-point increase in BMI is
associated with an increase of 2.2 y (= 0.17352 × 10/0.77503) in DNAm age in the discovery set.
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Fig. 2. Replication analysis. Independent liver (A, B, E, F), adipose tissue (C and G), and muscle (D and H) datasets were analyzed for a correlation of
chronological age and DNAm age and age acceleration to BMI. The data confirm the correlation of DNAm age acceleration and BMI in liver tissue (E and F),
even if the analysis is restricted to individuals without histological evidence of NAFLD (i.e., controls and healthy obese subjects) (F) and the lack of this
correlation in adipose and muscle tissue (G and H).
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because subjects with evidence of viral hepatitis, hemochroma-
tosis, or high alcohol consumption (greater than 20 g/d for women
and 30 g/d for men) were excluded from this study. We do not
find a significant association between type II diabetes status and
age acceleration (P = 0.16) (Fig. S5 A and C), but these results
should be interpreted with caution because a two-group com-
parison based on 23 diabetes cases and 103 controls only achieves
sufficient statistical power (80% at a significance level of 0.05) for
detecting moderate to large effects (mean differences of 0.7 SDs).
Furthermore, it is unlikely that smoking confounds the re-

lationship between BMI and age acceleration because (i) we did
not observe a significant relationship between BMI and smoking
status in our liver data sets, and (ii) smoking status was not
significantly related with age acceleration in liver, muscle, or
blood tissue (Fig. S6).

Weight Loss Does Not Reverse Epigenetic Age Acceleration in the
Short Term. Bariatric surgery induces a profound weight loss
and reverses a number of metabolic abnormalities associated
with increased BMI. For 21 subjects from the combined liver
datasets, liver tissue samples before and after bariatric surgery
(collected within a 9-mo period after surgery) were available. As
expected, bariatric surgery led to a significant decrease in BMI
(ΔBMI = 14.6, P = 3.7 × 10−7) (Fig. 4A). However, bariatric
surgery and rapid weight loss does not reverse the DNAm age in
liver tissue within a 9-mo period (Fig. 4B).
Rönn et al. (20) studied whether a 6-mo physical exercise in-

tervention affected DNA methylation levels in human adipose
tissue. Although this exercise intervention did not lower the BMI
of the subjects, the authors reported that 17,975 individual CpG
sites on the Illumina 450K array showed altered DNAm levels.
Using these DNAm data, we did not observe an effect of the ex-
ercise intervention on the DNAm age of adipose tissue (Fig. 4C).

Transcriptional Studies of Age Acceleration in Liver Tissue.Using our
gene-expression data from liver tissue, we identified 279 genes
whose mRNA levels had a significant negative correlation with
age acceleration at an uncorrected correlation test P-value thresh-
old of 0.005 (corresponding to a false-discovery rate of 0.10). These
279 negatively related genes tend to be overexpressed in liver
samples that do not exhibit age acceleration effects. Similarly, we
identified 378 genes with a positive correlation with age acceleration
in liver (i.e., these genes tend to be overexpressed in liver samples
with a significant age acceleration effect). The results of a functional
enrichment analysis with the Database for Annotation, Visualization

and Integrated Discovery (DAVID, v6.7) (21) can be found in
Table 3. The 279 negatively related genes are highly enriched with
nuclear mitochondrial genes, which play a role in oxidative phos-
phorylation and electron transport. This finding recapitulates a pre-
viously observed conserved molecular signature of aging in which
genes associated with these functions tend to be strongly underex-
pressed (22). The 378 positively related genes are known to play
a role in nucleoside-triphosphatase regulator activity, cell adhe-
sion, GTPase regulator activity, and response to wounding. Future
mechanistic studies will be needed to dissect cause-and-effect
relationships.

Structural Equation Modeling Analysis of BMI, Age Acceleration, and
Liver Traits. Using a measure of age acceleration similar to that
used in Fig. 1 (i.e., age acceleration is defined as residual from
a regression model of DNAm age against chronological age in
the combined dataset), we find that many liver traits correlate
with age acceleration (Fig. S7). However, these significant rela-
tionships probably reflect confounding caused by BMI, as can be
seen from a structural equation model analysis (SI Text and Table
S2): an independence model (model 3: trait←BMI→age acceler-
ation), which postulates that high BMI leads to liver pathology and
age acceleration independently, achieves the best fit for the NAS
score, hepatocyte ballooning, and liver inflammation. However,
for steatosis, the reactive model (BMI→steatosis→age accelera-
tion) provides a better fit. The results for fibrosis are ambiguous.
We caution the reader that structural equation models make

various assumptions (SI Text) that may not be satisfied by our
observational data. As the study design is primarily observa-
tional, we cannot establish causality but provide this as a specu-
lative model.

Discussion
Aging of tissues is a complex, dynamic, and multifaceted process
that is currently still poorly understood (23) because its investigation
depends critically on the use of model organisms, and integration of
findings with human physiology remains a challenge. Tissue aging
has up until now predominantly been defined in single-tissue and
organ studies, thus inhibiting global analyses of epidemiological
factors and medical interventions. Genome-wide DNAm-based
epigenetic analysis may provide a possible solution to this problem,
as (i) epigenetic restructuring of the genome has been shown to play
a key role in aging as demonstrated by altered global methylation
levels, histone modifications and CpG methylation, and (ii) specific,
age-related alterations in DNAm have been reported previously.
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Fig. 3. Post hoc analyses of subgroups and histological characteristics of NASH. An adjusted measure of DNAm age is related to various measures of liver
pathology. The adjusted measure of DNAm age acceleration was defined as residual from a regression model that regressed DNAm age on chronological
age+BMI+sex. Note that this adjusted measure of age acceleration does not relate to (A) NAS, (B) fat percentage (steatosis), (C) inflammation, and (D) fibrosis.
Each scatterplot reports the Pearson correlation coefficient and P value. Analogous results can also be found in the individual liver datasets (Figs. S3 and S4).
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Many groups have reported sets of CpGs that correlate with
age in multiple tissues (15, 24–28). Although these reports firmly
establish the strong effect of age on epigenetic modifications,
individual CpG sites are unsuitable for global comparisons be-
tween tissues in the context of epidemiological or interventional
analysis, because the underlying methylation sites are highly tis-
sue-specific. Thus, in this report, we use an aggregate measure of
DNAm age that has been validated across sorted cell types (CD4
T cells, monocytes, B cells, glial cells, neurons), complex tissues,
and organs (e.g., brain, breast, kidney, liver, lung) (11). This
biomarker enabled (as far as we are aware) the first analysis of
the relation between obesity and the epigenetic ages of different
human tissues. Although the epigenetic clock stands out because
of its high correlation with chronological age across most tissues
(11), this biomarker of aging has a major limitation: it is not yet
understood what it measures. Whereas many articles suggest that
age-related changes in DNAm levels represent noise or epige-
netic drift (29), DNAm age might measure the cumulative work
of an epigenomic maintenance system (11). According to the
gene-enrichment signature of epigenetic age acceleration in liver

(Table 3), age acceleration relates to processes, such as oxidative
stress and energy metabolism. Although this epigenomic mainte-
nance system is as yet poorly defined, the continued nutritionally
driven oxidative stress and metabolic pressure might point to the
mechanisms leading to the liver-specific increase of DNAm age.
Our data show that high BMI relates to increased DNAm age in
a tissue-specific manner. Although BMI is widely used, it is a
somewhat suboptimal measure of adiposity because it is correlated
both with obesity and muscle mass. Thus, a possible association
of DNAm age and muscle mass should be addressed in future
studies. Examining the association between epigenetic age accel-
eration and tissue pathology may provide an important biological
link between obesity and clinical manifestations of accelerated
aging. The increased age of liver tissue in obese individuals may
provide insights to liver-related comorbidities of obesity, such
as insulin resistance and hepatocellular carcinoma (HCC).
Liver protein synthesis function, as measured on an organismal

level, is quite plastic and not impaired in obesity in the ab-
sence of histopathological cirrhosis. However, even in the
absence of structural liver disease, and in mild forms (such as
early steatosis), the clinically relevant phenomena in these patients
are insulin resistance (with its hepatic component very poorly
understood) and an increased risk of HCC as the most tangible
manifestations of obesity. Aging and cancer are not only intricately
linked to each other (30, 31) but also to obesity and metabolic
syndrome (32). Obesity is an established risk factor for many types
of cancers, particularly for HCC, because of its carcinogenic po-
tential and the association with NAFLD (33). In cohort studies in
men, metabolic syndrome was most strongly associated with liver
cancer followed by colorectal cancer (34). Future studies will be
needed to test whether tissues with increased DNAm age have a
lower threshold to carcinogenesis. Although epigenetic aging may
help understand carcinogenesis, it may also have practical con-
sequences. NASH is a risk factor for liver cancer even in the ab-
sence of cirrhosis (32) and is thus recommended as a high-risk
group for screening in the current American Association for the
Study of Liver Diseases guidelines (35). Future HCC screening
recommendations may be influenced by our findings because BMI-
induced increased tissue age (i) is independent of the presence of
overt NASH and (ii) is irreversible, at least in the short term.
The increased epigenetic age of liver tissue in obese individ-

uals should provide insights into common liver-related comor-
bidities of obesity, such as insulin resistance and liver cancer.
These findings support the hypothesis that obesity is associated
with accelerated aging effects (3) and stresses once more the
importance of maintaining a healthy weight.
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Fig. 4. Effect of weight loss and exercise intervention on DNAm age. For 21 subjects, liver methylation data were available before and after bariatric surgery.
As expected, BMI drops significantly within 6–9 mo following bariatric surgery (A). However, the DNAm age of the liver tissue is unaffected (B). (C) DNAm age
of adipose tissue is unaffected by a 6-mo exercise intervention (20).

Table 3. Functional enrichment of gene transcripts associated
with age acceleration

Category Term n FE P Bonferroni

279 negatively correlated genes
Cell Comp Mitochondrion 41 2.9 3.0 ×10−7

KEGG Oxidative phosphorylation 11 6.5 3.7 ×10−4

SP_PIR Electron transport 10 7.8 1.6 ×10−3

378 positively correlated genes
Mol. Fnc. Nucleoside-triphosphatase

regulator activity
27 3.2 2.1 ×10−4

Biol. Proc. Cell adhesion 36 2.6 7.7 ×10−4

Mol. Fnc. GTPase regulator activity 26 3.1 4.8 ×10−4

Biol. Proc. Response to wounding 29 2.8 4.2 ×10−3

SP_PIR Guanine-nucleotide
releasing factor

13 5.7 1.0 ×10−3

SP_PIR Autophosphorylation 9 9.8 1.2 ×10−3

Biol. Proc. Wound healing 16 4.2 1.1 ×10−2

Mol. Fnc. GTPase binding 12 5.3 7.5 ×10−3

Biol. Pro. Cell activation 19 3.3 3.1 ×10−2

The upper part of the table reports the results from applying DAVID EASE
to 279 genes whose expression levels had a significant negative correlation
with age acceleration in liver. Similarly, the lower part reports the result
for the 378 positively related genes. The table reports the gene ontology
(GO) enrichment categories, number of genes (n), fold-enrichment (FE), and
Bonferroni-corrected P value. Biol. Proc., biological process; Mol. Fnc., mo-
lecular function; SP_PIR, spliceosome protein–protein interaction resource.
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Methods
A detailed description of the datasets and statistical methods can be found in
SI Text. All data presented in this article are available in public data re-
positories. Accession numbers are presented in Table 1.

Public DNAm Datasets. All genome-wide human methylation datasets with
BMI, age, and sex information publicly available at the time of analysis were
used (datasets 1–6). Such datasets were available from liver, adipose tissue,
muscle, and blood (Table 1). Postbariatric patients were excluded from the
liver discovery set analysis.

Novel Replication Datasets: Samples. Liver samples were collected from Ger-
man patients (all Caucasians) under the same protocol and ethics approval as
reported previously (12). In brief, liver samples were obtained percutaneously
for patients undergoing liver biopsy for suspected NAFLD or intraoperatively
for assessment of liver histology. Normal control samples were recruited from
samples obtained for exclusion of liver malignancy during major oncological
surgery. A percutaneous follow-up biopsy was obtained in consenting
bariatric patients 5–9 mo after surgery. All patients provided written, in-
formed consent. The study protocol was approved by the institutional re-
view board (“Ethics commission of the Medical Faculty, University of Kiel”
D425/07, A111/99) before the commencement of the study (SI Text). During
surgery, in addition to liver tissue, subcutaneous fat and muscle tissue were
obtained (Table 1, datasets 7–9) in a subset of patients. A standardized
histological scoring of all liver samples by the same single pathologist (C.R.)
according to the NAS score (19), who performed the histological scoring of
the discovery dataset, thereby allowing pooling during post hoc analyses.

Ideally, one would want to carry out longitudinal studies of liver function
to understand how liver function and DNAm changes with age and predicts
functional change. The patients biopsied in our study are in a long-term
follow up program and may help to provide such answers, which we re-
grettably cannot provide at this point.

Preprocessing of DNAm Data. Samples were processed as reported previously
(12). In brief, bisulfite conversion using the Zymo EZ DNA Methylation Kit

(ZymoResearch), as well as subsequent hybridization of the Human-
Methylation450K Bead Chip (Illumina) and scanning (iScan, Illumina), were
performed according to the manufacturers protocols by applying standard
settings. DNA methylation levels (β-values) were determined by calculating
the ratio of intensities between methylated (signal A) and unmethylated
(signal B) alleles. Specifically, the β-value was calculated from the intensity of
the methylated (M corresponding to signal A) and unmethylated (U corre-
sponding to signal B) alleles, as the ratio of fluorescent signals β = Max(M,0)/
[Max(M,0) + Max(U,0) + 100]. Thus, β-values range from 0 (completely
unmethylated) to 1 (completely methylated) (36).

Transcriptomic Data. Novel liver messenger RNA expression datasets from
the German patients were generated on the HuGene 1.1 ST gene array
(Affymetrix) (Dataset S1).

Statistical Analysis. Epigenetic age was calculated as reported previously. The
epigenetic clock is defined as a prediction method of age based on the DNAm
levels of 353 CpGs. Predicted age, referred to as DNAm age, correlates with
chronological age in sorted cell types (CD4 T cells, monocytes, B cells, glial cells,
neurons) and tissues and organs, including whole blood, brain, breast, kidney,
liver, lung, saliva (11). Mathematical details and software tutorials for the epi-
genetic clock can be found in the supplemental files of ref. 11. Many authors
have described methods for dealing with the two types of probes found on the
Illumina 450K array (37–39). This is not a concern for the epigenetic clock be-
cause it only involves type II probes. However, our software implements a data
normalization step that repurposes the BMIQ normalization method from
Teschendorff et al. (38) so that it automatically references each sample to a gold
standard based on type II probes (details can be found in supplemental file 2 in
ref. 11).
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